Белковый состав плазмы крови


Белки являются важной составной частью крови и выполняют следующие функции:

1) определяют онкотическое давление;

2) обеспечивают вязкость крови;

3) обеспечивают свертываемость крови;

4) участвуют в регуляции кислотно-основного равновесия;

5) выполняют транспортную функцию (переносят липиды, НЭЖК, металлы, билирубин, гемоглобин, гор­моны, лекарственные вещества);

6) обеспечивают иммунитет (антитела, интерферон и др.);

7) питательная функция (белки являются резервом аминокислот).

Белки плазмы обычно делят на альбумины, глобулины и фибриноген.

Альбумины

Это простые, высокогидро­фильные белки. Образуются в гепа­тоцитах печени. Выполняют следующие функции:

  • играют важную роль в поддержании коллоидно-ос­мо­ти­чес­кого давления крови);

  • транспортируют многие вещества, в том числе билирубин, катионы металлов и красок, НЭЖК, холестерин и др.;

  • служат богатым и быстро реализуемым резервом аминокислот.


Глобулины

разделены электрофорети­чески на подгруппы.  и -гло­булины вырабатываются в ретикулоэндотели­альной системе, в том числе купферовскими клетками печени.

-глобулины состоят из глико- и липопротеидов. - глобулины участвуют в транспорте различных веществ. Они имеют самую высокую электрофоре-тическую подвиж­ность.

-глобулины состоят из глико-, липо- и металлопротеидов. Они выпол­няют транспортную и другие функции.

-глобулины с самой низкой электрофоретической подвижно­стью. К этой группе относятся большинство защитных веществ крови, многие из которых обладают фер­ментативной ак­тив­ностью. -глобулины синтезируются плазматическими клетками.

Белки — ферменты

1. Собственные ферменты плазмы крови, которые участвуют в свертыва­нии крови, растворении внутрисосуди­стых сгустков и т.д. Эти ферменты синтезируются в печени.

2. Клеточные ферменты освобождаются из клеток крови и клеток других тканей в результате есте­ственного рас­пада (лизиса). при гепатите — активность аланина­минотрансферазы, арги­назы, аспартат-сердце


Белки — переносчики.

Трансферрин является -глобулином. Может взаимодействовать с Сu2+ и Zn2+ , но главным образом связывает и переносит Fe3+ в различные ткани.

Гаптоглобин является 2-глобулином, выполняет следующие функции:

  • связывает гемоглобин в соотношении 1:1, в результате образуются высо­комолекулярные комплексы, которые не могут выводиться почками транспортирует витамин В12;

  • является естественным ингибитором катепсина В.

Церулоплазмин является 2-глобулином, выполняет следующие функции:

— является переносчиком и регулятором концентрации ионов меди в ор­ганизме,

Белки острой фазы

Это группа белков плазмы, содержание которых увеличивается в ответ на повреждение ткани,воспале­ние, опухо­левый процесс. Эти белки синтезиру­ются в печени и являются гликопротеинами. К белкам ост­рой фазы отно­сятся:

  • гаптоглобин (увеличивается в 2-3 раза, особенно при раке, ожо­гах, хирургических вмеша­тельствах, воспалении);


  • церулоплазмин (имеет значение как антиоксидант);

  • трансферрин (содержание снижается);

  • С-реактивный белок. Отсутствует в сыворотке здорового человека, но обнаруживается при патологи­ческих состояниях, сопровождающихся некро­зом

  • интерферон — специфический белок, появляющийся в клетках в резуль­тате проникновения в них ви­русов. Он угнетает размножение вирусов в клет­ках.

  • фибриноген, основная функция которого участие в свертывании крови.

Гиперпротеинемия– увеличение общего содержания белков плазмы.рвата диарея, потеря воды организмом, а следовательно, и плазмой приводит к повышению концентрации белка в крови (относительная гиперпротеинемия). При ряде патологических состояний может наблюдатьсяабсолютная гиперпротеинемия, обусловленная увеличением уровня γ-глобулинов: например, гиперпротеинемия в результате инфекционного или токсического раздражения системы макрофагов;

Гипопротеинемия, или уменьшение общего кол-ва белка в плазме крови, наблюдается гл образом при снижении уровня альбуминов.. Содержание общего белка снижается до 30–40 г/л. Гипопротеинемия наблюдается при поражении печеночных кл (острая атрофия печени, токсический гепатит и др.). Кроме того, гипопротеинемия может возникнуть при резко увеличенной проницаемости стенок капилляров, при белковой недостаточности (поражение пищеварительного тракта, карцинома и др.).


44.

Остаточный азот крови. Гиперазотемия, ее причины. Уремия.

остаточный азот крови (сумма всех азотсодержащих веществ крови после удаления из неё белков = Небелковый азот крови). Нормальное содержание 14,3 – 28,6 ммоль/

1) мочевина (примерно 50% 2) АКты (около 25%), 3) креатин и креатинин(7,5%;   4) полипептиды, нуклеотиды и азотистые основания (5%;

5)мочевая кислота (4%; 6) аммиак и индикан (0,5%; Индикан представляет собой калиевую или натриевую соль индоксилсерной кислоты, образующейся в печени при обезвреживании индола

Ретенционная азотемия развивается в результате недостаточного выделения с мочой азотсодержащих продуктов Она в свою очередь может быть почечной и внепочечной. При почечной ретенционной азотемии концентрация остаточного азота в крови увеличивается вследствие ослабления очистительной функции почек. 90%мочевины вместо 50%Внепочечные в свою очередь подразделяются на надпочечные и подпочечные


Продукционная азотемияразвивается при избыточном поступлении азотсодержащих продуктов в кровь, как следствие усиленного распада тканевых белков при обширных воспалениях, ранениях, ожогах, кахексии и др. Нередко наблюдаются азотемии смешанного типа.

Уреми́я— острое или хроническое самоотравление организма, обусловленное почечной недостаточностью; накопление в крови главным образом токсических продуктов азотистого обмена (азотемия), нарушения кислотно-щелочного и осмотического равновесия.

Проявления: вялость, головная боль, рвота, диарея, кожный зуд, судороги, кома и др.

45.

Основные биохимические функции и особенности печени.

Гепатоцит имеет хорошо развитую систему эндоплазматического ретикулума ЭР как гладкую, так и шероховатую. Функции ЭР — синтез белков, (альбумины), или ферментов работающих в печени. синтезируются фосфолипиды, триглицериды и холестерол

Функции печени: 1. Пищеварительная–Она образует желчь, включающую воду (82%), желчные кислоты (12%), фосфатидилхолин (4%), холестерол (0,7%), прямой билирубин, белки.Желчь обеспечивает эмульгирование и переваривание жиров пищи, стимулирует перистальтику кишечника.

2. Экскреторнаяфункция, близка к пищеварительной – с помощью желчи выводятся билирубин, немного креатинина и мочевины, , холестерол.(в составе желчи)


3. Секреторная– печень синтез альбумина, белков свертывающей системы, липопротеинов, глюкозы, кетоновых тел, креатина.

4. Депонирующая депо гликогена, мин. в-в, особенно железо, витамины A, D, K, B12 и фолиевая кислота.

5.Метаболическая функция – поддержание метаболического гомеостаза

*Углеводный обмен.. Благодаря синтезу и распаду гликогена печень поддерживает конц-ию глюкозы в крови. Гликогена в печени30-100гр.при длительном голодании источником глюкозы яв-ся глюконеогенез из АК и глицерин. превращение гексоз (фруктозы, галактозы) в глюкозу. р-ии ПФ пути обеспечивают синтез НАДФН, необх-го для синтеза ж к-т и холестерола из глюкозы.

*Липидный обмен. Если поступает избыток глюкозы, который не используется для синтеза гликогена и других синтезов, то она превращается в липиды – холестерол и триацилглицеролы. их удаление происходит при помощи ЛПОНП.. При сильном голодании синтезируются кетоновые тела которые яв-ся альтер. ист. Е

*Белковый обмен. За 7 суток обновляются белки печени– альбумины, многие глобулины, ферменты крови, фибриноген и факторы свертывания крови. АК подвергаются реакциям с трансаминированием и дезаминированием, декарбоксилированию с образованием биогенных аминов. идет утилизация избыточного N и включение его в состав мочевины.

*Пигментный обмен. Участие превращении гидрофобного билирубина в гидрофильную форму и секреция его в желчь


6. Обезвреживающая функция — биотрансформации подвергаются: а) стероидные и тиреоидные гормоны, инсулин, адреналин, б) продукты распада гемопротеинов (билирубин), в) продукты жизнед-ти микрофлоры, всасывающихся из толстого кишечника – кадаверин (производное лизина), путресцин (производное аргинина), крезол и фенол (производное фенилаланина и тирозина) и других токсинов, г)ксенобиотики (токсины, лекарственные вещества и их метаболиты).

46.

Взаимосвязь обмена жиров, углеводов и белков.

путем аминирования или переаминирования пировиноградная кислота, являющаяся продуктом распада углеводов, может превратиться в аминокислоту -аланин. Кроме того, пировиноградная кислота в результате дальнейших превращений дает щавелевоуксусную (СООН—СН2—СО—СООН) и a-кетоглютаровую (СООН—СН2—СН2—СО—СООН) кислоты, из которых путем реакции аминирования и переаминирования соответственно образуются аспарагиновая и глютаминовая аминокислоты.

 углеводы в животном организме могут синтезироваться из продуктов окисления белков. Углеводы образуются из тех аминокислот, которые при своем дезаминировании превращаются в кетокислоты.

СВЯЗЬ МЕЖДУ ОБМЕНОМ УГЛЕВОДОВ И ЖИРОВ


Единство в обмене углеводов и жиров доказывается возникновением общих промежуточных продуктов распада. При распаде углеводов образуется пировиноградная кислота, а из нее -активная уксусная кислота -ацетил-КоА, который может быть использован в синтезе жирных кислот. Последние при своем распаде дают ацетил-КоА. Для синтеза нейтрального жира необходим кроме жирных кислот и глицерин. Глицерин также может синтезироваться из продуктов распада углеводов, а именно, из фосфоглицеринового альдегида и фосфодиоксиацетона. И наоборот, при распаде глицерина могут образовываться фосфотриозы.

СВЯЗЬ МЕЖДУ ОБМЕНОМ БЕЛКОВ И ЖИРОВ

Многие заменимые аминокислоты могут синтезироваться из промежуточных продуктов расщепления жиров. Возникающий при распаде жирных кислот цетил-КоА вступает в конденсацию с щавелевоуксусной кислотой и через цикл трикарбоновых кислот приводит к образованию a-кетоглютаровой кислоты. Кетоглютаровая кислота в результате аминирования или переаминирования переходит в глютаминовую. Глицерин, входящий в состав нейтральногo жира, окисляется в глицериновую кислоту и в дальнейшем превращается в пировиноградную, а последняя используется для синтеза заменимых аминокислот.

Использование белков для синтеза жира осуществляется через образование ацетил-КоА.

          Далее ацетил-КоА может быть использован для синтеза жирных кислот. Глицерин образуется лишь за счет тех аминокислот, которые способны превращаться в пировиноградную кислоту. Белковый состав плазмы крови


47.

Биохимия регуляций. Основные принципы и значение. Иерархия регуляторных систем. Классификация межклеточных регуляторов. Центральная регуляция эндокринной системы: роль либеринов, статинов и тропинов.

Интеграция – это объединение элементов системы в единое целое.

Координация (соподчинение) – это подчинение менее важных элементов системы более важным элементам. Интеграция и координация – это две стороны процесса регуляции.

Различают:

  1. Внутриклеточную регуляцию (ауторегуляцию).

  2. Дистантную регуляцию (межкеточную

Механизмы клеточной ауторегуляции

1. Компартментализация (мембранный механизм).

Роль мембран состоит в следующем:

а) мембраны делят клетки на отсеки и в каждом из них осуществляются свои процессы;

б) мембраны обеспечивают активный транспорт и регулируют потоки молекул в клетке и из клетки;


в) в мембраны встроены ферменты;

г) мембраны защищают клетку от внешних воздействий.

Воздействием на функции мембран клетка может регулировать тот или иной процесс.

2. Изменение активности ферментов.

3. Изменение количества ферм

Классификация межклеточных регуляторов

Анатомо-физиологическая:

а) Гормоны – межклеточные регуляторы, доставляемые к клеткам-мишеням током крови. Вырабатываются в эндокринных железах

б) Нейрогормоны вырабатываются нервными клетками и выделяются в синаптическую щель. Нейрогормоны делятся на медиаторы и модуляторы. Медиаторы обладают непосредственным пусковым эффектом. Модуляторы изменяют эффект медиаторов. Примерами медиаторов являются ацетилхолин и норадреналин; модуляторов – -ааминомасляная кислота, дофамин.

в) Локальные гормоны – это межклеточные регуляторы, действующие на близлежащие к месту их синтеза клетки. Пример: гормоны, производные жирных кислот.

Классификация по широте действия:

а) Гормоны универсального действия действуют на все ткани организма (например, катехоламины, глюкокортикостероиды).

б) Гормоны направленного действия действуют на определенные органы-мишени (например, АКТГ действует на кору надпочечников).

Классификация по химическому строению:

а) Белково-пептидные гормоны

  • Олигопептиды (кинины, АДГ).

  • Полипептиды (АКТГ, глюкагон).

  • Белки (СТГ, ТТГ, ГТГ).

б) Производные аминокислот:

  • Катехоламины и йодтиронины — образуются из тирозина;

  • Ацетилхолин — образуется из серина.

  • Серотонин, триптамин, мелатонин — образуются из триптофана.

в) Липидные гормоны:

  • стероидные гормоны (гормоны коры надпочечников и половые гормоны);

  • производные полиненасыщенных жирных кислот (простагландины, тромбоксаны, лейкотриены).Белковый состав плазмы крови

Табличку продиктуй!

На стимулирующие или тормозящие стимулы из ЦНС секретируются стимулирующие или ингибирующие рилизинг-факторы, которые носят название либерины или статины соответственно. Эти нейрогормоны с кровотоком достигают аденогипофиза, где стимулируют (либерины) или ингибируют (статины) биосинтез и секрецию тропных гормонов.

Тропные гормоны воздействуют на периферические железы, стимулируя выделение соответствующих периферических гормонов

48.

Понятие о рецепторах. Механизм действия гормонов через внутриклеточ­ные рецепторы и рецепторы плазматических мембран и вторые посредники (общая характеристика).

Рецепторы – это белковые молекулы, специфически связывающие данный гормон, в результате чего возникает какой-либо эффект.

Гормон начинает свое действие с соединения с рецептором, образуя гормон-рецепторный комплекс.

Рецепторы могут находиться внутри клетки, а также на клеточной мембране.

Механизм действия гормонов через внутриклеточные рецепторы.

Гормон проникает в клетку, связывается с рецептором. Образованный таким образом гормон-рецепторный комплекс перемещается в ядро и действует на генетический аппарат клетки. В результате меняется процесс транскрипции, а в дальнейшем, синтез белков. Таким образом, данные гормоны влияют на количество ферментов в клетке.

Механизм действия гормонов через рецепторы плазматических мембран

В этом случае гормон не проникает в клетку, а взаимодействует с рецептором на поверхности мембраны.

  1. Первый вариант – с рецептором связан фермент, который из специфического субстрата образует второй посредник. Второй посредник далее связывается со своим рецептором в клетке. Чаще всего рецептором посредника является протеинкиназа, которая за счет фосфата АТФ, фосфорилирует белки. В результате изменяются их свойства, возникает биохимический и физиологический эффект.

  2. Второй вариант – рецептор связан не с ферментом мембраны, а с ионным каналом. При связывании гормона с рецептором, канал открывается, ион поступает в клетку и выполняет функции второго посредника.

Хорошо изученными вторыми посредниками являются циклические нуклеотиды (цАМФ, цГМФ) и Ca2+.

Механизм действия гормонов через цАМФ

Когда соответствующий гормон связывается с рецептором, в мембране активируется фермент аденилатциклаза, который из АТФ образует цАМФ. цАМФ является аллостерическим активатором протеинкиназы, которая фосфорилирует белки и изменяет их свойства.

Содержание цАМФ в клетке увеличивают: глюкагон, катехоламины (через -рецепторы), антидиуретический гормон, гистамин (Н2-рецепторы), простагландин-Е, простациклин, тиреотропный гормон, АКТГ, холерный токсин.

Содержание цАМФ в клетке снижают: ацетилхолин (М-холинорецепторы), катехоламины (2-рецепторы), соматостатин, ангиотензин-II, опиаты, коклюшный токсин.

Механизм действия гормонов через Са2+

Когда гормон связывается с рецептором, в мембране открывается кальциевый канал. В результате содержание кальция в клетке возрастает. Кальций связывается с белком клеток – кальмодулином, образуется комплекс, который может действовать непосредственно на белки, вызывая эффекты, или действовать на кальмодулин-зависимую протеинкиназу. Эта протеинкиназа фосфорилирует белки, в результате изменяются их свойства.

Са2+ в качестве второго посредника выполняет те же функции, что и цАМФ, за исключением того, что в гладких мышцах вызывает сокращение, тромбоцитах – агрегацию.

Содержание кальция в клетке повышают: катехоламины через 1-рецепторы, ацетилхолин через М-холинорецепторы, гистамин через Н1-рецепторы, тромбоксан, ангиотензин-II.

49.

Инсулин. Строение, образование из проинсулина, метаболизм, регуляция секреции. Влияние на обмен веществ.

Инсулин является белкого-пептидным гормоном с молекулярной массой 5700. Синтезируется в В-клетках поджелудочной железы из проинсулина.  проинсулин, который транспортируется в комплекс Гольджи, далее в цистернах которого происходит так называемое созревание инсулина.  

В процессе созревания из молекулы проинсулина с помощью специфических эндопептидаз вырезается C-пептид  Скорость секреции инсулина зависит от концентрации глюкозы в крови: при повышении концентрации секреция инсулина увеличивается, а при снижении – уменьшается.

Молекула инсулина образована двумя полипептидными цепями, содержащими 51аминокислотный остаток: A-цепь состоит из 21 аминокислотного остатка, B-цепь образована 30 аминокислотными остатками. Полипептидные цепи соединяются двумя дисульфидными мостиками через остатки цистеина, третья дисульфидная связь расположена в A-цепи.Белковый состав плазмы крови

Секрецию инсулина также усиливают: глюкагон, секретин, холецистокинин, СТГ и пища, богатая белками.

Рецепторы для инсулина находятся на клеточной мембране, Главными мишенями для инсулина являются мышцы, печень, жировая ткань, фибробласты и лимфоциты. Головной мозг не зависит от инсулина.

  • усиление поглощения клетками глюкозы и других веществ;

  • активацию ключевых ферментов гликолиза;

  • увеличение интенсивности синтеза гликогена — инсулин форсирует запасание глюкозы клетками печени и мышц путём полимеризации её в гликоген;

  • уменьшение интенсивности глюконеогенеза — снижается образование в печени глюкозы из различных веществ

усиливает поглощение клетками аминокислот (особенно лейцина и валина);

  • усиливает транспорт в клетку ионов калия, а также магния и фосфата;

  • усиливает репликацию ДНК и биосинтез белка;

  • усиливает синтез жирных кислот и последующую их этерификацию — вжировой ткани и в печени инсулин способствует превращению глюкозы втриглицериды; при недостатке инсулина происходит обратное — мобилизация жиров.

50.

Сахарный диабет. Патогенез. Нарушения обмена веществ при сахарном диабете. Определение толерантности к глюкозе при диагностике сахарного диабета.

Может быть 2 причины сахарного диабета:

  1. Абсолютная недостаточность инсулина. В этом случае концентрация инсулина в крови ниже нормы. Это может быть связано либо с повреждением островковой ткани железы, либо с истощением запасов инсулина, либо с ускоренным его разрушением.

  2. Относительная недостаточность возникает в результате снижения числа рецепторов к инсулину, или снижения их чувствительности.

Различают инсулинзависимый (юношеский, ювенильный) и инсулиннезависимый (стабильный) сахарный диабет.

При инсулинзависимом диабете наблюдается абсолютная недостаточность инсулина, и жизнь больных зависит от инъекции инсулина.

При инсулиннезависимом диабете наблюдается относительная недостаточность инсулина, поддержание глюкозы на нормальном уровне достигается сахаропонижающими средствами, инъекции инсулина не требуются.

Источник: studfile.net

Остановка кровотечения(гемостаз)

4.Поддержания гомеостаза(pH, осмоляльность, температура, целостность сосудистого русла)

5.Регуляторная функция(транспорт гормонов и др. веществ(минералы,витамины), изменяющих деятельность органа)

Состав крови.

Плазма крови– жидкая опалесцирующая жидкость желтоватого цвета, которая состоит на 91-92% из воды. Она содержит в своем составе органические и неорганические вещества.

Органические– белки(7-8% или 60-82 г/л), остаточный азот – в результате белкового обмена(мочевина, мочевая кислота, креатинин, креатин, амиак) – 15-20ммол/л. Этот показатель характеризует работу почек. Рост этого показателя свидетельствует о почечной недостаточности. Глюкоза – 3,33-6,1ммол/л — диагностируется сахарный диабет.

Неорганические– соли(катионы и анионы) – 0,9%

 

Белки плазмы и их функции.

Альбумины. Их содержится в крови 4,5-6,7%, т.е. 60-65% всех плазменных белков приходится на долю альбуминов. Они выполняют в основном питательно-пластическую функцию. Не менее важна транспортная роль альбуминов, так как они могут связывать и транспортировать не только метаболиты, но лекарства. При большом накоплении жира в крови часть его тоже связывается альбуминами. Поскольку альбуминам принадлежит очень высокая осмотическая активность, на их долю приходится до 80% всего коллоидно-осмотического (онкотического) давления крови. Поэтому уменьшение количества альбуминов ведет к нарушению водного обмена между тканями и кровью и появлению отеков. Синтез альбуминов происходит в печени.

Глобулиныобычно всюду сопутствуют альбуминам и являются наиболее распространенными из всех известных белков. Общее количество глобулинов в плазме составляет 2,0-3,5%, т.е. 35-40% от всех белков плазмы. По фракциям их содержание следующее:

альфа1-глобулины— 0,22-0,55 г% (4-5%)

альфа2-глобулины- 0,41-0,71г% (7-8%)

бета-глобулины — 0,51-0,90 г% (9-10%)

гамма-глобулины— 0,81-1,75 г% (14-15%)

Молекулярный вес глобулинов 150-190 тыс. Место образования может быть различным. Большая часть синтезируется в лимфоидных и плазматических клетках ретикулоэндотелиальной системы. Часть — в печени. Физиологическая роль глобулинов многообразна. Так, гамма-глобулины являются носителями иммунных тел. Альфа- и бета- глобулины тоже имеют антигенные свойства, но специфической их функцией является участие в процессах свертывания (это плазменные факторы свертывания крови). Сюда же относятся большая часть ферментов крови, а так же трансферин, церуллоплазмин, гаптоглобины и др. белки.

Фибриноген. Этот белок составляет 0,2-0,4 г%, около 4% от всех белков плазмы крови. Имеет непосредственное отношение к свертыванию, во время которого выпадает в осадок после полимеризации.

Протромбин-белок плазмы крови человека и животных, важнейший компонент системы свёртывания крови.

Другие вещества:

Липиды (жиры) – нерастворимы в воде, и поэтому они не могут транспортироваться кровью в чистом виде. Однако в крови липиды находятся в связанном с транспортными белками состоянии и приобретают растворимость. Образовавшееся химическое соединение носит название липопротеид или липопротеин. Выделяют несколько классов данных соединений:

·липопротеины очень низкой плотности (ЛПОНП) – образуются в печени, содержат липиды (холестерин и триглицериды) которые переносят с кровью к тканям;

·липопротеиды низкой плотности (ЛПНП) – образуются из ЛПОНП за счет выхода из них триглицеридов и содержат в основном холестерин;

·липопротеиды высокой плотности (ЛПВП)– транспортируют неиспользованный холестерин от тканей в печень, где из него синтезируются желчные кислоты.

Гормоны—биологически активные вещества органической природы, вырабатывающиеся в специализированных клетках желёз внутренней секреции, поступающие в кровь, связывающиеся с рецепторами клеток-мишеней и оказывающие регулирующее влияние на обмен веществ ифизиологические функции. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах и системах.

Витамины— группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы.

Ферменты,или энзимы— обычно белковые молекулы или молекулы РНК(рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах.

Аминокислоты-органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Продукты обмена(мочевина,азот и др)

Минеральные вещества(кальцый, натрий, калий, железо , цинк , медь)

Осмотическое давление в норме приравнивается концентрации. Натрий хлорид 0,9%(физраствор)

Клетки могут нормально существовать при нормальном осмотическом давлении.
Температура крови до 40°

pH-КЩР-кислотно-щелочное равновесие.

Кровь имеет 37,36 pH- слабощелочная.

При заболеваниях:

Ацидоз— смещение кислотно-щелочного баланса организма в сторону увеличения кислотности.

Алкалоз— нарушение кислотно-щелочного равновесия организма в сторону увеличения щелочности.

Гомеостаз—саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия.

 

Физико-химические свойства:

Цвет крови.Определяется наличием в эритроцитах особого белка — гемоглобина.

Относительная плотность крови. Колеблется от 1,058 до 1,062 и зависит преимущественно от содержания эритроцитов. Относительная плотность плазмы крови в основном определяется концентрацией белков и составляет 1,029—1,032.

Вязкость крови. Определяется по отношению к вязкости воды и соответствует 4,5—5,0. Вязкость крови зависит главным образом от содержания эритроцитов и в меньшей степени от белков плазмы.

Осмотическим давлением называется сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более концентрированный раствор. Осмотическое давление крови зависит в основном от растворенных в ней низкомолекулярных соединений, главным образом солей. Около 60% этого давления создается NaCl. Поддержание постоянства осмотического давления играет чрезвычайно важную роль в жизнедеятельности клеток.

Онкотическое давление. Является частью осмотического и зависит от содержания крупномолекулярных соединений (белков) в растворе.
PH

Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. Поэтому кровезамещающие растворы должны содержать в своем составе коллоидные вещества, способные удерживать воду.

При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани.

Температура крови. Во многом зависит от интенсивности обмена веществ того органа, от которого оттекает кровь, и колеблется в пределах 37—40°С. При движении крови не только происходит некоторое выравнивание температуры в различных сосудах, но и создаются условия для отдачи или сохранения тепла в организме.

Постоянство рН крови поддерживается буферными системами: гемоглобиновой, карбонатной, фосфатной и белками плазмы.

Клетки крови — формининные эллементы.

1.Клетки красного ряда-эритроциты

2.Клетки белого ряда — лейкоциты

3.Тромбоциты

1)Эритроцитысоставляют основную массу форменных элементов крови. Они определяют красный цвет крови. Эритроциты имеют форму двояковогнутого диска, средний диаметр которых около 7 – 8,3 мкм, не имеют ядра. Вся цитоплазма сосредоточена по краям,а в центре её мало. В норме допускаяется форма спущенного мяча.
Гемолиз — разрушение эритроцитов крови с выделением в окружающую среду гемоглобина. В норме гемолиз завершает жизненный цикл эритроцитов (120 суток) и происходит в организме человека и животных непрерывно. Патологический гемолиз происходит под влиянием гемолитических ядов, холода, некоторых лекарственных веществ (у чувствительных к ним людей) и других факторов; характерен для гемолитических анемий. По локализации процесса выделяют несколько типов гемолиза:

1.Внутриклеточный

2.Внутрисосудистый

Скорость оседания эритроцитов(СОЭ) — это скорость разделения несвернувшейся крови в специальном капилляре на два слоя: из осевших эритроцитов (нижний слой) и прозрачной плазмы (верхний слой). СОЭ измеряется в миллиметрах в час.

СОЭ 2-10 мл в час у мужчин,до 15 мл в час у женщин.

Скорость меняется при заболевании или беременности в сторону увеличения.

2)Лейкоциты— белые кровяные клетки,они крупнее эритроцитов; неоднородная группа различных по внешнему виду и функциям клеток крови человека или животных, выделенная по признакам наличия ядра и отсутствия самостоятельной окраски.

Главная сфера действия лейкоцитов — защита. Они играют главную роль в специфической и не специфической защите организма от внешних и внутренних патогенных агентов, а также в реализации типичных патологических процессов.

Делятся на 2 группы,в зависимости есть ли зернистость в цитоплазме :

1.Зернистые — гранулоциты

 

2.Не зернистые — агранулоциты

 

1.В зависимости от особенностей восприятия ими стандартных красителей гранулоциты делят на:

1)Нейтрофилы(фагоциты)— подвижные клетки,их больше всего в цитоплазме,выполняют защитную функцию и способны к фагоцитозу(захват и поглощение).Окрашиваются в сиреневый цвет. Ядро в виде сигментов, соединяющаяся перемычками. Диаметр зрелого нейтрофила — 10-12 мкм. Живут от нескольких часов,до нескольких суток. В крови умирают быстрее.

2)Эозинофилы. Кол-во увеличивается при аллергических реакциях,глисных инвазиях, их называют «чистильщиками»,способны к фагоцитозу. Диаметр до15 мкм. Окрашиваются кислыми красками в розовый цвет. Ядро в виде сигмета.

3)Базофилы — это клетки-разведчики. Основная функция базофилов — ускорение подавления аллергенов и препятствие их распространению по всему организму. Очень крупные гранулоциты: они крупнее и нейтрофилов, и эозинофилов. Принимают активное участие в развитии аллергических реакций немедленного типа (реакции анафилактического шока. Относятся к эндокринной системе. Выделяют гистамин и гепарин. Не окрашиваются кислыми красками.

 

2.Не зернистые агранулоциты:

1)Моноцит-крупный зрелый одноядерный лейкоцит группы агранулоцитов диаметром 18—20 мкм. Подвижны и способны к фагоцитозу. Живут от нескольких часов до нескольких суток. Ядро почти во всю клетку,бобовидное.

2)Лимфоциты-клетки иммунной системы. Величина минимум — 4,5 мкм,максимум — 10 мкм. Ядро круглое,крупное.

2 вида:

Тл ≈ 80% — тимус зависимые.

Тимус — железа,расположенная в пространстве между легкими. Выполняет две функции: эндокринную и иммунную.

Тh хелперы (участвуют в имунных реакциях)

Тk киллеры(убийцы,принимают участие в противоопухолевых процессах)

Тs супрессоры(подавляют иммунные реакции)

Bл≈ 20% — участвуют в выработке антител(белки глобулины)

 

Лейкоцитарная формула:

Нейтрофилы до 65% зрелые (палочкоядерные дозревают до сигментоядерных)

Базофилы до 1%

Эозинофилы ≈ 1,4% — 5%

Лимфоциты 1,9%-37%

Моноциты 3%-11%

 

3)Тромбоциты-то небольшие (2-4 мкм) безъядерные сферические бесцветные тельца крови.

Содержит вещество тромбопластин и принимает участие в свёртывании крови.

 

Гемограмма— сожержание всех клеток в крови.

 

Эритроциты. м. 4-5*10^12, ж. 3,9-4,7*10^12 в 1 л

Гемоглабин м.130-160 г в 1 л,ж. 120-140 г в 1 л.

Цветовой показатель — степень насыщеннсоти цитоплазмы эритроцитов гемоглабином.0,85 — 1,05.

Лейкоциты 4-9*10^12 на 1 л.

Ретикулоциты — не дозревшие лейкоциты. От 2 до 10% от общего числа эритроцитов.

СОЭ м.2-10,ж. 2-15 мл в ч.

Тромбоциты 180-320*10^9 г на л

 

Гемостаз — комплексная реакция,направленная на остановку кровотечения.

Коагуляция(свертывание) -слипание частиц коллоидной системы и при их столкновениях в процессе теплового (броуновского)движения, перемешивания или направленного перемещения во внешнем силовом поле.

3 стадии свертывания крови:

1.Образование активного тромбопрластина. Тромбомбоцит высвобождает тромбопластин под влиянием солей кальция и других факторов превращения в активный тромбопластин.

2.Образование тромбина. Активный тромбопласин , соли кальция и другие компоненты плазмы переводят протромбин в тромбин.

3.Образование фибрина тромбина,кальций и другие факторы,переводят фибриноген в фибрин.

Фибрин— бесцветный белок,который составляет основу сгустка — тромба,состоит из отдельных нитей,образующих мономер,идёт его полимеризация.

Между нитями фибрина застревают эритроциты.

Крововтечение 5-10 минут,влияет температура.

Кровь хранят в холодильнике при теппературе 4-8°

Антикоагуляция— антисвёртывающая система,которая препятствует образованию сгустка.

Группы крови.

В 1901 году были открыты 4 группы крови. Открыл австрийски(Вена) врач Ландштейнер.

Эти группы отличаются антигенами. Содержание в эритроцитах агглютинигена АВ.

В плазме агглютинигены АВ0 α β

Правила переливания крови:

Переливается только одногруппная кровь.

Донор— тот,кто сдаёт кровь.

Реципиент — тот,кто получает кровь.

Недостаточно знать только группу. Резус-фактор rh — белок,который содержится в эритроцитах.

85% резус +

15% резус —

Источник: megaobuchalka.ru

РАЗДЕЛ 14. БИОХИМИЯ КРОВИ

IV. Белки плазмы крови

В плазме крови содержится 7% всех белков организма при концентрации 60 — 80 г/л. Белки плазмы крови выполняют множество функций. Одна из них заключается в поддержании осмотического давления, так как белки связывают воду и удерживают её в кровеносном русле.

• Белки плазмы образуют важнейшую буферную систему крови и поддерживают pH крови в пределах 7,37 — 7,43.

• Альбумин, транстиретин, транскортин, трансферрин и некоторые другие белки (табл. 14-2) выполняют транспортную функцию.

• Белки плазмы определяют вязкость крови и, следовательно, играют важную роль в гемодинамике кровеносной системы.

• Белки плазмы крови являются резервом аминокислот для организма.

• Иммуноглобулины, белки свёртывающей системы крови, α1-антитрипсин и белки системы комплемента осуществляют защитную функцию.

Методом электрофореза на ацетилцеллюлозе или геле агарозы белки плазмы крови можно разделить на альбумины (55 — 65%), α1-глобулины (2 — 4%), α2-глобулины (6 — 12%), β-глобулины (8 — 12%) и н-глобулины (12 — 22%) (рис. 14-19).

Рис. 14-19. Электрофореграмма (А) и денситограмма (Б) белков сыворотки крови.

Белковый состав плазмы крови

Применение других сред для электрофоретического разделения белков позволяет обнаружить большее количество фракций. Например, при электрофорезе в полиакриламидном или крахмальном гелях в плазме крови выделяют 16 — 17 белковых фракций. Метод иммуноэлектрофореза, сочетающий электрофоретический и иммунологический способы анализа, позволяет разделить белки плазмы крови более чем на 30 фракций.

Большинство сывороточных белков синтезируется в печени, однако некоторые образуются и в других тканях. Например, н-глобулины синтезируются В-лимфоцитами (см. раздел 4), пептидные гормоны в основном секретируют клетки эндокринных желёз, а пептидный гормон эритропоэтин — клетки почки.

Для многих белков плазмы, например, альбумина, α1-антитрипсина, гаптоглобина, трансферрина, церулоплазмина, α2-макроглобулина и иммуноглобулинов, характерен полиморфизм (см. раздел 4).

Почти все белки плазмы, за исключением альбумина, являются гликопротеинами. Олигосахариды присоединяются к белкам, образуя гликозидные связи с гидроксильной группой серина или треонина, или взаимодействуя с карбоксильной группой аспарагина. Концевой остаток олигосахаридов в большинстве случаев представляет собой N-ацетилнейраминовую кислоту, соединённую с галактозой. Фермент эндотелия сосудов нейраминидаза гидролизует связь между ними, и галактоза становится доступной для специфических рецепторов гепатоцитов. Путём эндоцитоза «состарившиеся» белки поступают в клетки печени, где разрушаются. Т1/2 белков плазмы крови составляет от нескольких часов до нескольких недель.

При ряде заболеваний происходит изменение соотношения распределения белковых фракций при электрофорезе по сравнению с нормой (рис. 14-20).

Рис. 14-20. Протеинограммы белков сыворотки крови. а — в норме; б — при нефротическом синдроме; в — при гипогаммаглобулинемии; г — при циррозе печени; д — при недостатке α1-антитрипсина; е — при диффузной гипергаммаглобулинемии.

Белковый состав плазмы крови

Такие изменения называют диспротеинемиями, однако их интерпретация часто имеет относительную диагностическую ценность. Например, характерное для нефротического синдрома снижение альбуминов, α1— и y-глобулинов и увеличение α2— и β-глобулинов отмечают и при некоторых других заболеваниях, сопровождающихся потерей белков. При снижении гуморального иммунитета уменьшение фракции y-глобулинов свидетельствует об уменьшении содержания основного компонента иммуноглобулинов — IgG, но не отражает динамику изменений IgA и IgM.

Содержание некоторых белков в плазме крови может резко увеличиваться при острых воспалительных процессах и некоторых других патологических состояниях (травмы, ожоги, инфаркт миокарда). Такие белки называют белками острой фазы, так как они принимают участие в развитии воспалительной реакции организма. Основной индуктор синтеза большинства белков острой фазы в гепатоцитах — полипептид интерлейкин-1, освобождающийся из мононуклеарных фагоцитов. К белкам острой фазы относят С-реактивный белок, называемый так, потому что он взаимодействует с С-полисахаридом пневмококков, α1-антитрипсин, гаптоглобин, кислый гликопротеин, фибриноген. Известно, что С-реактивный белок может стимулировать систему комплемента, и его концентрация в крови, например, при обострении ревматоидного артрита может возрастать в 30 раз по сравнению с нормой. Белок плазмы крови α1-антитрипсин может инактивировать некоторые протеазы, освобождающиеся в острой фазе воспаления.

Содержание некоторых белков в плазме крови и их функции представлены в таблице 14-2.

Таблица 14-2. Содержание и функции некоторых белков плазмы крови

Группа

Белки

Концентрация в сыворотке крови, г/л

Функция

Альбумины

Транстиретин

0,25

Транспорт тироксина и трийодтиронина

 

Альбумин

40

Поддержание осмотического давления, транспорт жирных кислот, билирубина, жёлчных кислот, стероидных гормонов, лекарств, неорганических ионов, резерв аминокислот

α1-Глобулины

α1-Антитрипсин

2,5

Ингибитор протеиназ

 

ЛПВП

0,35

Транспорт холестерола

 

Протромбин

0,1

Фактор II свёртывания крови

 

Транскортин

0,03

Транспорт кортизола, кортикостерона, прогестерона

 

Кислый α1-гликопротеин

1

Транспорт прогестерона

 

Тироксинсвязывающий глобулин

0,02

Транспорт тироксина и трийодтиронина

α2-Г лобулины

Церулоплазмин

0,35

Транспорт ионов меди, оксидоредуктаза

 

Антитромбин III

0,3

Ингибитор плазменных протеаз

 

Гаптоглобин

1

Связывание гемоглобина

 

α2-Макроглобулин

2,6

Ингибитор плазменных протеиназ, транспорт цинка

 

Ретинолсвязывающий белок

0,04

Транспорт ретинола

 

Витамин D связывающий белок

0,4

Транспорт кальциферола

β-Глобулины

ЛПНП

3,5

Транспорт холестерола

 

Трансферрин

3

Транспорт ионов железа

 

Фибриноген

3

Фактор I свёртывания крови

 

Транскобаламин

25 x 10-9

Транспорт витамина В12

 

Глобулин связывающий белок

20 x 10-6

Транспорт тестостерона и эстрадиола

 

С-реактивный белок

<0,01

Активация комплемента

y-Глобулины

IgG

12

Поздние антитела

 

IgA

3,5

Антитела, защищающие слизистые оболочки

 

IgM

1,3

Ранние антитела

 

IgD

0,03

Рецепторы В-лимфоцитов

 

IgE

<0,01

Реагин

 Альбумин. Концентрация альбумина в крови составляет 40-50 г/л. В сутки в печени синтезируется около 12 г альбумина, Т1/2 этого белка — примерно 20 дней. Альбумин состоит из 585 аминокислотных остатков, имеет 17 дисульфидных связей и обладает молекулярной массой 69 кД. Молекула альбумина содержит много дикарбоновых аминокислот, поэтому может удерживать в крови катионы Са2+, Сu2+, Zn2+. Около 40% альбумина содержится в крови и остальные 60% в межклеточной жидкости, однако его концентрация в плазме выше, чем в межклеточной жидкости, поскольку объём последней превышает объём плазмы в 4 раза.

Благодаря относительно небольшой молекулярной массе и высокой концентрации альбумин обеспечивает до 80% осмотического давления плазмы. При гипоальбуминемии осмотическое давление плазмы крови снижается. Это приводит к нарушению равновесия в распределении внеклеточной жидкости между сосудистым руслом и межклеточным пространством. Клинически это проявляется как отёк. Относительное снижение объёма плазмы крови сопровождается снижением почечного кровотока, что вызывает стимуляцию системы ренин-ангиотензин-альдостерон, обеспечивающей восстановление объёма крови (см. раздел 11). Однако при недостатке альбумина, который должен удерживать Nа+, другие катионы и воду, вода уходит в межклеточное пространство, усиливая отёки.

Гипоальбуминемия может наблюдаться и в результате снижения синтеза альбуминов при заболеваниях печени (цирроз), при повышении проницаемости капилляров, при потерях белка из-за обширных ожогов или катаболических состояний (тяжёлый сепсис, злокачественные новообразования), при нефротическом синдроме, сопровождающемся альбуминурией, и голодании. Нарушения кровообращения, характеризующиеся замедлением кровотока, приводят к увеличению поступления альбумина в межклеточное пространство и появлению отёков. Быстрое увеличение проницаемости капилляров сопровождается резким уменьшением объёма крови, что приводит к падению АД и клинически проявляется как шок.

Альбумин — важнейший транспортный белок. Он транспортирует свободные жирные кислоты (см. раздел 8), неконъюгированный билирубин (см. раздел 13), Са2+, Сu2+, триптофан, тироксин и трийодтиронин (см. раздел 11). Многие лекарства (аспирин, дикумарол, сульфаниламиды) связываются в крови с альбумином. Этот факт необходимо учитывать при лечении заболеваний, сопровождающихся гипоальбуминемией, так как в этих случаях повышается концентрация свободного лекарства в крови. Кроме того, следует помнить, что некоторые лекарства могут конкурировать за центры связывания в молекуле альбумина с билирубином и между собой.

Транстиретин (преальбумин) называют тироксинсвязывающим преальбумином. Это белок острой фазы. Транстиретин относят к фракции альбуминов, он имеет тетрамерную молекулу. Он способен присоединять в одном центре связывания ретинолсвязывающий белок, а в другом — до двух молекул тироксина и трийодтиронина. Соединение с этими лигандами происходит независимо друг от друга. В транспорте последних транстиретин играет существенно меньшую роль по сравнению с тироксинсвязывающим глобулином.

α1-Антитрипсин относят к α1-глобулинам. Он ингибирует ряд протеаз, в том числе фермент эластазу, освобождающийся из нейтрофилов и разрушающий эластин альвеол лёгких. При недостаточности α1-антитрипсина могут возникнуть эмфизема лёгких (см. раздел 15) и гепатит, приводящий к циррозу печени. Существует несколько полиморфных форм α1-антитрипсина, одна из которых является патологической. У людей, гомозиготных по двум дефектным аллелям гена антитрипсина, в печени синтезируется α1-антитрипсин, который образует агрегаты, разрушающие гепатоциты. Это приводит к нарушению секреции такого белка гепатоцитами и к снижению содержания α1-антитрипсина в крови.

Гаптоглобин составляет примерно четверть всех α2-глобулинов. Гаптоглобин при внутрисосудистом гемолизе эритроцитов образует комплекс с гемоглобином, который разрушается в клетках РЭС. Если свободный гемоглобин, имеющий молекулярную массу 65 кД, может фильтроваться через почечные клубочки или агрегировать в них, то комплекс гемоглобин-гаптоглобин имеет слишком большую молекулярную массу (155 кД), чтобы пройти через гломерулы. Следовательно, образование такого комплекса предотвращает потери организмом железа, содержащегося в гемоглобине. Определение содержания гаптоглобина имеет диагностическое значение, например, снижение концентрации гаптоглобина в крови наблюдают при гемолитической анемии. Это объясняют тем, что при Т1/2 гаптоглобина, составляющем 5 дней, и Т1/2 комплекса гемоглобин-гаптоглобин (около 90 мин) увеличение поступления свободного гемоглобина в кровь при гемолизе эритроцитов вызовет резкое снижение содержания свободного гаптоглобина в крови.

Гаптоглобин относят к белкам острой фазы, его содержание в крови повышается при острых воспалительных заболеваниях.

Информация о некоторых других белках плазмы крови, представленных в табл. 14-2, имеется в соответствующих разделах учебника.

Источник: lifelib.info

Тема 1. БИОЛОГИЧЕСКАЯ РОЛЬ БЕЛКОВЫХ И НЕБЕЛКОВЫХ КОМПОНЕНТОВ ПЛАЗМЫ КРОВИ.

Практическая значимость темы. Кровь является важнейшим и наиболее доступным объектом биохимического исследования. Наиболее изученные компоненты крови — это гемоглобин, альбумин, иммуноглобулины и разнообразные факторы свёртывания. При различных заболеваниях наблюдаются изменения уровня белков в плазме; эти изменения можно обнаружить при электрофорезе. Важным диагностическим признаком при некоторых патологических состояниях служит повышение активности некоторых ферментов плазмы крови. Определение содержания небелковых компонентов плазмы (глюкоза, мочевина, холестерол, билирубин и др.) также используется в диагностике заболеваний.

Цель занятия. После изучения данной темы студент должен знать состав и биологическую роль различных групп белков, небелковых азотистых компонентов (остаточного азота), безазотистых органических соединений и минеральных веществ, входящих в состав плазмы крови; уметь применять полученные знания при решении теоретических и практических задач.

Исходный уровень знаний.

  1. Строение и биологические функции аминокислот и белков, жирных кислот и липидов, моно- и полисахаридов.
  2. Участие минеральных веществ в процессах жизнедеятельности.
  3. Кислотно-основные свойства биологических макромолекул.
  4. Гидрофильные и гидрофобные свойства биологических макромолекул.
  5. Механизмы регуляции активности ферментов.

Общая характеристика.

Кровь — жидкая подвижная ткань, циркулирующая в замкнутой системе кровеносных сосудов, транспортирующая различные химические вещества к органам и тканям, и осуществляющая интеграцию метаболических процессов, протекающих в различных клетках.

Кровь состоит из плазмы и форменных элементов (эритроцитов, лейкоцитов и тромбоцитов). Сыворотка крови отличается от плазмы отсутствием фибриногена. 90% плазмы крови составляет вода, 10% — сухой остаток, в состав которого входят белки, небелковые азотистые компоненты (остаточный азот), безазотистые органические компоненты и минеральные вещества.

Белки плазмы крови.

Плазма крови содержит сложную многокомпонентную (более 100) смесь белков, различающихся по происхождению и функциям. Большинство белков плазмы синтезируется в печени. Иммуноглобулины и ряд других защитных белков иммунокомпетентными клетками.

Содержание общего белка в сыворотке крови здорового человека составляет 65 — 85 г/л (в плазме крови этот показатель на 2 – 4 г/л выше за счёт фибриногена).

1.2.1. Белковые фракции. При помощи высаливания белков плазмы можно выделить альбуминовую и глобулиновую фракции. В норме соотношение этих фракций составляет 1,5 – 2,5. Использование метода электрофореза на бумаге позволяет выявить 5 белковых фракций (в порядке убывания скорости миграции): альбумины, α1-, α2-, β- и γ-глобулины. При использовании более тонких методов фракционирования в каждой фракции, кроме альбуминовой, можно выделить целый ряд белков (содержание и состав белковых фракций сыворотки крови см. рисунок 1).

Белковый состав плазмы крови
Рисунок 1. Электрофореграмма белков сыворотки крови и состав белковых фракций.

Альбумины – белки с молекулярной массой около 70000 Да. Благодаря гидрофильности и высокому содержанию в плазме играют важную роль в поддержании коллоидно-осмотического (онкотического) давления крови и регуляции обмена жидкостей между кровью и тканями. Выполняют транспортную функцию: осуществляют перенос свободных жирных кислот, желчных пигментов, стероидных гормонов, ионов Са2+, многих лекарств. Альбумины также служат богатым и быстро реализуемым резервом аминокислот.

α1-Глобулины:

  • Кислый α1-гликопротеин (орозомукоид) – содержит до 40% углеводов, изоэлектрическая точка его находится в кислой среде (2,7). Функция этого белка до конца не установлена; известно, что на ранних стадиях воспалительного процесса орозомукоид способствует образованию коллагеновых волокон в очаге воспаления (Я.Мусил, 1985).
  • α1-Антитрипсин – ингибитор ряда протеаз (трипсина, химотрипсина, калликреина, плазмина). Врождённое снижение содержания α1-антитрипсина в крови может быть фактором предрасположенности к бронхо-лёгочным заболеваниям, так как эластические волокна лёгочной ткани особенно чувствительны к действию протеолитических ферментов.
  • Ретинолсвязывающий белок осуществляет транспорт жирорастворимого витамина А.
  • Тироксинсвязывающий белок – связывает и транспортирует иодсодержащие гормоны щитовидной железы.
  • Транскортин – связывает и транспортирует глюкокортикоидные го рмоны (кортизол, кортикостерон).

α2-Глобулины:

  • Гаптоглобины (25% α2-глобулинов) – образуют стабильный комплекс с гемоглобином, появляющимся в плазме в результате внутрисосудистого гемолиза эритроцитов. Комплексы гаптоглобин-гемоглобин поглощаются клетками РЭС, где гем и белковые цепи подвергаются распаду, а железо повторно используется для синтеза гемоглобина. Тем самым предотвращается потеря железа организмом и повреждение почек гемоглобином.
  • Церулоплазмин – белок, содержащий ионы меди (одна молекула церулоплазмина содержит 6-8 ионов Cu2+), которые придают ему голубую окраску. Является транспортной формой ионов меди в организме. Обладает оксидазной активностью: окисляет Fe2+ в Fe3+, что обеспечивает связывание железа трансферрином. Способен окислять ароматическиеамины, участвует в обмене адреналина, норадреналина, серотонина.

β-Глобулины:

  • Трансферрин – главный белок β-глобулиновой фракции, участвует в связывании и транспорте трёхвалентного железа в различные ткани, особенно в кроветворные. Трансферрин регулирует содержание Fe3+ в крови, предотвращает избыточное накопление и потерю с мочой.
  • Гемопексин – связывает гем и предотвращает его потерю почками. Комплекс гем-гемопексин улавливается из крови печенью.
  • С-реактивный белок (С-РБ) – белок, способный преципитировать (в присутствии Са2+) С-полисахарид клеточной стенки пневмококка. Биологическая роль его определяется способностью активировать фагоцитоз и ингибировать процесс агрегации тромбоцитов. У здоровых людей концентрация С-РБ в плазме ничтожно мала и стандартными методами не определяется. При остром воспалительном процессе она увеличивается более чем в 20 раз, в этом случае С-РБ обнаруживается в крови. Исследование С-РБ имеет преимущество перед другими маркерами воспалительного процесса: определением СОЭ и подсчётом числа лейкоцитов. Данный показатель более чувствителен, его увеличение происходит раньше и после выздоровления быстрее возвращается к норме.

γ-Глобулины:

  • Иммуноглобулины (IgA, IgG, IgM, IgD, IgE) представляют собой антитела, вырабатываемые организмом в ответ на введение чужеродных веществ с антигенной активностью. Подробнее об этих белках см. 1.2.5.

1.2.2. Количественные и качественные изменения белкового состава плазмы крови. При различных патологических состояниях белковый состав плазмы крови может изменяться. Основными видами изменений являются:

  • Гиперпротеинемия — увеличение содержания общего белка плазмы. Причины: потеря большого количества воды (рвота, диарея, обширные ожоги), инфекционные заболевания (за счёт увеличения количества γ-глобулинов).
  • Гипопротеинемия — уменьшение содержания общего белка в плазме. Наблюдается при заболеваниях печени (вследствие нарушения синтеза белков), при заболеваниях почек (вследствие потери белков с мочой), при голодании (вследствие недостатка аминокислот для синтеза белков).
  • Диспротеинемия — изменение процентного соотношения белковых фракций при нормальном содержании общего белка в плазме крови, например, снижение содержания альбуминов и увеличение содержания одной или нескольких глобулиновых фракций при различных воспалительных заболеваниях.
  • Парапротеинемия — появление в плазме крови патологических иммуноглобулинов — парапротеинов, отличающихся от нормальных белков по физико-химическим свойствам и биологической активности. К таким белкам относятся, например, криоглобулины, образующие друг с другом преципитаты при температуре ниже 37° С. Парапротеины обнаруживаются в крови при макроглобулинемии Вальденстрема, при миеломной болезни (в последнем случае они могут преодолевать почечный барьер и обнаруживаться в моче как белки Бенс-Джонса). Парапротеинемия, как правило, сопровождается гиперпротеинемией.

1.2.3. Липопротеиновые фракции плазмы крови. Липопротеины — сложные соединения, осуществляющие транспорт липидов в крови. В состав их входят: гидрофобное ядро, содержащее триацилглицеролы и эфиры холестерола, и амфифильная оболочка, образованная фосфолипидами, свободным холестеролом и белками-апопротеинами (рисунок 2). В плазме крови человека содержатся следующие фракции липопротеинов:

Белковый состав плазмы крови
Рисунок 2. Схема строения липопротеина плазмы крови.

  • Липопротеины высокой плотности или α-липопротеины, так как при электрофорезе на бумаге они движутся вместе с α-глобулинами. Содержат много белков и фосфолипидов, транспортируют холестерол из периферических тканей в печень.
  • Липопротеины низкой плотности или β-липопротеины, так как при электрофорезе на бумаге они движутся вместе с β-глобулинами. Богаты холестеролом; транспортируют его из печени в периферические ткани.
  • Липопротеины очень низкой плотности или пре-β-липопротеины (на электрофореграмме расположены между α- и β-глобулинами). Служат транспортной формой эндогенных триацилглицеролов, являются предшественниками липопротеинов низкой плотности.
  • Хиломикроны — электрофоретически неподвижны; в крови, взятой натощак, отсутствуют. Являются транспортной формой экзогенных (пищевых) триацилглицеролов.

1.2.4. Белки острой фазы воспаления. Это белки, содержание которых увеличивается в плазме крови при остром воспалительном процессе. К ним относятся, например, следующие белки:

  1. гаптоглобин;
  2. церулоплазмин;
  3. С-реактивный белок;
  4. α1-антитрипсин;
  5. фибриноген (компонент свёртывающей системы крови; см. 2.2.2).

Скорость синтеза этих белков увеличивается прежде всего за счёт снижения образования альбуминов, трансферрина и альбуминов (небольшая фракция белков плазмы, обладающая наибольшей подвижностью при диск-электрофорезе, и которой соответствует полоса на электрофореграмме перед альбуминами), концентрация которых при остром воспалении снижается.

Биологическая роль белков острой фазы: а) все эти белки являются ингибиторами ферментов, освобождаемых при разрушении клеток, и предупреждают вторичное повреждение тканей; б) эти белки обладают иммунодепрессорным действием (В.Л.Доценко, 1985).

1.2.5. Защитные белки плазмы крови. К белкам, выполняющим защитную функцию, относятся иммуноглобулины и интерфероны.

Иммуноглобулины (антитела) — группа белков, вырабатываемых в ответ на попадание в организм чужеродных структур (антигенов). Они синтезируются в лимфоузлах и селезёнке лимфоцитами В. Выделяют 5 классов иммуноглобулинов — IgA, IgG, IgM, IgD, IgE.

Белковый состав плазмы крови
Рисунок 3.Схема строения иммуноглобулинов (серым цветом показана вариабельная область, не закрашена — константная область).

Молекулы иммуноглобулинов имеют единый план строения. Структурную единицу иммуноглобулина (мономер) образуют четыре полипептидные цепи, соединённые между собой дисульфидными связями: две тяжёлые (цепи Н) и две лёгкие (цепи L) (см. рисунок 3). IgG, IgD и IgЕ по своей структуре, как правило, являются мономерами, молекулы IgM построены из пяти мономеров, IgA состоят из двух и более структурных единиц, или являются мономерами.

Белковые цепи, входящие в состав иммуноглобулинов, можно условно разделить на специфические домены, или области, имеющие определённые структурные и функциональные особенности.

N-концевые участки как L-, так и Н-цепей называются вариабельной областью (V), так как их структура характеризуется существенными различиями у разных классов антител. Внутри вариабельного домена имеются 3 гипервариабельных участка, отличающихся наибольшим разнообразием аминокислотной последовательности. Именно вариабельная область антител ответственна за связывание антигенов по принципу комплементарности; первичная структура белковых цепей в этой области определяет специфичность антител.

С-концевые домены Н- и L-цепей обладают относительно постоянной первичной структурой в пределах каждого класса антител и называются константной областью (С). Константная область определяет свойства различных классов иммуноглобулинов, их распределение в организме, может принимать участие в запуске механизмов, вызывающих уничтожение антигенов.

Интерфероны — семейство белков, синтезируемых клетками организма в ответ на вирусную инфекцию и обладающих противовирусным эффектом. Различают несколько типов интерферонов, обладающих специфическим спектром действия: лейкоцитарный (α-интерферон), фибробластный (β-интерферон) и& иммунный (γ-интерферон). Интерфероны синтезируются и секретируются одними клетками и проявляют свой эффект, воздействуя на другие клетки, в этом отношении они подобны гормонам. Механизм действия интерферонов показан на рисунке 4.

Белковый состав плазмы крови
Рисунок 4.Механизм действия интерферонов (Ю.А.Овчинников, 1987).

Связываясь с клеточными рецепторами, интерфероны индуцируют синтез двух ферментов — 2′,5′-олигоаденилатсинтетазы и протеинкиназы, вероятно, за счет инициации транскрипции соответствующих генов. Оба образующихся фермента проявляют свою активность в присутствии двухцепочечных РНК, а именно такие РНК являются продуктами репликации многих вирусов или содержатся в их вирионах. Первый фермент синтезирует 2′,5′-олигоаденилаты (из АТФ), которые активируют клеточную рибонуклеазу I; второй фермент фосфорилирует фактор инициации трансляции IF2. Конечным результатом этих процессов является ингибирование биосинтеза белка и размножения вируса в инфицированной клетке (Ю.А.Овчинников, 1987).

1.2.6. Ферменты плазмы крови. Все ферменты, содержащиеся в плазме крови, можно разделить на три группы:

  1. секреторные ферменты — синтезируются в печени, выделяются в кровь, где выполняют свою функцию (например, факторы свёртывания крови);
  2. экскреторные ферменты — синтезируются в печени, в норме выделяются с желчью (например, щелочная фосфатаза), их содержание и активность в плазме крови возрастает при нарушении оттока желчи;
  3. индикаторные ферменты — синтезируются в различных тканях и попадают в кровь при разрушении клеток этих тканей. В разных клетках преобладают различные ферменты, поэтому при повреждении того или иного органа в крови появляются характерные для него ферменты. Это может быть использовано в диагностике заболеваний.

Например, при повреждении клеток печени (гепатит) в крови возрастает активность аланинаминотраноферазы (АЛТ), аспартатаминотрансферазы (ACT), изофермента лактатдегидрогеназы ЛДГ5, глутаматдегидрогеназы, орнитинкарбамоилтрансферазы.

При повреждении клеток миокарда (инфаркт) в крови возрастает активность аспартатаминотрансферазы (ACT), иэофермента лактатдегидрогеназы ЛДГ1, изофермента креатинкиназы MB.

При повреждении клеток поджелудочной железы (панкреатит) в крови возрастает активность трипсина, α-амилазы, липазы.

Источник: helpiks.org


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.