Артериальная гипоксемия


Состояние, которое проявляется недостаточным содержанием кислорода в крови человека. В результате снижения данного показателя происходит замедление всех обменных процессов как в клетках, так и в тканях.

Причины возникновения. В медицинской практике выделяют пять основных причин, способных спровоцировать данное заболевание:

1.              Атипичное шунтирование крови. При пороках сердца врожденной или приобретенной формы происходит попадание венозной крови в аорту. Из-за этого гемоглобин становится неспособным к присоединению кислорода.

2.              Гиповентиляция легочной ткани. Замедление частоты выдохов и вдохов снижает количество поступающего кислорода по отношению к расходуемому.

3.              Анемия. В результате снижения гемоглобина уменьшается и индекс уровня кислорода, который распространяется по тканям.


4.              Пониженная концентрация кислорода в воздухе.

5.              Диффузные нарушения. Повышенные физические нагрузки способствуют тому, что кровь начинает циркулировать быстрее. В результате время, необходимое для контакта гемоглобина с кислородом, значительно уменьшается.

Другие факторы, способные вызывать гипоксемию:

  • избыточное курение;

  • заболевания сердца;

  • патологии бронхов и легких;

  • перепады атмосферного давления;

  • избыточный вес, приводящий к ожирению;

  • наркоз.

Симптомы. Подразделяются на ранние и поздние.

Ранние признаки:

  • учащенное дыхание;

  • сонливость;

  • расширение сосудов;

  • общую слабость;

  • пониженное артериальное давление;

  • бледность кожи;

  • головокружение;

  • учащенное сердцебиение.

Поздние признаки:

  • симптомами сердечной и дыхательной недостаточности, такими как отек ног, тахикардия;

  • нарушениями в работе мозга, такими как обмороки, бессонница, ухудшение памяти, тревожность и другие.


Может быть хроническая гипоксемия и острая.

Возможные осложнения. Знцефалопатия, гипотония, инсульт, отек легких, аритмия, судороги.

Диагностика. Методы подтверждения патологии можно разделить на те, которые применяются для диагностики гипоксии плода и на те, которые выявляют гипоксию у рождённого ребёнка или взрослого человека.

Методы диагностики кислородной недостаточности у новорождённых и взрослых:

1.              Пульсоксиметрия. Основана на определении уровня кислорода в артериальной крови. В норме насыщенность крови кислородом должна составлять 95–98%. Пульсоксиметр — прибор, позволяющий определить уровень кислорода в артериальной крови

2.              Анализ крови клинический — для определения уровня эритроцитов и гемоглобина.

3.              Рентгенологическое обследование органов дыхания — для исключения патологии лёгких.

4.              ЭКГ и УЗИ сердца — для исключения порока сердца.


Лечение. В первую очередь направлено на устранение первопричины, которая спровоцировала такое состояние. При проявлении патологии, имеющей среднюю или тяжелую степень, лечение проводится стационарно. Обязательны постельный режим и качественный сон. Лекарственные препараты назначаются также в зависимости от факторов, способствовавших развитию патологии. Патологии легкой и средней степени тяжести достаточно легко поддаются лечению.

Профилактика.

  • Ежедневные прогулки на свежем воздухе;

  • Умеренная физическая активность;

  • Выполнение упражнений дыхательной гимнастики;

  • Прием витаминно-минерального комплекса, особенно осенью и зимой;

  • Включение в рацион овощей и фруктов;

  • Своевременное диагностирование патологий сердечно-сосудистой и дыхательной систем.

Источник: navigator.mosgorzdrav.ru

   Артериальная гипоксемия — это следствие и признак нарушения способности дыхательной системы оксигенировать притекающую к легким венозную кровь.
   Исключение составляют лишь дисгемоглобинемии, при которых, кстати, пульсоксиметрический контроль Sp02 неэффективен из-за грубых артефактов.
   Значение пульсоксиметрии не сводится только к распознаванию артериальной гипоксемии и наблюдению за ее динамикой.
огда удается определить причину нарушения оксигенации крови в легких и, следовательно, выбрать оптимальный способ коррекции.
   Нужно отметить, что возможности пульсоксиметрии в дифференциальной диагностике гипоксемии скромнее, чем у лабораторного или мониторного газового анализа, ибо существующая система описания расстройств газообмена традиционно ориентирована на такие параметры, как напряжение, концентрация и парциальное давление дыхательных газов. Недостаточная точность измерения Sp02 и всегда присутствующая вероятность сдвига кривой диссоциации оксигемоглобина не позволяют использовать этот параметр для расчета РаО2. Но все же пульсоксиметрия, в сравнении с газовым анализом, обладает неоспоримым достоинством: в настоящее время это единственный широкодоступный способ обеспечить сколь угодно длительное непрерывное наблюдение за степенью насыщения артериальной крови кислородом.
   Непрерывный мониторинг сатурации гемоглобина артериальной крови в сочетании с пониманием типичных механизмов нарушений легочного газообмена позволяет сделать ряд ценных выводов.
   Существует несколько приемов, с помощью которых можно уточнить причину гипоксемии, выявленной пульсоксиметром.
   1. Необходимо учитывать, в какой клинической ситуации возникает артериальная гипоксемия, и сопоставлять SpO2 с данными лабораторного и инструментального исследования. Например, если гипоксемия диагностируется у больного со свежей невосполненной кровопотерей, то наиболее вероятная причина снижения SpO2 — нарушение регионарных вентиляционно-перфузионных отношений в легких.
кая гипоксемия легко устраняется простой ингаляцией кислорода и инфузией.
   2. Амплитуда фотоплетизмограммы в некоторых случаях позволяет подтвердить предположения, основанные на наблюдениях за SрО2. В приведенном выше примере (пациент с невосполненной кровопотерей) на дисплее пульсоксиметра отмечаются снижение пиков ФПГ, а также «дыхательные волны» — колебания кривой, синхронные с дыханием,- которые характерны именно для гиповолемии.
   3. Высокоинформативна реакция SpO2 на различные лечебные воздействия (оксигенотерапию, инфузию, режим ПДКВ, изменение положения тела и пр.). Так, стойко сниженная сатурация даже на фоне применения кислорода в высокой концентрации характерна для массивного шунтирования крови в легких.
   4. Изучение динамики сатурации, о которой лучше всего судить по тренду SpO2, также позволяет сделать определенные заключения. Неожиданное резкое снижение SpO2 характерно для внезапных событий, таких как смещение интубационной трубки в бронх или развитие напряженного пневмоторакса. Постепенное снижение сатурации, которую не удается нормализовать оксигенотерапией и подбором режима ИВЛ, типично для комплексных расстройств газообмена, возникающих, например, при РДС или тотальной пневмонии. Лабильная гипоксемия наблюдается при накоплении в бронхах мокроты, периодически нарушающей вентиляцию некоторых регионов легких.
   5.
лательно сочетать пульсоксиметрию с другими методами мониторинга дыхания (капнографией, оксиметрией, спирометрией). Данные разных мониторов взаимно дополняют друг друга и даже в сложных случаях помогают восстановить картину нарушения легочного газообмена.
   Причины артериальной гипоксемии. Таковых пять (они могут встречаться по отдельности, однако часто имеет место их сочетание):
   • гиповентиляция;
   • уменьшение содержания кислорода во вдыхаемом газе;
   • шунтирование крови в легких;
   • гиповентиляция отдельных легочных зон;
   • нарушение диффузии кислорода из альвеол в кровь легочных капилляров.
   В каждом из вышеперечисленных случаев гипоксемия углубляется при увеличении потребности организма в кислороде.
   Пульсоксиметрия при гиповентиляции и апноэ. Снижение минутного объема вентиляции легких приводит к уменьшению доставки кислорода в альвеолы и нарушению эвакуации углекислого газа из альвеолярного пространства. При этом доставка в альвеолы углекислого газа с периферии и извлечение из них кислорода кровью, протекающей по легким, не прекращаются. В результате содержание кислорода в альвеолярном газе уменьшается, а концентрация CU2 возрастает. Соответственно изменяется и газовый состав крови, оттекающей от легких.
   При гиповентиляции развиваются артериальная гипоксемия, выявляемая пульсоксиметром по снижению SpO2, и гиперкапния, сопровождающаяся расширением артери-ол, увеличением амплитуды ФПГ и тахикардией (рис.
11).
   Степень гипо- или гипервентиляции традиционно оценивают по напряжению СОа в артериальной крови, потому что величина данного показателя зависит только от соответствия минутного объема альвеолярной вентиляции скорости продукции углекислоты. Внутрилегочный обмен кислорода подчиняется значительно более сложным законам. Поэтому снижение Sp02 можно определенно связать с гиповентиляцией лишь тогда, когда для этого есть реальные клинические предпосылки и нет оснований подозревать участие других механизмов, вызывающих гипоксемию.
   Диагностика гиповентиляции по снижению SpO2 в каждом случае требует обязательного соотнесения величины этого показателя с конкретной клинической ситуацией.
   Несомненным преимуществом пульсоксиметрии при гиповентиляции служит своевременность распознавания этого расстройства по самому опасному последствию — гипоксемии, способной быстро привести к тяжелым осложнениям.
   Пульсоксиметр реагирует на внезапное снижение объема вентиляции значительно раньше, чем капнограф.
   Как быстро развивается артериальная гипоксемия при остановке дыхания? Для анестезиолога и интенсивиста ответ на этот вопрос имеет исключительное практическое значение. Ведь речь идет о времени, которым располагает специалист, чтобы успеть интубировать больного после введения миорелаксанта, или о допустимой продолжительности аспирации мокроты у пациента, которому выполняется ИВЛ, или о любой другой ситуации, когда возникает или искусственно вызывается апноэ.
   В целом скорость появления и развития гипоксемии после остановки вентиляции определяется двумя факторами: (1) потребностью организма в кислороде и (2) запасами кислорода в организме, доступными для использования в физиологическом диапазоне РаО2.
   Потребность взрослого человека в кислороде в покое в среднем равна 250 мл/мин.
и адекватной анестезии она снижается до 200 мл/мин, а при недостаточном обезболивании может увеличиться. Повышенная потребность в кислороде отмечается при гиперметаболических состояниях, например при стрессе.
   Рис. 1.11. Эпизоды апноэ на тренде SpO2 при дыхании воздухом
   Условность приведенных здесь величин очевидна. Минутное потребление кислорода зависит от массы тела и состояния метаболизма, которое, в свою очередь, определяется множеством факторов.мышечной дрожи, гипертермии или септическом шоке. Лидером среди гиперметаболических состояний является синдром злокачественной гипертермии — редчайшее осложнение общей анестезии, при котором потребность в кислороде возрастает в десятки раз.
   Запасы кислорода в организме невелики и у взрослого человека, дышащего воздухом, составляют в среднем 1,5 л, а при дыхании чистым кислородом возрастают до 4- 4,5 л. Поэтому предварительная вентиляция пациента кислородом (преоксиге-нация) существенно увеличивает допустимую продолжительность последующего апноэ. В этом можно убедиться, просматривая тренды SpO.
ериальной гипоксемии.
   Ниже перечислены основные причины уменьшения ФОЕ, знание которых позволяет выделить из общей массы больных группу особого риска в отношении форсированного развития гипоксемии при апноэ:
   • ожирение;
   • высокое внутрибрюшное давление (парез кишечника, асцит, беременность и пр.), особенно в положении лежа или в положении Тренделенбурга;
   • релаксация диафрагмы;
   • уменьшение количества работающей легочной ткани (обширные резекции легких, пневмония, ателектазы, РДС, пробки мокроты, пневмо- или гемоторакс и пр.);
   • общая анестезия;
   • период новорожденности.
   Ряд проблем, связанных с преоксигенацией, подробнее рассмотрен в гл. «Оксиметрия».
   Основные причины нарушения утилизации внутрилегочного газа:
   • альвеолярное мертвое пространство (тромбозы и эмболии легочных сосудов) — кислород таких участков недоступен для ^использования;
   • наличие в легких обширных зон с выраженным преобладанием вентиляции над кровотоком (низкое давление в легочной артерии, например при гиповолемии).
   В крови человека содержится около 850 мл кислорода, связанного преимущественно с гемоглобином.
и дыхании чистым кислородом его запас увеличивается приблизительно до 950 мл. При апноэ или гиповентиляции этот резерв начинает расходоваться с того момента, когда уровень кислорода в альвеолярном газе опускается ниже нормы. От количества газа, содержащегося в крови, во многом зависит скорость углубления гипоксемии.
   При невосполненной кровопотере или анемии безопасная длительность апноэ укорачивается.
   У детей, особенно у новорожденных, гипоксемия, обусловленная апноэ, развивается гораздо быстрее, чем у взрослых.
   Как скоро обнаруживает пульсоксиметр гиповентиляцию или апноэ?
   При дыхании атмосферным воздухом в легких практически нет избытка кислорода, который мог бы некоторое время поддерживать нормальный уровень РаО2 в условиях апноэ. Поэтому любое промедление в доставке новых порций кислорода в альвеолы быстро приводит к снижению парциального давления этого газа в легких и возникновению артериальной гипоксемии. Заметное уменьшение сатурации происходит уже через 30 с после внезапного сокращения объема вентиляции, но порции артериальной крови, несущей эту информацию, требуется 5-10, а при нарушениях кровообращения — до 40 с и более, чтобы достичь пульсоксиметрического датчика. К этому времени следует добавить от 2 до 15 с для обновления цифр на мониторе дисплея. Таким образом, пульсоксиметру необходимо в среднем от 40 до 60 с (а при низком минутном объеме кровообращения — до 2 мин) для того, чтобы обнаружить гиповентиляцию или апноэ, вызванные внезапным событием, например западением языка, перегибом интубационной трубки, рекураризацией или разгерметизацией контура респиратора.
   По скорости реакции на внезапную гиповентиляцию пульсоксиметр уступает только быстродействующему оксиметру — монитору, предназначенному для измерения концентрации кислорода в выдыхаемом газе, а при апноэ — также и капнографу, который в этом случае регистрирует прекращение колебаний концентрации углекислого газа.
   До внедрения пульсоксиметрии врачи, ведущие таких больных, были вынуждены руководствоваться лишь вышеперечисленными факторами и действовать сообразно предполагаемому сценарию развития событий. Пульсоксиметрия позволила измерить то, о чем раньше приходилось судить по весьма ненадежному внешнему признаку — скорости появления и нарастания цианоза. В результате допустимый срок интубации трахеи у больного с ожирением или эффективность преоксигенации перед аспирацией мокроты у больного с РДС перестали быть убедительными физиологическимиабстракциями, а превратились в конкретные цифровые показатели, которые легко контролировать у любого пациента.
   Так, благодаря повседневной практике работы под мониторным контролем, удалось пересмотреть клиническую значимость диффузионной гипоксии, возникающей при выходе из наркоза закисью азота, определить режим преоксигенации перед интубацией трахеи и разобраться с некоторыми другими предположениями, рекомендациями и ритуалами.
   Важнейшая роль мониторинга заключается в предоставлении возможности понимающему специалисту увидеть и оценить работу патофизиологических механизмов у больного. Вот почему в анестезиологии и интенсивной терапии мониторинг служит мостиком между физиологическими концепциями и реальностью клинической практики. Привычка анализировать данные мониторинга, «вписывать» их в конкретную клиническую ситуацию весьма полезна, поскольку именно так формируется умение уяснить суть происходящего и накапливается осмысленный клинический опыт. В конце концов, монитор — это своего рода дополнительный орган чувств врача, и обидно использовать его возможности на уровне простейших условных рефлексов.
   В тех случаях. Когда гиповентиляция развивается постепенно, в течение нескольких часов или суток (как, например, при полирадикулоневрите или миастеническом кризе), капнограф и пульсоксиметр реагируют на нее синхронно. В такой ситуации
   несомненное достоинство пульсоксиметрии — реальность выполнения длительного мониторинга у неинтубированного больного. Динамику нарастания расстройств дыхания можно контролировать по тренду SpO2 (рис. 1.12).
   – К сожалению, описанные выше возможности пульсоксиметрии применимы лишь тогда, когда больной дышит атмосферным воздухом. При увеличении концентрации кислорода во вдыхаемом или вдуваемом газе даже небольшого дыхательного объема хватает, чтобы обеспечить поступление в альвеолы необходимого количества кислорода.
   На фоне оксигенотерапии даже глубокая гиповентиляция может не сопровождаться снижением SpO2 и, соответственно, не выявляться пульсоксиметром.
   Гипоксемия, обусловленная гиповентиляцией, быстро и полностью устраняется двумя способами (их можно сочетать):
   увеличением объема вентиляции и повышением концентрации кислорода в дыхательной смеси. Оксигенотерапия позволяет в наикратчайшие сроки преодолеть наиболее опасное проявление гиповентиляции (не устраняя саму гиповентиляцию), а пульс-оксиметрия — контролировать результат; Очень часто этого бывает достаточно, чтобы выиграть время для принятия более радикальных мер.
   Какой должна быть концентрация кислорода в дыхательной смеси, чтобы ликвидировать гипоксемию, вызванную гиповентиляцией? Известно, что данный показатель зависит от степени снижения минутного объема вентиляции и от потребности организма в кислороде. Однако в практической работе эти знания бесполезны, потому что никто и никогда не рассчитывает FiQ2
   Рис. 1.12. Тренд SpO2 при постепенно прогрессирующей гиповентиляции
   заранее. Параметр всегда выбирается интуитивно и часто оказывается выше или ниже необходимого. Во многих случаях изменения в состоянии больного требуют в дальнейшем соответствующего изменения концентрации кислорода во вдыхаемом газе.
   Пульсоксиметрия позволяет правильно выбирать концентрацию кислорода как при гиповентиляции, так и при других нарушениях оксигенации крови в легких, и непрерывно контролировать адекватность оксигенотерапии. (Подробнее эта тема обсуждается ниже.)
   Нужно помнить, что избавиться от задержки углекислоты в организме таким способом нельзя. Поэтому капнограф дает информацию о гиповентиляции и тогда, когда она замаскирована оксигенотерапией и не распознается пульсоксиметром.
   Сниженное содержание кислорода во вдыхаемом газе. При уменьшении содержания кислорода во вдыхаемом газе снижается парциальное давление кислорода в альвеолах. В результате напряжение кислорода и, соответственно, сатурация гемоглобина в крови, оттекающей от легких, падают и через некоторое время устанавливаются на новом, более низком уровне. При этом пульсоксиметр обнаруживает артериальную гипоксемию, выраженность которой зависит от степени уменьшения Fi02.
   Снижение содержания кислорода во вдыхаемом газе может быть вызвано двумя причинами:
   • избыточной концентрацией других компонентов газовой смеси (как правило, закиси азота);
   • существенным падением атмосферного давления (дыханием разреженным воздухом высокогорья или транспортировкой пациента в самолете с негерметичным салоном).
   Содержание кислорода в газовой смеси измеряется оксиметром — монитором, специально предназначенным для этой цели. Однако оксиметры до сих пор имеются далеко не во всех отделениях анестезии и интенсивной терапии, а сам метод, которому в этой книге посвящена отдельная глава, применяется значительно реже, чем пульсоксиметрия. Поэтому вероятнее всего сигнал о неблагополучии поступит от пульсоксиметра, а выяснять причину гипоксемии придется по ситуации.
   Сниженное содержание кислорода в атмосферном воздухе — явление достаточно нетипичное, за исключением тех случаев, когда больница находится в горной местности. Однако риск формирования гипоксической дыхательной смеси во время наркоза вполне реален.
   При любой десатурации, возникающей во время анестезии с применением закиси азота, необходимо в первую очередь проверить правильность дозирования кислорода и анестетика.
   Гипоксемия, вызванная шунтом. Шунтирование крови в легких — одна из наиболее частых причин артериальной гипоксемии у пациентов в отделении интенсивной терапии и операционной..
   Шунт — это часть легочного кровотока, проходящая но невентилируемым участкам легких. Венозная кровь, притекающая к легким и попадающая в шунты, не изменяет свой состав и на выходе из легких встречается с кровью, оттекающей от нормально работающих альвеол. В результате смешивания этих двух потоков образуется артериальная кровь, напряжение кислорода в которой снижено из-за примеси венозной крови (рис. 1.13). Поэтому шунтирование крови относят к группе расстройств легочного газообмена, объединенных названием «венозная примесь».
   Рис. 1.13. Шунтирование крови в легких
   Прекращению вентиляции отдельных кровоснабжаемых участков легких способствуют самые разные причины:
   * полная обструкция части дыхательных путей Пробками вязкой мокроты, аспирированными рвотными массами, сгустками крови, опухолью и пр.; при герметичной эндобронхиальной интубации в шунт может мгновенно превратиться целое легкое;
   • пневмония — в пневмонических очагах альвеолы безвоздушны, так как заполнены экссудатом, а кровоток усилен из-за воспалительной гиперемии;
   • микро- и макроателектазы — пожалуй, особенно частая причина шунтирования;
   • при альвеолярном отеке легких зоны, заполненные транссудатом, превращаются в шунт;
   • массивное, шунтирование крови происходит при респираторном дистресс-синдроме (РДС) через зоны интерстициального отека и консолидации альвеолярной ткани, множественные микроателектазы и участки с локальной обструкцией бронхов.

Источник: TheLib.ru

 

Основная функция легких — обмен кислорода и углекислоты между внешней средой и организмом — достигается сочетанием вентиляции, легочного кровообращения и диффузии газов. Острые нарушения одного, двух или всех ука­занных механизмов ведут к острым изменениям газообмена.

Легочная вентиляция. К показателям легочной вентиляции относятся дыхательный объем (Vт), частота дыхания (f) и минутный объем дыхания (Ve). Эффективность легочной вентиляции определяется величиной альвеолярной вентиляции (VA), т.е. разностью между Vе и минутным объемом вентиляции мертвого пространства.

Снижение альвеолярной вентиляции может быть следствием уменьшения Ve или увеличения объема мертвого пространства (Vр). Определяю­щим фактором является величина VT, ее отношение к непостоянной вели­чине физиологического мертвого пространства. Последнее включает ана­томическое мертвое пространство и объем вдыхаемого воздуха, вентилиру­ющего альвеолы, в которых кровоток отсутствует или значительно умень­шен. Таким образом, альвеолярную вентиляцию следует рассматривать как вентиляцию перфузируемых кровью альвеол. При адекватной альвеолярной вентиляции поддерживается определенная концентрация газов альвео­лярного пространства, обеспечивающая нормальный газообмен с кровью легочных капилляров.

Мертвое пространство увеличивается при использовании наркозного аппарата или респиратора, при использовании длинных дыхательных шлангов и коннекторов, нарушении рециркуляции газов. При нарушениях легочного кровообращения Vp также увеличивается. Уменьшение Vp или увеличение Vp сразу же приводят к альвеолярной гиповентиляции, а увеличение f не компенсирует это состояние.

Альвеолярная гиповентиляция сопровождается недостаточной элимина­цией СО2 и артериальной гипоксемией.

Отношение вентиляция/кровоток. Эффективность легочного газообме­на в значительной степени зависит от распределения вдыхаемого воздуха по альвеолам в соответствии с их перфузией кровью. Альвеолярная вентиляция у человека в покое примерно 4 л/мин, а легочный кровоток 5 л/мин. В идеальных условиях в единицу времени альвеолы получают 4 объема воз­духа и 5 объемов крови и, таким образом, отношение вентиляция/крово­ток равно 4/5, или 0,8.

Нарушения отношения вентиляция/кровоток — преобладание вентиляции над кровотоком или кровотока над вентиляцией — ведут к нарушениям газообмена. Наиболее значительные изменения газообмена возникают при абсолютном преобладании вентиляции над кровотоком (эффект мертвого пространства) или кровотока над вентиляцией (эффект веноартериального шунта. В нормальных условиях легочный шунт не превышает 7 %. Этим объясняется тот факт, что насыщение артериальной крови кислородом меньше 100 % и равно 97,1 %.

Примером эффекта мертвого пространства может быть эмболия легочной артерии. Шунтирование крови в легких возникает при тяжелых пора­жениях легочной паренхимы, респираторном дистресс-синдроме, массив­ной пневмонии, ателектазах и обтурации дыхательных путей любого генеза. Оба эффекта приводят к артериальной гипоксемии и гиперкапнии. Эф­фект шунта сопровождается выраженной артериальной гипоксемией, устранить которую часто невозможно даже при применении высоких концентраций кислорода.

Диффузия газов. Диффузионная способность легких — скорость, с которой газ проходит через альвеолярно-капиллярную мембрану на единицу градиента давления этого газа. Этот показатель различен для разных газов: для углекислоты он примерно в 20 раз больше, чем для кислорода. Поэто­му уменьшение диффузионной способности легких не приводит к накоп­лению углекислоты в крови, парциальное давление углекислоты в артери­альной крови (РаСО2) легко уравновешивается с таковым в альвеолах. Основным признаком нарушения диффузионной способности легких являет­ся артериальная гипоксемия.

Причины нарушения диффузии газов через альвеолярно-капиллярную мембрану:

• уменьшение поверхности диффузии (поверхность функционирую­щих альвеол, соприкасающаяся с функционирующими капилляра­ми, в норме составляет 90 м2);

• расстояние диффузии (толщина слоев, через которые диффундирует газ) может быть увеличено в результате изменений тканей на пути диффузии.

Нарушения процессов диффузии, считавшиеся ранее одной из основных причин гипоксемии («альвеолокапиллярная блокада»), в настоящее время рассматриваются как факторы, не имеющие большого клинического значения при ОДН. Ограничения диффузии газов возможны при уменьше­нии диффузионной поверхности и изменениях слоев, через которые про­ходит диффузия (утолщение стенок альвеол и капилляров, их отек, кол­лапс альвеол, заполнение их жидкостью и т.д.).

Нарушения регуляции дыхания. Ритм и глубина дыхания регулируются дыхательным центром, расположенным в продолговатом мозге, наиболь­шее значение в регуляции имеет газовый состав артериальной крови. По­вышение РаСО2 немедленно вызывает увеличение объема вентиляции. Ко­лебания РаО2 также ведут к изменениям дыхания, но с помощью импуль­сов, идущих к продолговатому мозгу от каротидных и аортальных телец. Хеморецепторы продолговатого мозга, каротидных и аортальных телец чувствительны и к изменениям концентрации Н+ цереброспинальной жид­кости и крови. Эти механизмы регуляции могут быть нарушены при пора­жениях ЦНС, введении щелочных растворов, ИВЛ в режиме гипервентиляции, увеличения порога возбудимости дыхательного центра.

Нарушения транспорта кислорода к тканям. В 100 мл артериальной крови содержится приблизительно 20 мл кислорода. Если минутный объем сердца (МОС) в норме в покое 5 л/мин, а потребление кислорода 250 мл/мин, то это значит, что ткани извлекают 50 мл кислорода из 1 л циркулирующей крови. При тяжелой физической нагрузке потребление кислорода достигает 2500 мл/мин, а МОС возрастает до 20 л/мин, но и в этом случае остается неиспользованным кислородный резерв крови. Ткани берут примерно 125 мл кислорода из 1 л циркулирующей крови. Содержа­ние кислорода в артериальной крови 200 мл/л достаточно для обеспечения потребностей тканей в кислороде.

Однако при апноэ, полной обструкции дыхательных путей, дыхании аноксической смесью кислородный резерв истощается очень быстро — уже через несколько минут нарушается сознание, а через 4—6 мин наступает гипоксическая остановка сердца.

Гипоксическая гипоксия характеризуется снижением всех показателей кислородного уровня артериальной крови: парциального давления, насыщения и содержания кислорода. Ее основной причиной является снижение или полное прекращение поступления кислорода (гиповентиляция, апноэ). К этому же виду гипоксии приводят изменения химических свойств гемоглобина (карбоксигемоглобин, метгемоглобин).

Первичная циркуляторная гипоксия возникает вследствие снижения сердечного выброса (СВ) или сосудистой недостаточности, что ведет к уменьшению доставки кислорода к тканям. При этом кислородные параметры артериальной крови не изменены, однако PvO2 значительно снижено.

Анемическая гипоксия, обычно наблюдаемая при массивной кровопотере, сочетается с циркуляторной недостаточностью. Концентрация гемо­глобина ниже 100 г/л приводит к нарушению кислородтранспортной сис­темы крови. Уровни гемоглобина ниже 50 г/л, гематокрита (Ht) ниже 0,20 представляют большую угрозу для жизни больного даже в случае, если МОС не снижен. Главной отличительной чертой анемической гипоксии является снижение содержания кислорода в артериальной крови при нор­мальном PaO2 и SaO2.

Сочетание всех трех форм гипоксии — гипоксической, циркуляторной и анемической — возможно, если развитие ОДН происходит на фоне сердечно-сосудистой недостаточности и острой кровопотери.

Гистотоксическая гипоксия наблюдается реже и характеризуется неспособностью тканей утилизировать кислород (например, при отравлении цианидами). Все три формы гипоксии (за исключением гистотоксической) одинаково вызывают венозную гипоксию, являющуюся достоверным показателем сниженияРО2 в тканях. Парциальное давление кислорода в смешанной венозной крови — важный показатель гипоксии. УровеньPvO2, равный 30 мм рт.ст., определен как критический.

Значение кривой диссоциации оксигемоглобина (НbО2). Кислород в крови присутствует в двух формах — физически растворенный и химичес­ки связанный с гемоглобином. Зависимость между РО2 и SO2 графически выражают в виде кривой диссоциации оксигемоглобина (КДО), имеющей S-образную форму. Такая форма КДО соответствует оптимальным услови­ям насыщения крови кислородом в легких и освобождения кислорода из крови в тканях. При РО2, равном 100 мм рт.ст., в 100 мл воды растворе­но всего 0,3 мл кислорода. В альвеолах РО2 составляет около 100 мм рт.ст. В 1 л крови физически растворено 2,9 мл кислорода. Основная часть кис­лорода переносится в связанном с гемоглобином состоянии. 1 г гемоглоби­на, полностью насыщенного кислородом, связывает 1,34 мл кислорода. Если концентрация гемоглобина в крови 150 г/л, то содержание химичес­ки связанного кислорода составляет 150 г/л х1,34 мл/г = 201 мл/л. Эта величина называется кислородной емкостью крови (КЕК). Поскольку содер­жание кислорода в смешанной венозной крови (CvO2) 150 мл/л, то 1 л крови, проходящей через легкие, должен присоединить 50 мл кислорода для превращения ее в артериальную. Соответственно 1 л крови, проходя­щей через ткани организма, оставляет в них 50 мл кислорода. Только около 3 мл кислорода на 1 л крови переносится в растворенном состоянии.

Смещение КДО является важнейшим физиологическим механизмом, обеспечивающим транспорт кислорода в организме. Циркуляция крови от легких к тканям и от тканей к легким обусловлена изменениями, ко­торые воздействуют на сродство кислорода к гемоглобину. На уровне тканей из-за снижения рН это сродство уменьшается (эффект Бора), благодаря чему улучшается отдача кислорода. В крови легочных капилляров сродство гемоглобина к кислороду увеличивается из-за снижения РСО2 и возрастания рН по сравнению с аналогичными показателями венозной крови, что приводит к повышению насыщения артериальной крови кис­лородом.

В нормальных условиях 50 % SO2 достигается при РО2 около 27 мм рт.ст. Эта величина обозначается Р50 и характеризует в целом положение КДО. Возрастание Р50 (например, до 30—32 мм рт.ст.) соответствует смещению КДО вправо и свидетельствует о снижении взаимодействия гемоглобина и кислорода. При снижении Р50 (до 25—20 мм рт.ст.) отмечается смещение КДО влево, что указывает на усиление сродства между гемоглобином и кислородом. Благодаря S-образной форме КДО при довольно значительном снижении фракционной концентрации кислорода во вдыхае­мом воздухе (ВФК) до 0,15 вместо 0,21 перенос кислорода существенно не нарушается. При снижении РаО2 до 60 мм рт.ст. SaO2 снижается примерно до 90 % уровня, и цианоз при этом не развивается. Однако дальнейшее па­дение РаО2 сопровождается более быстрым падением SaO2 и содержания кислорода в артериальной крови. При падении РаО2 до 40 мм рт.ст. Sa02 снижается до 70 %, что соответствует РО2 и SO2 в смешанной венозной крови.

Описанные механизмы не являются единственными. Внутриклеточ­ный органический фосфат — 2,3-дифосфоглицерат (2,3-ДФГ) — входит в гемоглобиновую молекулу, изменяя ее сродство к кислороду. Повышение уровня 2,3-ДФГ в эритроцитах уменьшает сродство гемоглобина к кислороду, а понижение концентрации 2,3-ДФГ приводит к увеличению сродст­ва к кислороду. Некоторые синдромы сопровождаются выраженными изменениями уровня 2,3-ДФГ. Например, при хронической гипоксии содержание 2,3-ДФГ в эритроцитах возрастает и, соответственно, уменьшается сродство гемоглобина к кислороду, что дает преимущество в снабжении тканей последним. Массивные трансфузии консервированной крови могут ухудшить высвобождение кислорода в тканях.

Таким образом, к факторам, приводящим к возрастанию сродства гемоглобина к кислороду и смещению КДО влево, относятся увеличение рН, уменьшение РСО2, концентрации 2,3-ДФГ и неорганического фосфата, снижение температуры тела. И, наоборот, уменьшение рН, увеличение РСО2, концентрации 2,3-ДФГ и неорганического фосфата, повышение температуры тела приводят к уменьшению сродства гемоглобина к кисло­роду и смещению КДО вправо.

В табл. 1.1 приведены нормальные функциональные показатели лег­ких.

Таблица 1.1.

Источник: megaobuchalka.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.