Тромбоциты характеристика и функции


4.3. Структурно-метаболические особенности эритроцита

Особенности структурной организации мембраны эритроцитов

Эритроцит окружен плазматической мембраной, структура которой хорошо изучена, идентична таковой в других клетках. Цитоплазматическая мембрана эритроцитов включает бислой фосфолипидов, в то время как белки или «плавают» на поверхности мембран, или пронизывают липиды, обеспечивая прочность и вязкость мембран. Площадь мембраны одного эритроцита составляет около 140 мкм2. 

На долю белков приходится примерно 49 %, липидов – 44 %, углеводов –7 %. Углеводы химически связаны либо с белками, либо с липидами и образуют соответственно гликопротеиды и гликолипиды.

Важнейшими компонентами мембраны эритроцитов являются липиды, включающие до 48 % холестерина, 17-28 % – фосфотидилхолина, 13-25 % – сфингомиелина и ряд других фосфолипидов.

Фосфотидилхолин мембраны эритроцитов несет нейтральный заряд, практически не вступает в реакции взаимодействия с положительно заряженными каналами Са2+,, обеспечивая тем самым атромбогенность эритроцитов. Благодаря таким свойствам, как текучесть, пластичность, эритроциты способны проходить через капилляры диаметром ~ 3 мкм.


Белки мембраны эритроцита делят на периферические и интегральные. К периферическим белкам относят спектрин, анкирин, белок 4.1., белок р55, адуцин и др. В группу интегральных белков входит фракция 3, а также гликофорины А, В, С, О, Е. Анкирин образует соединение с р-спектрином. В составе эритроцитов обнаружено около 340 мембранных и 250 растворимых белков.

Пластичность эритроцитов связана с фосфорилированием мембранных белков, особенно белков полосы 4.1.

Белок фракции 4.2. – паллидин обеспечивает связывание спектрин-актин-анкиринового комплекса с фракцией 3, относится к группе трансглутаминазных протеинов.

К числу сократительных белков мембраны эритроцитов относятся р-актин, тропомодулин, строматин и тропомиозин.

Гликофорины – интегральные белки мембраны эритроцитов, определяющие отрицательный заряд, способствующий отталкиванию эритроцитов друг от друг и от эндотелия сосуда.

Протеин 3 – основной белок актинов, регулирующий дефосфорилируемость эритроцита.

Как указывалось выше, мембрана эритроцита представляет собой сложный комплекс, включающий определенным образом организованные липиды, белки и углеводы, которые формируют наружный, средний и внутренний слои эритроцитарной мембраны.


Касаясь пространственного расположения различных химических компонентов эритроцитарной мембраны, следует отметить, что наружный слой образован гликопротеидами с разветвленными комплексами олигосахаридов, которые являются концевыми отделами групповых антигенов крови. Липидным компонентом наружного слоя являются фосфатидилхолин, сфингомиелин и неэстерифицированный холестерин. Липиды наружного слоя мембраны эритроцита играют важную роль в обеспечении постоянства структуры мембраны, избирательности ее проницаемости для различных субстратов и ионов. Вместе с фосфолипидами холестерин регулирует активность мембранно-связанных ферментов путем изменения вязкости мембраны, а также участвует в модификации вторичной структуры ферментов. Молярное отношение холестерин / фосфолипиды в мембранах клеток у человека и многих млекопитающих равно 0,9. Изменение этого соотношения в сторону увеличения наблюдается в пожилом возрасте, а также при некоторых заболеваниях, связанных с нарушением холестеринового обмена.

Снижение текучести мембраны эритроцита и изменение ее свойств отмечается также и при увеличении содержания сфингомиелина,

Средний бислой мембраны эритроцита представлен гидрофобными «хвостами» полярных липидов. Липидный бислой обладает выраженной текучестью, которая обеспечивается определенным соотношением между насыщенными и ненасыщенными жирными кислотами гидрофобной части бислоя. Интегральные белки, к которым относятся ферменты, рецепторы, транспортные белки, обладают активностью только в том случае, если находятся в гидрофобной части бислоя, где они приобретают необходимую для активности пространственную конфигурацию. Поэтому любые изменения в составе липидов эритроцитарной мембраны сопровождаются изменением ее текучести и нарушением работы интегральных белков.


Внутренний слой мембраны эритроцита, обращенный к цитоплазме, состоит из белков спектрина и актина. Спектрин является специфическим белком эритроцитов, его гибкие вытянутые молекулы, связываясь с микрофиламентами актина и липидами внутренней поверхности мембраны, формируют своеобразный скелет эритроцита. Небольшой процент липидов во внутреннем слое мембраны эритроцита представлен фосфатидилэтаноламином и фосфатидилсерином. От наличия спектрина зависит подвижность белков, удерживающих двойной бисой липидов.

Одним из важных гликопротеинов является гликофорин, содержащийся как на внешней, так и на внутренней поверхностях мембран эритроцитов. Гликофорин в своем составе содержит большое количество сиаловой кислоты и обладает значительным отрицательным зарядом. В мембране он располагается неравномерно, образует выступающие из мембраны участки, которые являются носителями иммунологических детерминант.

Строение и состояние эритроцитарной мембраны, низкая вязкость нормального гемоглобина обеспечивают значительные пластические свойства эритроцитам, благодаря которым эритроцит легко проходит по капиллярам, имеющим вдвое меньший диаметр, чем сама клетка, и может принимать самые разнообразные формы. Другим периферическим мембранным белком эритроцитов является анкирин, образующий соединение с молекулой Р-спектрина.


Функции эритроцитарной мембраны

Мембрана эритроцитов обеспечивает регуляцию электролитного баланса клетки за счет активного энергозависимого транспорта электролитов или пассивной диффузии соединений по осмотическому градиенту.

В мембране эритроцитов имеются ионно-проницаемые каналы для катионов Na+, K+, для O2, CO2, Cl– HCO3–.

Транспорт электролитов через эритроцитарную мембрану и поддержание его мембранного потенциала обеспечивается энергозависимыми Na+, K+, Ca2+ – АТФ-азными системами.

Мембрана эритроцитов хорошо проницаема для воды при участии так называемых белковых и липидных путей, а также анионов, газообразных соединений и плохо проницаема для одновалентных катионов калия и натрия.

Белковый путь трансмембранного переноса воды обеспечивается при участии пронизывающего мембрану эритроцитов белка «полосы 3», а также гликофорина.

Молекулярная природа липидного пути переноса воды через эритроцитарную мембрану практически не изучена. Прохождение молекул небольших гидрофильных неэлектролитов через эритроцитарную мембрану осуществляется также, как и перенос воды, за счет белкового и липидного путей. Перенос мочевины и глицерина через мембрану эритроцита обеспечивается за счет ферментативных реакций.

Характерной особенностью мембраны эритроцитов является наличие мощной системы активного транспорта для одновалентных анионов (хлора и фтора), и двухвалентных анионов (SO42–, PO42–) за счет белков – переносчиков.


Перенос органических анионов через эритроцитарную мембрану обеспечивается, как и транспорт неорганических анионов, при участии белка «полосы 3».

Эритроцитарная мембрана обеспечивает активный транспорт глюкозы, кинетика которого обеспечивается зависимостью Михаэлиса-Ментен. Важная роль в транспорте глюкозы через эритроцитарную мембрану отводится полипептиду полосы 4,5 (белки с ММ 55 кД – возможные продукты распада полипептида полосы  3). Высказывается предположение о наличии специфического липидного окружения у белков – переносчиков сахаров в эритроцитарной мембране.

Неравномерное распределение моновалентных катионов в системе эритроцит – плазма крови поддерживается при участии энергозависимой Na+-помпы, осуществляющей трансмембранный обмен ионов Na+ эритроцитов на ионы К+ плазмы крови в соотношении 3:2. Кроме указанного трансмембранного обмена Na+/K+, Na+ помпа осуществляет еще, по крайней мере, четыре транспортных процесса: Na+→ Na+ обмен; K+→K+обмен; одновалентный вход ионов Na+, сопряженный с выходом К+.

Молекулярной основой Na+ помпы является фермент Na+, K+ –АТФ-аза – интегральный белок, прочно связанный с мембранными липидами, состоящий из 2х полипептидных субъединиц с ММ 80-100кД.

Транспортная система имеет 3 центра, связывающих ионов Na+, локализованных на цитоплазматической стороне мембраны. С наружной стороны мембраны на транспортной системе имеется 2 центра связывания ионов К+. Важная роль в поддержании высокой активности фермента отводится мембранным фосфолипидам.


Функционирование Са2+-помпы обеспечивается нуклеотидами, а также макроэргическими соединениями, преимущественно АТФ, ЦТФ, ГТФ, в меньшей степени ГТФ и ЦТФ.

Как в случае Nа+-помпы, функционирование Са2+помпы в эритроцитах связано с проявлениями активности Са2+, Mg2+ –АТФ-азы. В мембране одного эритроцита обнаруживается около 700 молекул Са2+, Mg2+ –АТФ-азы.

Наряду с барьерной и транспортной функциями, мембрана эритроцитов выполняет рецепторную функцию.

Экспериментально доказано наличие на мембране эритроцитов рецепторов к инсулину, эндотелину, церулоплазмину, а2-макроглобулину, α- и β-адренорецепторов. На поверхности эритроцитов находятся рецепторы к фибриногену, обладающие достаточно высокой специфичностью. Эритроциты также несут на мембране рецепторы к гистамину, ТхА2, простациклину.

В мембране эритроцитов обнаруживаются рецепторы для катехоламинов, снижающих подвижность жирных кислот липидов мембран эритроцитов, а также осмотическую устойчивость эритроцитов.

Установлена перестройка структуры мембраны эритроцитов под влиянием низких концентраций инсулина, гормона роста человека, простагландинов группы Е и Е2.

В мембранах эритроцитов высока и ц – АМФ активность. При увеличении концентраций в эритроцитах ц–АМФ ( до 10–6 М) усиливаются процессы фосфорилирования белков, что приводит в свою очередь к изменению степени фосфорилированности и проницаемости мембран эритроцитов для ионов Са2+.


Эритроцитарная мембрана содержит изоантигены различных систем иммунологических реакций, определяющих групповую принадлежность крови человека по этим системам.

Источник: edu.volgmed.ru

Основные функции тромбоцитов

По внешнему виду тромбоциты представляют собой круглые или овальные красные пластинки с гладкой поверхностью. Они образуются в костном мозге. Их созревание происходит в течение приблизительно 8 дней. Данные компоненты постоянно циркулируют в кровяном русле.

Главная функция тромбоцитов – обеспечение свертываемости крови. Кроме этого важной является способность данных компонентов крови – останавливать кровотечения. Это обеспечивается тем, что отдельные тромбоциты могут склеиваться между собой и прилипать к местам повреждения сосудов. Процесс автоматически запускается организмом человека при возникновении рисков кровотечения.

Важным является вопрос, сколько живут тромбоциты. Время их жизнеспособности длиться приблизительно 10 дней. В зависимости от возраста красных пластинок изменяется их размер: от 2 до 5 микрон в диаметре.

Процесс обновления тромбоцитов в крови происходит постоянно. Поэтому важным фактором для гарантии поддержания состояния крови является сбалансированность образования красных пластинок и их гибелью. В противном случае может наблюдаться склонность к тромбообразованию или повышенной кровоточивости.

Анализ крови на тромбоциты

Определить количество тромбоцитов позволяет общий анализ крови. Основным показаниями для его проведения является следующее:


  • Повышенная кровоточивость десен.

  • Обильные менструации.

  • Появление синяков при незначительных ударах.

  • Частые носовые кровотечения.

  • Трудности с остановкой крови при небольших повреждениях.

Количество тромбоцитов в крови измеряется в тысячах на 1 микролитр крови. Подсчет выполняется в специализированных лабораториях различными способами, которые гарантируют высокую точность.

Норма тромбоцитов в крови зависит от пола и возраста и составляет:

  • У мужчин 200–400 тысяч.

  • У женщин 180–320 тысяч, в период менструации количества может снизиться до 75–220 тысяч, а при беременности до 100–310 тысяч.

  • У детей показатели зависят от возраста, и соответствующие значения приводятся в специальных таблицах.

Для проведения общего анализа крови выполняют забор крови из пальца. Особенной предварительной подготовки перед этим не требуется. Для гарантии получения точных результатов сдавать кровь лучше в утреннее время натощак. При этом за 12 часов до процедуры не рекомендуется употреблять жирные острые блюда, газированные напитки алкоголь.


Дополнительно для определения показателей свертываемости крови проводятся анализы по Сухареву и по Ли-Уайту. Они информативные и позволяют получить необходимые дополнительные данные о патологическом состоянии. Это позволит провести корректные лечебные мероприятия и избежать опасных последствий.

Повышение уровня тромбоцитов

Повышенные тромбоциты – это патологическое состояние. Его называют тромбоцитоз. Главная опасность патологии заключается в повышении рисков образования тромбов.

Причиной повышения уровня тромбоцитов в крови могут быть различные заболевания. Наиболее часто тромбоцитоз возникает на фоне:

  • Злокачественных новообразований.

  • Инфекционных болезней.

  • Глистных инвазий.

  • Хирургических операций.

  • Аутоиммунных патологий.

  • Почечной недостаточности.

Высокий уровень тромбоцитов в крови наблюдается у людей в пожилом возрасте. Временно показатели могут повышаться после тяжелых физических нагрузок, к примеру, после занятий спортом.

Симптоматика тромбоцитоза характерная, но при этом слабо выраженная. Следует обязательно провести общий анализ крови, если отмечаются следующие симптомы:

  • Болевые ощущения в пальцах рук и ног.

  • Зуд кожных поверхностей.

  • Беспричинная слабость, которая приводит к снижению работоспособности.

  • Отсутствие аппетита.


Понижение уровня тромбоцитов

Пониженные тромбоциты, норма которых у мужчин и женщин разная, провоцируют развитие состояния, которое известно под названием тромбоцитопения. Очень часто она возникает на фоне неконтролируемого приема лекарственных препаратов: антидепрессантов и антибиотиков.

Причинами снижения уровня тромбоцитов в крови могут стать различные инфекционные болезни: ОРВИ, гепатит, герпес и пр. Наблюдаться тромбоцитопения может при включении в рацион большого количества продуктов разжижающих кровь. Это имбирь, вишня, чеснок, лук и др.

К неинфекционным факторам понижения уровня тромбоцитов в крови относя период беременности, авитаминоз, отравление алкоголем или тяжелыми металлами.

Заподозрить тромбоцитопению можно по следующим признакам:

  • Обильным менструациям.

  • Частым носовым кровотечениям.

  • Появлением гематом.

При постоянном патологическом снижении уровня тромбоцитов в крови увеличиваются риски развития сильных кровотечений и инсультных состояний, которые несут угрозу жизни.

Восстановления уровня тромбоцитов в крови

Нормализовать уровень тромбоцитов в крови можно сбалансированным питанием. Важно насытить рацион продуктами, с высоким количеством материалов и микроэлементов. Нужно отказаться от острой пищи, алкоголя, фаст-фуда и сладких газированных напитков, вести здоровый образ жизни и соблюдать питьевой режим.

Если не удалось нормализовать показатели естественными способами, то нужно пройти полное обследование у гематолога. При повышенном уровне тромбоцитов могут быть назначены специальные медикаментозные средства – антикоагулянты или антиаггреганты. Они разжижают кровь и минимизируют риски образования тромбов. Но при этом принимать их нужно только по назначению врача. Следует понимать, что стабилизация состояния возможна только после устранения базовых причин, которые провоцируют отклонения от нормы.

Источник: aptstore.ru

1

  • Авторы
  • Резюме
  • Файлы
  • Ключевые слова
  • Литература

Тромбоциты являются безъядерными форменными элементами крови, участвующими в процессе гемостаза [4]. В крови основная масса тромбоцитов имеет характерную дискоидную форму с почти гладкой поверхностью. Диаметр их составляет от 2 до 4 мкм, площадь поверхности около 8 мкм2, а объем — 6-9 фл (фл — фемтолитр=10-15л). Дискоидная форма поддерживается у тромбоцита циркулярным микротубулярным кольцом, локализующимся у внутренней поверхности мембраны. Тромбоциты обладают двухслойной мембраной, которая по своему составу и строению несколько отличается от мембран прочих форменных элементов крови тем, что в ней больше фосфолипидов расположено асимметрично [6].

В кровяных пластинках непосредственно у внутреннего слоя мембраны находится микротубулярное кольцо, образованное белком тубулином, локализованное вдоль максимальной окружности мембраны. Тубулин занимает относительно большую поверхность, вследствие чего сохраняется дискоидная форма интактных кровяных пластинок. У дискоидных форм микротрубочки локализуются по внутреннему периметру мембраны — в случае активации они разрушаются и хаотично распределяются по цитоплазме с последующим изменением формы клетки из дискоидной в сферическую.

Тромбоциты в результате стимуляции проявляют выраженную адгезию, агрегацию и секрецию. Так, в случае соприкосновения с чужеродной поверхностью тромбоцит активируется, превращается в сфероцит, имеющий множество отростков, размер которых может существенно превышать поперечник самих тромбоцитов. В основе данных изменений формы лежит нарастание уровня Са2+ в их цитоплазме, что ведет к деполимеризации тубулина, приводя к растворению микротубулярного кольца и ультраструктурной перестройке внутренней части тромбоцитов с формированием нитей актина. Возникновение псевдоподий обеспечивает быстрый контакт отдельных тромбоцитов между собой, замедляя кровоток в месте их активации [10].

У тромбоцита имеется 4 основные функциональных зоны. Первая — периферическая зона, представляет собой двухслойную фосфолипидную мембрану и пространства, прилегающие к ней с двух сторон. Мембранные интегральные белки проникают сквозь мембрану и обеспечивают связь с цитоскелетом кровяной пластинки. Кроме того, они выполняют функции рецепторов, каналов, насосов, участвуя в процессе активации тромбоцита. Часть интегральных протеинов, имеющих массу полисахаридных молекул, на поверхности тромбоцитов образуют внешнее покрытие липидногобислоя — гликокалекс, способный адсорбировать на себе большое количество белков. В этой связи периферическая зона кровяных пластинок осуществляет барьерную функцию, способствуя обеспечению нормальной формы тромбоцита, реализуя сквозь неё обмен веществ, активацию и весь процесс участия тромбоцитов в гемостазе [7].

Вторая зона — золь-гель зона, является вязким матриксом цитоплазмы тромбоцита, прилегая к субмембранной области. В нее входят различные белки (до 50 % от всех белков тромбоцитов). Их состояние зависит от интактного или активного состояния самого тромбоцита. Внутри зоны золь-гель находится большое число зёрен гликогена, по сути, являющихся запасом энергетического субстраттромбоцита. Также в этой зоне локализованы сократительные протеины, в связи с чем она весьма важна для ретракции агрегировавших тромбоцитов и для их реакции высвобождения [5].

Третья зона — зона органелл, включает в себя органеллы, расположенные по всей цитоплазме неактивных тромбоцитов: пероксисомы, митохондрии, 3 типа гранул хранения (α -гранулы, плотные гранулы и γ-гранулы (лизосомы)) и аппарат Гольджи.

Наиболее многочисленными являются α-гранулы. В одной клетке их может быть от 40 до 80. В их состав входит более 30 белков, необходимых для гемостаза. α-гранулы — это основной источник прокоагулянтных веществ тромбоцитов, они могут экспрессировать на своей наружной поверхности фосфолипиды с отрицательным зарядом, фактор V, GpIIb/IIIа, CD63. Кроме того, они необходимы для образования микровезикул, обладающих прокоагулянтной активностью. В α-гранулах находятся вещества, имеющие прямо противоположные свойства (ингибиторы и активаторы фибринолиза; соединения, стимулирующие и тормозящие процесс ангиогенеза), входящие в состав различных субпопуляциях α-гранул.

Как и в α-гранулах, в плотных безбелковых гранулах, находятся вещества, необходимые для процесса тромбоцитарного гемостаза — серотонин, адениновые нуклеотиды, Са2+, фибриноген, адреналин, фактор Виллебранда, антигепариновый фактор. В лизосомах скрыты различные гидролитические ферменты [3,5].

Четверная — зона мембран, состоит из каналов плотной тубулярной системы (ПТС), весьма напоминающей структуру миоцитарного саркоплазматического ретикулума. В ней хранится и из нее идет секреция Са2+, что имеет большое значение для активации тромбоцита [6].

Большие концентрации АДФ (из поврежденных эритроцитов и стенок сосудов), а также оголенные субэндотелиальные структуры быстро активируют тромбоциты, меняя их форму, способствуя возникновению выростов и отростков (псевдоподий) с выделением гранул (дегрануляция) в окружающую среду.

Процесс активации тромбоцитов сопровождается выделением ионов Са2+ из внутриклеточных гранул, что связано с опосредуемым фосфолипазой С гидролизом фосфатидилинозитол-4,5-бисфосфата до 1,4,5-инозитолтрифосфата (ИТФ) и диацилглицерола. После этого ИТФ соединяется со специфическим рецептором, что приводит к поступлению Са2+ внутрь кровяных пластинок, сопрягаясь с прохождением его сквозь плазматическую мембрану. Это носит название «гранулоуправляемый» кальциевый вход. Очень важна в этом процессе Са2+— воспринимающая молекула внутриклеточных гранул — молекула стромы взаимодействия-1 — STIM1 (stromalinteractionmolecule 1) и четыре трансмембранных белковых канала CRACM1 (Calcium-releaseactivatedcalciummodulator) или Orai1. Под воздействием STIM1 в плазмолемме происходит открытие Orai1 канала. Еще один механизм, ведущий к поступлению ионов Са2+ в тромбоциты, непосредственно связан с рецептор-зависимым кальциевым каналом — Р2Х1, активирующим под действием диацилглицерола, возникающим в ходе распада фосфатидилинозитол-4,5-бисфосфата. При этом поступление кальция в тромбоциты сквозь плазматическую мембрану возможно благодаря TRPC (canonical transient receptor potential channel) в ходе работы натриево-кальциевого насоса [8].

Очень важным для инициации адгезии является столкновение тромбоцитов между собой и стенкой сосудов. Вместе с тем наиболее важную роль в продвижении кровяных пластинок к очагу адгезии играют сдвиговые силы, развивающиеся в ходе циркуляции крови. Под влиянием индуктора происходит активация тромбоцитов, наступающая в следующей последовательности: изменение формы кровяных пластинок, агрегация, генерация эндопероксидов, простагландинов и тромбоксана, выброс в плазму плотных гранул и α-гранул.

Выраженность агрегации в значительной степени зависит от содержания в крови молекул фибриногена и числа мономеров фибрина. Для образования устойчивой связи между двумя тромбоцитами достаточно между ними одной нити фибриногена. Процесс активации тромбоцитов, стимулированный напряжением сдвига, является одним из механизмов запуска тромбообразования под влиянием прокоагулянтов, выделяемых тромбоцитами [9].

Обычно тромбоциты способны активироваться и адгезировать к эндотелию в зонах разветвлений артерий. Р-селектин-зависимое соединение и роллинг вызывают взаимодействие кровяных пластинок синтактным эндотелием, но данный процесс никогда не бывает выраженным.

Соединение тромбоцитов с эндотелием возможно благодаря Р-селектину и PSGL-1 (P-selecting lycoproteinligand 1) на фоне активации тромбоцитов и тормозит их перемещение. В ходе роллинга отмечается также адгезия тромбоцитов с различными клетками, опосредуемая экспрессией Р-селектина. При этом, вследствие выброса оксида азота, простациклина и прочих дезагрегирующих соединений происходит распад сформировавшихся агрегатов и отвыв тромбоцитов от неповрежденного эндотелия.

На фоне повреждения сосуда развивается адгезия тромбоцитов к различным субэндотелиальным белкам. В условиях низкого напряжения сдвига, наблюдающегося при альтерации крупных артерий и вен, кровяные пластинки адгезируют прямо к оголенным коллагеновым волокнам благодаря коллагеновым рецепторам — GpVI,GpIV и GpIa/IIa. В этих условиях выраженность адгезии во многом определяется типом коллагена. В условиях контакта тромбоцитов с коллагеном V происходит примерно в 3 раза слабее, чем к коллагену I и III, и примерно в 1,5 раза слабее, чем к коллагену IV. При этом к коллагену V типа происходит адгезия в основном отдельных тромбоцитов, а к коллагену I и III наблюдается массовое прилипание с формированием крупных многослойных агрегатов. Это обеспечивает то, что только в случае глубокого повреждения сосудов с оголением коллагеновых волокон I и III типов возможно возникновение пристеночных тромбозов [1].

В условиях высокого напряжения сдвига в условиях наступления травмы мелких артерий и артериол процесс адгезии тромбоцитов обеспечивается фактором Виллебранда, находящегося в плазме и имеющего 3 активных центра — два из них соединяются с рецепторами тромбоцитов (GpIb), а один — со структурами субэндотелия.

По причине достаточно высокого содержания в субэндотелии фактора Виллебранда независимо от величины скорости сдвига, а также от уровня его в плазме и тромбоцитах в случае оголения субэндотелиальных волокон обязательно происходит адгезия тромбоцитов [9].

Кровяные пластинки адгезируют с фактором Виллебранда через рецептор GpIb/IX/V и непосредственно с коллагеном без фактора Виллебранда — через GpVI. Прочная адгезия тромбоцитов происходит через активированные интегриновые рецепторы GpIIb/IIIa (рецепторы к фибриногену) и рецептор к коллагену — α2β1, а также благодаря созданию «мостов» с участием αVβ3-интегрина, эндотелиальной ICAM-1 и GpIbα. При этом интегрины создают связь между экстрацеллюлярными мембранными протеинами и белками внутри тромбоцитов, обеспечивая эффективную двустороннюю сигнализацию.

В ходе адгезии тромбоцитов к субэндотелию они меняют свою форму, распластываются, вследствие чего развивается значительное увеличение их поверхности. Эти явления дают возможность возникнуть более обширным связям между рецепторами тромбоцитов и структурами субэндотелия с прочной фиксации на повреждённой сосудистой стенке кровяных пластинок и их агрегатов [7].

Течение агрегации помогает фактор активации тромбоцитов (РАF) и, кроме того, тромбин, всегда генерирующийся в месте повреждения сосудистой стенки. Под действием слабых индукторов (адреналин, АДФ, серотонин, фибронектинвитронектин) развивается экспрессия рецепторов на поверхности тромбоцитов к фибриногену (GpIIb/IIIa), вследствие чего при наличии в среде Са2+ он соединяет друг с другом 2 прилегающих тромбоцита. В обеспечении данного процесса из всех адгезивных протеинов основная роль принадлежит фибриногену, являющимся главным кофактором агрегации ввиду того, что его концентрация в плазме наибольшая по сравнению с прочими белками, участвующими в адгезии и по причине достаточно большой аффинности к тромбоцитарным рецепторам (GpIb/IIa). Кроме того, симметричное строение фибриногена дает ему возможность вступать в двухсторонние связи с различными рецепторами на поверхности тромбоцитов, создавая мостики, связывающие их [2].

На начальном этапе агрегация носит обратимый характер, т.к. после нее может развиться частичное или полное разрушение агрегатов — процесс дезагрегации. Ввиду того, что связь между тромбоцитами порой непрочна, то определенное количество агрегатов способно отрываться и уноситься с кровью. Эта агрегация называется первичной, или обратимой, не обладающей возможностью полного и окончательного прекращения кровотечения даже из небольших сосудов.

Большое значение имеет вторичная (необратимая) агрегация, сопровождающаяся процессом тромбоцитарной секреции. Слабые индукторы, соединяясь со своими рецепторами, на тромбоцитах вызывают повышение цитоплазматического Са2+с активацией фосфолипазы А2, выщепляющей из мембран кровяных пластинок арахидоновой кислоты, которая превращается в PgG2, PgH2 и тромбоксан А2 (ТхА2), являющиеся сильными агонистами агрегации и вазоконстрикторами. Выбрасываясь из тромбоцитов PgH2PgG2 и ТхА2, повышают уровень экспрессии фибриногеновых рецепторов и усиливают сигнал, передаваемый внутрь кровяных пластинок. ТхА2 активирует фермент фосфолипазу С и стимулирует полифосфоинозитольный путь активации тромбоцитов. При этом ТхА2 способствует выделению Са2+ в цитоплазму из плотной тубулярной системы, что активирует актом иозиновую систему и процесс фосфорилирования протеинов.

На фоне активации тромбоцитов наступает дополнительная экспрессия интегрина GpIIb/IIIa (αIIbβ3) на мембране тромбоцитов, являющегося наиболее важным для адгезии и агрегации. В этих условиях GpIb инициирует межтромбоцитарный контакт, тогда как GpIIb/IIIa сохраняет возникающие агрегаты. В этой связи главным моментом, регулирующим переход обратимой агрегации в необратимую, следует считать экспрессию GpIIb/IIIa, наступающую под действием АДФ, ТхА2 и тромбина.

Появление в крови тромбина ведет к активации протеиназоактивируемых рецепторов РАR-1 РАR-3, РАR-4, связанных с G-белками, что обеспечивает рост концентрации Са2+ внутри кровяных пластинок и развитие их агрегации [3,7].

В результате адгезии, агрегации и ретракции из тромбоцитов выбрасываются находящиеся в гранулах биологически значимые вещества — РАF,АДФ, адреналин, фибриноген, норадреналин, ТхА2, фактор Виллебранда, фибронектин, витронектини тромбоспондин, что существенно укрепляет образовавшийся тромбоцитарный тромб. Вышедший из кровяных пластинок в ходе ретракции фактор роста способствует ускорению репарации поврежденной сосудистой стенки. Восстановлению проходимости сосуда обеспечивают выделяемые из тромбоцитарных γ-грануллизосомальные энзимы. При этом происходит синтез тромбина, стимулирующего распластывание и агрегацию тромбоцитов и вызывающий выпадение сети фибрина, в которой всегда задерживаются отдельные лейкоциты и эритроциты [10].

В ходе агрегации кровяные пластинки меняют свой состав и форму. В самом начале агрегации и возникновения первых порций тромбина поверхность тромбоцитов не испытывает значимых изменений, но в некоторых кровяных пластинках отмечаются признаки распада цитоплазмы. Спустя 40-90 сек. течения агрегации уже часть тромбоцитов становится мутной, их цитоплазма набухает, клетки плотно прилипают друг к другу, хотя повреждений мембраны найти не удаётся. Некоторые тромбоциты в этих условиях теряют гранулы, в прочих же число гранул остаётся без изменений. Спустя 2-3 мин. после появления тромбина тромбоциты набухают, их цитоплазма бледнеет, α-гранулы фрагментируются на мелкие пузырьки. В этих условиях гранулы постепенно перемещаются к центру кровяной пластинки и в ходе сокращения актомиозиновых комплексов сквозь мембрану выталкиваются в плазму. В последующем тромбоциты истончаются и несколько удлиняются. В их цитоплазме определяются только митохондрии, тогда как гранулы уже не выявляются. В этих условиях тромбоциты плотно примыкают друг к другу, а между ними находится в большом количестве фибрин. Изменения формы кровяных пластинок сопряжены с утратой мембранной асимметрии фосфолипидов. В этих условиях имеющие отрицательный заряд фосфолипиды — фосфатидилсерин, и отчасти фосфатидилэтаноламин, переходят на наружный листок мембраны тромбоцита, что обеспечивает условия, необходимые для свёртывания крови, полимеризации нитей фибрина и консолидации тромбоцитарной пробки, а в последующем ретракции тромбоцитарного конгломерата [1,9].

Таким образом, тромбоциты по праву считаются основой всего первичного гемостаза за счет их способности путем агрегации тромбировать локусы повреждения в сосудах. При формировании из них избыточного количества динамичных агрегатов могут меняться реологические свойства крови и тем самым состояние трофики тканей во всем организме.

Рецензенты:

Грушкин А.Г., д.б.н., профессор кафедры ветеринарии и физиологии животных Калужского филиала РГАУ-МСХА имени К.А.Тимирязева, г. Калуга;

Смахтин М.Ю., д.б.н., профессор кафедры биохимии Курского государственного медицинского университета, г. Курск.


Библиографическая ссылка

Марковчин А.А. ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ТРОМБОЦИТОВ // Современные проблемы науки и образования. – 2014. – № 6. – С. 1437-1437;
URL: https://science-education.ru/ru/article/view?id=16888 (дата обращения: 11.08.2021).


Источник: science-education.ru

Тромбоциты – клетки крови, основная функция которых – участие в свертывании крови.

Синонимы русские

Кровяные пластинки, бляшка Биццоцеро.

Синонимы английские

Platelet Count, Thrombocyte, Thrombocyte count, PLT.

Единицы измерения

*109/л (10 в ст. 9/л).

Для чего используется этот анализ?

Для выявления нарушений свертывания или заболеваний костного мозга.

Когда назначается исследование?

  • При общем анализе крови, который необходим по различным причинам.
  • В случаях необъяснимых или длительных кровотечений.
  • При диагностике заболевания костного мозга или при контроля за его течением.

Какой биоматериал можно использовать для исследования?

Венозная или капиллярная кровь.

Общая информация об исследовании

Тромбоциты, как и другие клетки крови, образуются в костном мозге. Некоторые стволовые клетки в костном мозге превращаются в мегакариоциты, от которых тромбоциты «отщепляются» и выходят в кровь. Они лишены ядра и имеют относительно небольшой размер (2-3 микрона в диаметре), это самые маленькие клетки крови.

Повреждение сосуда вызывает образование веществ, которые переводят тромбоциты в активную форму. Тромбоциты уплощаются и обретают способность склеиваться друг с другом и со стенкой сосуда, создавая тромб, который способствует остановке кровотечения.

Продолжительность жизни тромбоцитов около 10 дней, поэтому требуется их постоянное обновление. Если баланса между образованием тромбоцитов в костном мозге и разрушением нет, может возникать склонность к повышенной кровоточивости или, напротив, к тромбообразованию.

В ходе анализа происходит подсчет количества тромбоцитов в единице крови – в литре или в микролитре.

Для чего используется исследование?

Необходимость в определении количества тромбоцитов, а также их функциональных возможностей может возникнуть при нарушениях свертывания или заболеваниях костного мозга, таких как лейкемия (и при подозрении на них).

Когда назначается исследование?

Подсчет количества тромбоцитов, как правило, входит в рутинный общий анализ крови, который проводится как планово, так и при различных болезнях и патологических состояниях, перед хирургическими вмешательствами.

Такой тест назначают пациентам, страдающим от необъяснимых синяков, избыточного количества крови при менструации, кровоточивости десен, носовых кровотечений, или тем, у кого кровотечение из небольшой раны длится достаточно продолжительное время.

Что означают результаты?

Референсные значения

Возраст

Референсные значения

Меньше 10 дней

99 — 421 *10^9/л

10 дней – 1 месяц

150 — 400 *10^9/л

1-6 месяцев

180 — 400 *10^9/л

6 месяцев – 1 год

160 — 390 *10^9/л

1-5 лет

150 — 400 *10^9/л

5-10 лет

180 — 450 *10^9/л

10-15 лет

150 — 450 *10^9/л

Больше 15 лет

150 — 400 *10^9/л

Значительное увеличение количества тромбоцитов (больше 1 млрд на литр (1000 *109/л) способствует их более активному «склеиванию» и тромбообразованию.У взрослых нормальное число тромбоцитов колеблется в пределах от 150 до 450 млн на литр крови (150-450 *109/л). Если их становится меньше 20 млн на литр (20 *109/л), это может приводить к спонтанным кровотечениям и угрожать жизни человека. Снижение тромбоцитов до уровня менее 5 миллионов на литр (5 *109/л) с высокой вероятностью приведет к смерти.

Причины повышения уровня тромбоцитов

  • Злокачественные образования в костном мозге (миелопролиферативные заболевания) и в других органах.
  • Истинная полицитемия.
  • Железодефицитная анемия.
  • Туберкулез.
  • Травмы, острые или хронические инфекции.
  • Удаление селезенки (так как в ней разрушаются старые тромбоциты).
  • Воспалительные заболевания кишечника.
  • Аутоиммунные заболевания (системная красная волчанка, ревматоидный артрит).
  • Почечная недостаточность.
  • Сильная кровопотеря.

Причины понижения уровня тромбоцитов

  • Уменьшение образования тромбоцитов в костном мозге.
  • Увеличение скорости их разрушения или использования.
  • Иммунная тромбоцитопеническая пурпура – самая частая причина чрезмерного разрушения тромбоцитов. В этом случае появляются антитела к собственным тромбоцитам. Антитела связываются с тромбоцитами, что вызывает их быстрое разрушение, так что продолжительность их жизни сокращается до неск

Источник: helix.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.