Оксигемоглобин и карбоксигемоглобин


Торшин В. А., к. м. н., доцент кафедры биохимии РМАПО, Москва.

Нормальное функционирование клетки полностью зависит от доставки кислорода. Более 98% кислорода, поглощаемого легкими из вдыхаемого воздуха, переносится к клетке кровью в виде оксигемоглобина. Лишь 1—2% кислорода физически растворены в плазме крови. Следовательно, решающую роль в транспорте кислорода к тканям играет содержащийся в эритроцитах гемопротеин-гемоглобин. В нормальных условиях в крови в небольших количествах содержатся также дериваты гемоглобина, не способные переносить кислород — так называемые дисгемоглобины (сульфгемоглобин, метгемоглобин, карбоксигемоглобин). Клинически наиболее значимым из перечисленных дисгемоглобинов является карбоксигемоглобин (COHb), то есть гемоглобин, связанный с моноксидом углерода (CO).

Эндогенные и экзогенные источники моноксида углерода

Моноксид углерода — бесцветный без запаха газ, эндогенно образующийся при нормальном метаболизме.


лее 50 лет назад Sjostrand впервые продемонстрировал образование моноксида углерода при катаболизме гем-содержащих протеинов, например гемоглобина. Эритроциты в конце их 120-дневного жизненного цикла секвестрируются ретикулоэндотелиальной системой, при этом гемоглобин распадается на составляющие части: гем и протеин. Протеин возвращается в сосудистое русло, а гем подвергается дальнейшему превращению под воздействием фермента гем-оксидазы с образованием эквимолярных количеств биливердина, железа и моноксида углерода. Биливердин последовательно конвертируется в желтый пигмент билирубин, экскретируемый с желчью, а железо подвергается рециркуляции. Катаболизм гема из других гем-содержащих протеинов, например, из миоглобина и цитохромов, также вносит вклад в эндогенное образование моноксида углерода. Кроме этого, источником эндогенного образования моноксида углерода является перекисное окисление липидов. Биологическое воздействие эндогенно образуемого моноксида углерода определяется его высоким аффинитетом к гем-содержащим протеинам, особенно к гемоглобину. Тем не менее важно осознавать, что моноксид углерода является не просто потенциально токсическим продуктом метаболизма, а также регулирующим фактором таких физиологических процессов, как дыхание, нейромышечная трансмиссия, регуляция артериального давления, регуляция сократимости матки в течение беременности. Эндогенно образующийся моноксид углерода, связываясь с гемоглобином, обеспечивает содержание 0,5—1,0% COHb в крови в норме. При гемолитических процессах возможно повышение фракции COHb до 10%.


В дополнение к эндогенно образуемому CO, мы вдыхаем CO, образующийся в основном в результате неполного сгорания углеводородов. Выхлопные газы автомобилей, содержащие до 10% CO, ответственны за экологическое неблагополучие в крупных мегаполисах. Вместе с тем, нахождение в закрытом пространстве с автомобилем с включенным двигателем до сих пор является довольно частой и эффективной формой суицида. Юридически узаконенная в некоторых странах необходимость каталитических добавок в топливо, ведет к уменьшению эффективности подобного суицида, но с другой стороны — к увеличению времени экспозиции и повышению риска гибели вследствие гипоксемии. Табачный дым содержит около 4% CO. Поэтому у курильщиков уровень COHb может составлять 3—5%, достигая 10% у злостных курильщиков, выкуривающих более 2—3 пачек сигарет в день. Наиболее серьезные случаи острого или хронического отравления CO связаны с проблемами в домашних отопительных системах, печах, применении угля в брикетах и т. д.

Наиболее неожиданной причиной карбоксигемоглобинемии оказалось вдыхание паров дихлорметана. Этот растворитель широко используется в чистящих агентах, аэрозольных пропеллентах и др. составах. Вдыхаемые пары дихлорметана метаболизируются различными оксидазами до CO2 и CO. При этом уровень COHb достигает 5—15%, а в отдельных случаях зарегистрировано повышение до 40-50%.

Механизмы токсичности моноксида углерода


Моноксид углерода обладает сродством к гемоглобину в 200-250 раз выше, чем у кислорода. Это достаточно ярко иллюстрировано примером из монографии Lawrence Martin (1999). При наличии в плазме крови CO, создающего парциальное давление в 0,43 мм. рт. ст. и О2 с рО2=100 мм. рт. ст., в крови будет содержаться по 50% O2Hb и COHb. Помимо вытеснения О2 из O2Hb моноксид углерода изменяет аллостерическую структуру гемоглобина, увеличивая аффинитет гемоглобина к кислороду, то есть затрудняя отдачу кислорода в тканях. Вследствие этого снижается как кислород-транспортная функция крови, так и экстракция кислорода тканями. В результате развивается прогрессирующая гипоксия, которой подвержены в большей степени органы с высоким уровнем метаболизма (мозг, сердце, печень, почки). Моноксид углерода оказывает также прямое токсическое воздействие на ткани, конкурируя за О2 в таких тканевых гемопротеинах, как миоглобин, пероксидаза, каталаза, цитохромы. Например, связывание CO с миоглобином сердечной мышцы приводит к депрессии миокарда и гипотензии, усугубляющих ишемию и гипоксию других органов.

Количество COHb в крови определяется концентрацией CO во вдыхаемом воздухе (ppm — parts per million, количество частиц на миллион) и длительностью экспозиции. При вдыхании фиксированной концентрации CO уровень COHb повышается в течение первых двух часов, затем выходит на плато в течение 3-х часов, достигая равновесия к 4—6 часу экспозиции. Таблица демонстрирует взаимоотношения между концентрацией CO и уровнем COHb при достижении равновесия.


Концентрация CO во вдыхаемом воздухе (ppm) COHb%
70 10
120 20
220 30
350—520 40—50
800—1200 60—70
1950 80

Для поддержания COHb ниже 2,5% при постоянной экспозиции уровень CO не должен превышать 10 ppm.

Концентрация CO составляет:

  • Сельская местность: 0,05—0,12 ppm.
  • Городские автодороги: 17 ppm (достигая при интенсивном движении 53 ppm).
  • Подземные гаражи, туннели: до 100 ppm.
  • Офисы, рестораны (места для курящих): 20—40 ppm.
  • Разрешенный уровень на рабочих местах с 8-час экспозицией: 50 ppm.

Клинические эффекты воздействия CO и корреляция с уровнем COhb

Основными клиническими симптомами острого отравления CO являются головная боль, тошнота, нарушение сознания вплоть до комы. Головная боль, тошнота, рвота, слабость являются также признаками хронического отравления, для которого характерны снижение интеллектуальных возможностей, затруднение концентрации внимания и снижение памяти. У более, чем 1/3 пациентов неврологические нарушения сохраняются в течение 3-х лет после хронической экспозиции CO. Состояние достаточно трудно диагностируется и полезным может быть определение уровня COHb в крови.
носительно диагностического и прогностического значения уровня COHb при острых отравлениях CO существует достаточно много противоречивых данных. Например, часто проба крови на COHb отправляется в лабораторию уже на фоне терапии 100% О2. При этом CO вытесняется из связи с гемоглобином и уровень COHb не отражает уровня CO в тканях. Представляется важным отметить, что CO не связывается с гемоглобином достаточно быстро. Например, в эксперименте было показано, что перемешивание эритроцитов в среде со 100% содержанием CO требует для насыщения около 20 минут, а после 5 минутной экспозиции только 25% гемоглобина конвертируется в COHb. Вследствие этого значительное количество вдыхаемого CO, физически растворенного в плазме крови, до связывания с гемоглобином имеет возможность достигнуть жизненно важные органы с риском повреждения клеточных энзимов (каталазы, пероксидазы, цитохромов). CO сохраняется в клетках после нормализации уровня COHb в течение длительного времени и фактически является причиной повреждения клетки. Вышесказанное аргументирует мнение сторонников необходимости проведения гипербарической оксигенации (ГБО), значительно ускоряющей элиминацию COHb. ГБО также увеличивает количество О2, растворенного в плазме крови, способного вытеснить CO из тканей. Период полураспада COHb у пациента, дышащего атмосферным воздухом, составляет 230—320 минут. При дыхании чистым О2 период полураспада сокращается до 90 минут. На фоне ГБО с давлением О2 в 3 АТА период полураспада COHb сокращается до 22 минут. При этом быстрее освобождается от связи с CO не только гемоглобин, но и клеточные энзимы, что позволяет достигнуть основную цель терапии: профилактику отсроченных неврологических нарушений. Показаниями для ГБО, принятыми в ряде стран (например, в Дании) в случае экспозиции CO, являются:


  • Любые неврологические нарушения (помимо головной боли).
  • Признаки нарушения сердечной деятельности.
  • Нарушение сознания вплоть до комы.
  • Наличие беременности.
  • Уровень фракции COHb > 25% после 2 часов дыхания 100% О2.

Несмотря на то, что не существует жесткой корреляции между уровнем COHb и клиникой, тем не менее с ростом уровня фракции COHb отчетливо нарастает тяжесть клинических проявлений острого отравления CO. Данные представлены в таблице 2.


FCOHb% Симптоматика
0—2 Нормальный уровень среди некурящих
5—6 Нормальный уровень для курильщиков. Возможно нарушение навыков вождения автомобиля и снижение толерантности к физической нагрузке у некурящих
10—20 Головная боль, слабость
20—30 Сильная головная боль, тошнота, рвота, головокружение, нарушение зрения
30—40 Тошнота, рвота, обморок, тахикардия и тахипноэ, неврологическая симптоматика
40—50 Кома, судороги, нарушения дыхания и сердечно-сосудистой деятельности
50—60h> Кома, судороги, глубокое угнетение дыхания и сердечной деятельности
60—70  Кома, судороги, артериальная гипотензия, брадикардия, угнетение дыхания
>70% Дыхательная недостаточность. Смерть

Измерение FCOHb наиболее часто используется для диагностики острого отравления моноксидом углерода.
Другими показаниями являются:

  • подтверждение уровня гемолиза у новорожденных;
  • изучение влияния хронической экспозиции CO на здоровье (например, на рабочих местах);
  • судебно-медицинское определение уровня COHb в трупной крови жертв экспозиции CO (например, при пожарах, суицидах и т. д.).

При судебно-медицинском исследовании трупной крови уровень FCOHb свыше 50% подтверждает отравление CO как основную причину смерти. Уровень 10-50% показывает, что вдыхание CO внесло свой вклад в механизм гибели и несомненно погибший был жив в момент начала пожара. Уровень FCOHb ниже 10% означает, что пострадавший либо был мертв к началу пожара, либо умер вскоре после возгорания. Судебно-медицинское исследование уровня COHb помогает в оценке фатальных авто- и авиакатастроф, сопровождавшихся возгоранием.

Методы исследования уровня COHb

Среди множества методов измерения уровня COHb в настоящее время превалируют два метода:


  1. газовая хроматография, основанная на химическом освобождении моноксида углерода из крови и прямом или непрямом измерении газа;
  2. ко-оксиметрия, в основе которой лежит метод абсорбционной спектрофотометрии с одновременным автоматизированным измерением поглощения по множеству длин волн (например, современные ко-оксиметры позволяют оценить абсорбцию по 128 длинам волн с шагом в 1,5 нм).

Первый метод как наиболее точный, но технически достаточно сложный и медленный, применяется наиболее широко в судебно-медицинских исследованиях трупной крови, либо в производственной практике при определении невысоких концентраций COHb. Метод ко-оксиметрии нашел применение в диагностике острых и хронических отравлений моноксидом углерода. В настоящее время ко-оксиметры входят в состав современных анализаторов газов крови и кислотно-основного баланса, то есть являются компонентов основных анализаторов в лабораторной экспресс-диагностике неотложных состояний.

Библиография

  1. Brian Widdop. Analysis of carbon monoxide Ann Clin Biochem 2002; 39: 378-391.
  2. O. V. Grishin. The use of CO-oximetry to check the effect of nitric oxides on humans in the diamond extractive industry in Russia. Blood Gas News 1997, vol.6, N1, 10-11.
  3. Amiran Lev. ECMO and elevated COHb level. Blood Gas News 1995, vol.4, N1, 6.
  4. Hyperbaric oxygen therapy, a committee report. Kensington: Undersea&Hyperbaric Medical Society, 1996: 9-10.
  5. Chris Higgins Causes and clinical significance of increased carboxygemoglobin. http://www.bloodgas.org/ 2005, October.
  6. Lawrence Martin. All You Really Need to Know to Interpret Arterial Blood Gases. 1999: 2-nd Edition, Lippincott Williams&Wilkins, 91-92.

Источник: www.in-met.ru

Образование и распад оксигемоглобина

В спокойном состоянии тканям человеческого тела достаточно около 0,2 л кислорода в одну минуту, но все меняется при физической нагрузке и чем она интенсивнее, тем больше необходимого для дыхания газа запрашивают ткани. Для удовлетворения их нужд потребность в кислороде может увеличиваться в 10 – 15 раз и составлять до 2, а то и 3 литров О2 в одну минуту. Однако газообразный кислород в данном количестве никак не сможет пробраться в ткани, поскольку он почти не растворим и в воде, и в плазме, то есть, этот элемент в ткани должен доставить какой-то белок, способный соединиться с ним и решить задачу транспорта.

Оксигемоглобин и карбоксигемоглобин


Кровь, как биологическая среда, реализует свои функциональные обязанности по обеспечению дыхания за счет присутствия в ней сложного содержащего железо протеина – гемоглобина, физиологическая роль которого, как транспортного средства кислорода, базируется на способности Hb связывать и отдавать О2 в корреляции с концентрацией (парциальным давлением – P) данного газа в крови. Образование оксигемоглобина осуществляется в паренхиме легких, куда кислород прибывает при дыхании из воздуха окружающей среды.

Процесс образования HHbO2 происходит в доли секунды (0,01 с), поскольку кровь в легких задерживается всего-то на полсекунды. Схематично и коротко образование оксигемоглобина можно представить в следующем виде:

  • Попадая в капиллярные сосуды легких, кровь обогащается кислородом, то есть, красный кровяной пигмент к своим 4 гемам присоединяет кислород – идет реакция окисления (оксигенации);
  • Кислород связывается с гемами хромопротеина при помощи координационных связей феррума (железо – Fe) и, не изменяя в данном случае валентности последнего (в геме валентность железа всегда – II), переводит его (Hb) в несколько иное состояние;
  • Гем железосодержащего протеина представляет собой активный центр, с его помощью хромопротеин в результате вышеуказанной реакции переходит в непрочный комплекс – оксигенированный гемоглобин (HHbO2), который, находясь в красных кровяных тельцах – эритроцитах, с током крови доставляется к клеткам тканей, чтобы через распад оксигемоглобина и выделения в процессе диссоциации кислорода, обеспечить их дыхание.

Таким образом, результатом реакции оксигенации становится образование оксигемоглобина, подкисление биологической жидкости, снижение ее щелочного резерва, то есть, ее умения связывать углекислоту (СО2), которое, разумеется, на тот момент снижается.

Железосодержащий протеин, насытившись в легочной паренхиме кислородом и приобретя оксигенированную форму, уносит О2 к тканям, в капиллярных сосудах которых его концентрация в крови резко понижена. Там происходит распад оксигемоглобина (диссоциация), кислород уходит на тканевое дыхание, гемоглобин забирает отработанный углекислый газ, превращаясь в другую физиологическую модель – карбогемоглобин (HHbCO2), и в этом качестве отправляется в главный орган дыхания, чтобы обменять CO2 на очередную порцию необходимого организму газа.

Оксигемоглобин и карбоксигемоглобин

Кривая образования и распада (диссоциации) оксигемоглобина

Агентом, гарантирующим быстрое насыщение железосодержащего белка кислородом (образование оксигемоглобина), выступает высокое напряжение (парциальное давление) О2 в легочных альвеолах (порядка 100 мм рт. ст.).

Корреляцию между степенью насыщения красного кровяного пигмента кислородом и парциальным давлением O2 (PO2) выражают в виде S-образной кривой (сигмоиды), которую называют кривой диссоциации оксигемоглобина.

Оксигемоглобин и карбоксигемоглобин

Свойственная красному кровяному пигменту S-образная (сигмоида) кривая диссоциации оксигемоглобина свидетельствует о том, что контактирование первой молекулы О2 с одним из гемов Hb открывает путь присоединению других  молекул элемента остальными тремя гемами. Кривой насыщения железосодержащего белка кислородом принадлежит немалая физиологическая значимость – S-образная конфигурация позволяет крови обогатиться данным газом при изменениях концентрации кислорода в биологической жидкости в довольно обширных интервалах. К примеру, не следует ожидать таких особенных расстройств дыхательной функции крови, как выраженное кислородное голодание (гипоксия), при подъеме на высоту до 3,5 км над уровнем моря или во время перелета на самолете. Хотя PO2 во вдыхаемом воздухе сильно понизится, концентрация кислорода в крови будет находиться на достаточно высоком уровне, чтобы обеспечить насыщение Hb данным газом. На это указывает и отлогий график формирования и распада оксигемоглобина на верхнем его отрезке (верхний отрезок кривой свидетельствует о течении процесса насыщения О2 красного пигмента крови в легочной паренхиме и находится в пределах 75 – 98%).

Кривая диссоциации оксигемоглобина может быть разделена на 4 отрезка, каждому их которых соответствует определенный период образования оксигемоглобина (зависимость скорости насыщения хромопротеина кислородом от парциального давления газа в крови):

  • 0 – 10 мм рт. ст. – гемоглобин не спешит насыщаться;
  • 10 – 40 мм рт. ст. – оксигенация резко ускоряется (стремительный подъем кривой), доходя до 75%;
  • 40 – 60 мм рт. ст. – оксигенация заметно замедляется, потихоньку добираясь до 90%;
  • Значения PO2 пересекают отметку 60 мм рт. ст. – насыщение идет слабо (линия лениво ползет вверх). Однако кривая медленно продолжает стремиться к отметке 100%, но, так и не достигнув ее, останавливается на уровне 96 – 98%. Кстати, и такие показатели насыщения Hb кислородом отмечаются только у молодых и здоровых людей (PO2 артериальной крови ≈ 95 мм рт. ст., легочных капилляров – ≈ 100 мм рт. ст.). С возрастом дыхательные способности крови снижаются.

Несовпадение парциального давления кислорода артериальной крови и смеси газов в альвеолах легких трактуется:

  1. Некоторыми разногласиями между интенсивностью тока крови и вентилированием разных отделов главного органа дыхания – легких;
  2. Притоком незначительного объема крови из бронхиальных вен в венозные сосуды легких (шунтирование), где, как известно, течет артериальная кровь;
  3. Прибытием доли крови из коронарных вен в левый желудочек сердца посредством тебезиевых вен (вены Тебезия-Вьессена), в которых проходимость возможна в обоих направлениях.

Между тем, причины, вследствие которых кривая образования и диссоциации оксигемоглобина приобрела сигмоидную форму, пока остаются не до конца выясненными.

Смещение кривой диссоциации оксигемоглобина

Но кривая диссоциации оксигемоглобина, о которой идет речь выше, справедлива, если в организме все нормально. В других ситуациях график может сдвигаться в ту или иную сторону.

В числовом выражении сродство гемоглобина к кислороду обозначается величиной P50 – напряжение полунасыщения красного пигмента крови кислородом или иными словами: парциальное напряжение О2, при котором 50% Hb пребывает в форме оксигемоглобина (оптимальные условия: рН – 7,4, tº – 37ºC). Нормальные значения этого показателя в артериальной крови приближаются к величине 34,67 гПа (26 мм рт. ст.). Смещение графика вправо указывает на то, что способность красного кровяного пигмента соединяться с кислородом снижается, что, естественно, увеличивает значения P50. И, наоборот – смещение кривой влево говорит об увеличении сродства этого хромопротеина к кислороду (↓P50.).

Оксигемоглобин и карбоксигемоглобин

Ходу сигмоиды помогают некоторые факторы, повышающие обогащение крови кислородом и таким образом участвующие в тканевом дыхании, поэтому названные вспомогательными:

  • Повышение водородного показателя (pH) крови (эффект Бора), поскольку способность гемоглобина присоединять кислород связана с водородным показателем (pH) данной биологической среды (гемоглобин представляет одну из четырех буферных систем и влияет на регуляцию кислотно-основного баланса, поддерживая pH на нужном уровне: 7,36 – 7,4). Следовательно, чем выше водородный показатель, тем активнее ведет себя гемоглобин в отношении кислорода и наоборот – снижение pH отнимает возможности хромопротеина присоединять кислород, например: ↓pH до 7,2 заставит график отклоняться вправо (≈ на 15%), ↑pH до 7,6 передвинет кривую диссоциации оксигемоглобина влево (≈ на 15%);
  • Отделение углекислого газа от карбогемоглобина в легких и выход СО2 с выдыхаемым воздухом (эффект Бора-Вериго) на фоне повышения водородного показателя создает условия для жадного насыщения гемоглобина кислородом (образование оксигемоглобина в легких);
  • Возрастание уровня значимого для обмена фосфата – 2,3-дифосфоглицерата (2,3-ДФГ), содержание которого в крови меняется в зависимости от условий протекания обменных процессов;
  • Снижение температуры в легких (в тканях она выше, нежели в легких) и чем ниже упадет tº, тем больше способностей присоединять кислород появляется у железосодержащего белка (при повышении температуры идет обратный эффект).

Уровень красного пигмента в крови, а также его способность присоединять кислород (кривая диссоциации оксигемоглобина) в некоторой степени подвержены возрастным колебаниям. Так, у младенцев, только-только известившим мир о своем появлении первым криком, количество гемоглобина заметно выше, что объясняется присутствием фетального гемоглобина, который, как известно, обладает повышенным сродством к кислороду. Красный пигмент крови стариков, напротив, постепенно снижает способности связывать кислород.

В заключение хочется заметить, что гемоглобин не только имеет сродство к кислороду и довольно легко соединяется с углекислым газом. Кроме физиологических соединений красного кровяного пигмента при определенных условиях возникают связи с другими газами, в частности – с угарным газом (CO) и оксидом азота (NO), причем соединение происходит также непринужденно

Высокое сродство Hb к угарному газу влечет образование карбоксигемоглобина (HHbCO), который препятствует соединению хромопротеина с кислородом, а в результате этого ткани остаются без O2. К чему это может привести – всем известно: при отравлении угарным газом высок риск смертельного исхода, если вовремя не помочь человеку.

При отравлении оксидом азота или парами нитробензола гемоглобин переходит в метгемоглобин (HHbOH) с изменением валентности железа (II → III). Метгемоглобин также не позволяет кислороду соединиться с гемоглобином, в итоге – наступает кислородное голодание тканей, создается угроза жизни организма.

Источник: sosudinfo.ru

Одной из важнейших функций крови является перенос поглощаемого в легких кислорода к органам и тканям и транспорт углекислого газа в обратном направлении.

Ключевую роль в этом процессе играют эритроциты, благодаря содержанию в них красного кровяного пигмента — гемоглобина.

Внутриэритроцитарная локализация Нb:

  • Обеспечивает уменьшение вязкости крови.

  • Уменьшает онкотическое давление, предотвращая потерю воды тканями.

  • Предупреждает потерю Нb при фильтрации крови в почках.

По химической природе — это хромопротеид, состоящий из белка глобина (96%) и простетическая группы гема (4%). Гема содержится 4 группы. Он представляет собой протопорфирин, в центре которого расположен ион Fe++.

Содержание Fe у человека 4 — 5 г, из них в:

Нb — до 73% ;

ферментах — 16% ;

плазме крови — 0,1%.

Ключевую роль в деятельности Нb играет ион Fe++.

Функции гемоглобина:

  • Транспорт О2 в виде оксигемоглобина (HHbO2). Одна молекула Нb присоединяет 4 молекулы кислорода. 1г Нb связывает 1,34мл О2

  • Транспорт СО2 . В тканях карбаминовой связью присоединяет СО2 и в виде карбогемоглобина (HHbСО2) переносит его к легким.

  • Участвует в поддержании кислотно-щелочного состояния (ге-моглобиновый буфер).

Соединения Нb:

1. Оксигемоглобин (НHbО2). Гемоглобин, присоединивший 4О2. В артериальной крови его содержится около 98%, а в венозной — около 60%. После отдачи О2 НHb получил название восстановленный, редуцированный гемоглобин или дезоксигемоглобин). Гемоглобин обладает высоким сродством к кислороду. Показателем сродства является Р50 — напряжение О2 в мм рт.ст., при котором 50% оксигемоглобина отдало О2 (в норме Р50 равно 27 мм рт. ст.). Снижение данного показателя свидетельствует об уменьшении сродства гемоглобина к кислороду, а увеличение его — о повышении сродства.

2. Карбогемоглобин (НHbСО2 ) — соединение гемоглобина с СО2.

3. Метгемоглобин (MetHb). Образуется под влиянием сильных оки-слителей (перманганат калия, анилин, нитриты, пирогаллол и др). При этом Fe++ превращается в Fe+++. Соединение прочное. Появляются дегенеративно измененные эритроциты, часть из них гемолизируется. При 66% насыщения крови MtHb наступает острая гипоксия.

4. Карбоксигемоглобин (НHbCО) — соединение гемоглобина с угарным газом (СО). Соединение в 150 — 200 раз прочнее НHbО2. При содержании во вдыхаемом воздухе 0,1% СО 80% Нb превращается в карбоксигемоглобин. При содержании 1% — гибель через несколько минут. В норме в крови содержится примерно 1% НHbCO. У курильщиков — до 3%, после глубокой затяжки — до 10%. При слабых отравлениях вдыхание чистого кислорода значительно ускоряет реакцию отщепления СО (в 20 раз и более).

Физиологическими соединениями Hb являются оксигемоглобин и карбогемоглобин.

5. Солянокислый гематин или гемин (образуется при взаимодействии с соляной кислотой). При высушивании образуются кристаллы специфической формы, свойственной только данному соединению. Используется в криминалистике для обнаружения пятен крови (проба Тейхмана) и в гемометрах Сали в качестве стандартного раствора (16,7г/% или 167 г/л).

Миоглобин — дыхательный пигмент или мышечный гемоглобин содержится в скелетных мышцах, миокарде. Обладает большим сродством к кислороду по сравнению с гемоглобином. Связывает до 14% О2 в организме. Его роль заключается в обеспечении кислородом мышцу в период ее сокращения, когда происходит пережатие капилляров и кровоток через ткань прекращается. В этот период главным источником кислорода является миоглобин, который затем в фазу расслабления мышц и восстановления кровотока опять “запасается” кислородом.

Синтез Нb происходит в эритробластах и нормобластах в костном мозге.

Превращения Hb в организме включают отщепление гема и образование свободного билирубина в клетках мононуклеарной фагоцитарной системы  транспорт свободного билирубина белками крови  превращение в печени свободного билирубина в связанную форму  выделение его в желчный капилляр в виде желчного пигмента и с желчью в кишечник  в виде стеркобилина, выделяется с калом. Часть билирубина выделяется с мочой (уробилин.).

При кровоизлияниях из Hb образуется белковый комплекс коллоидной формы окиси Fe — гемосидерин. Это железосодержащий пигмент ржаво-коричневого цвета.

Состояние сниженного количества Hb в единице объема крови (чаще всего при одновременном снижении количества эритроцитов) получило название анемия.

Анемия для мужчин при содержании Hb меньше 130г/л, для женщин — меньше 120г/л (при беременности — меньше 110г/л).

Причины возникновения анемий:

  • Кровопотери (постгеморрагические).

  • Нарушение кровообразования.

  • Повышенное кроворазрушения (гемолиз).

Разновидности Hb:

  • HbP — (примитивный) — на 7-12 неделе внутриутробного развития.

  • HbF — фетальный (плодный) — на 9-й неделе внутриутробного развития.

  • HbA — гемоглобин взрослых — появляется перед рождением.

НbF — обладает большим сродством с О2 и насыщается на 60% при таком рО2 , когда HbA матери только на 30%. Благодаря данному свойству HbF вполне обеспечивает кислородом ткани плода в условиях сравнительно низкого рО2 в артериальной крови плода. В течение 1 года жизни HbF почти полностью заменяется HbA.

Известен вид анемии — талассемия, при которой нарушен синтез HbA, но высокое содержание HbA и HbF. Эритроциты имеют вид мишени, сильно прокрашиваются по периферии и в центре. При серповидноклеточной анемии выделен гемоглобин S, отличающийся от гемоглобина А наличием в бета-цепи вместо остатка глютаминовой кислоты остатка валина.

В норме содержание Hb в крови мужчин колеблется в пределах 130 — 160г/л , в крови женщин — 115 — 145 г/л. Общее содержание Hb в крови 700 г.

Для оценки степени насыщенности эритроцитов гемоглобином вычисляют цветовой показатель (ЦП).

Оксигемоглобин и карбоксигемоглобин

В норме ЦП = 0,8 -1,0 (нормохромные).

ЦП < 0.8 — гипохромные (при анемии).

ЦП > 1.0 — гиперхромные.

Критерием насыщения эритроцитов гемоглобином является среднее его содержание в 1 эритроците (СГЭ), рассчитанное следующим образом:

Оксигемоглобин и карбоксигемоглобинОксигемоглобин и карбоксигемоглобинОксигемоглобин и карбоксигемоглобинОксигемоглобин и карбоксигемоглобин

Оксигемоглобин и карбоксигемоглобин

В норме СГЭ равно 27 — 31 пг.

Источник: studfile.net

Что это такое

Гемоглобин (Hb) состоит из гема, соединения, содержащего железо, и белкового вещества глобина. Связываясь с О2, поступающим в кровь из легких, Hb снабжает им ткани, а соединяясь с СО2, очищает их от двуокиси углерода и доставляет ее к альвеолам, через которые этот газ удаляется в атмосферу.

Существуют 3 фракции (вида, модификации) гемоглобина, обусловленные физиологическими функциями. Соединяясь с О2, Hb превращается в оксигемоглобин НbО2. Это ярко-красное вещество преобладает в артериальной крови. Кроме того, оно содержится и в миокарде, во всех скелетных мышцах. Мышечный гемоглобин связывает около 10-14% всего О2 в организме. Миоглобин обеспечивает мышцы кислородом, когда они сокращаются, поскольку в это время кровоток приостанавливается.

НbО2, отдав тканям кислород, преобразуется в восстановленный (редуцированный) гемоглобин HНb. Эта субстанция содержится в венозной крови, обуславливая ее темно-вишневую окраску.

Соединение гемоглобина с углекислым газом называется карбогемоглобином. НbСO2 выводит двуокись углерода из клеток и транспортирует в легкие до 20% этого газа. Карбогемоглобин тоже содержится в венозной крови. Hb непрерывно преобразуется из оксигемоглобина в карбогемоглобин и обратно.

Кроме того, Hb образует стойкое соединение с глюкозой, содержащейся в крови. При диабете уровень гликированного гемоглобина HbA1c существенно возрастает. По динамике его концентрации можно судить об эффективности лечения этого заболевания.

Еще одна модификация Hb — фетальный гемоглобин, который содержится в крови новорожденных и исчезает к 1 году. Его наличие у взрослых свидетельствует о нарушениях в организме.

Однако Hb может видоизменяться, образуя и патологические модификации. Соединение гемоглобина с угарным газом называется карбоксигемоглобином. HbСО утрачивает способность транспортировать О2, поэтому клетки испытывают острое кислородное голодание. Анализ на наличие карбоксигемоглобина используется в криминалистике, поскольку позволяет выявить скрытые следы крови. Так, например, отсутствие HbСО в костной ткани трупного материала доказывает, что погибший был уже мертв до начала пожара.

Гемоглобин в крови

От сильной гипоксии ткани также страдают, когда Hb окисляется и двухвалентное железо в геме замещается трехвалентным Fe. Образующийся при этом метгемоглобин HbMet настолько прочно связывается с О2, что практически не отдает его клеткам. Такое патологическое состояние наступает при отравлении нитратами, нитритами, анилинами, перекисью водорода, марганцовокислым калием, бертолетовой солью и другими веществами-окислителями.

Норма и отклонения

Количество гемоглобина в крови считается оптимальным в следующих пределах (г/л):

  • у мужчин: 130-160, после 55-60 лет — 120-140;
  • у женщин: 120-140, при беременности — 110-150;
  • у детей: до 6 лет — 110-140, до 15 лет — 115-150;
  • у жителей высокогорных районов: на 10-20 г/л выше.

Карбоксигемоглобин обнаруживается у некурящих в диапазоне от 0,5 до 1,5%, а у курильщиков — от 4 до 9% от всего объема Hb. О тяжелых отравлениях свидетельствуют показатели более 20%.

Норма в крови метгемоглобина — 0,04-1,52 %. При отравлениях концентрация HbMet достигает более 15%. Летальный исход наступает, если отклонения в показателях превышают 70%.

Проведение и расшифровка анализа

Результаты исследования Hb в медучреждениях нередко отличаются друг от друга, поскольку лаборатории оснащены приборами разных поколений. При проведении анализов крови нередко сказывается и субъективный фактор, зависящий от квалификации лаборанта. Кроме того, следует иметь в виду, что количество гемоглобина максимально вечером и минимально утром.

Сегодня наиболее распространен традиционный метод Сали. Содержание Hb определяют, добавляя к крови соляную кислоту. При этом гем, соединяясь с HCl, преобразуется в кристаллический гемин. Анализы биоматериалов на гемин применяются в судебной медицине для выявления следов крови.

Гемоглобин (Hb)

Наиболее точные результаты дает автоматизированный метод с использованием гемометра. Такое исследование проводится гораздо быстрее. Но и при этом методе возможны незначительные расхождения показателей. Однако при расшифровке анализа следует обращать внимание на большие отклонения от нормы Hb, которые свидетельствуют о патологических процессах.

Так, избыток гемоглобина может быть следствием:

  • легочной недостаточности;
  • обезвоживания организма;
  • химических отравлений;
  • заболеваний крови, печени, кишечника;
  • пороков сердца и др.

Дефицит Hb может быть признаком:

  • анемий различной этиологии;
  • нарушений менструального цикла;
  • эрозий и изъязвлений ЖКТ;
  • внутренних кровотечений;
  • инфекций;
  • воспалительных процессов с отечностью;
  • сахарного диабета;
  • заболеваний почек;
  • злокачественных опухолей и других патологий.

При существенных отклонениях гемоглобина от нормы следует незамедлительно пройти углубленное обследование организма. Вовремя назначенное лечение позволит избежать развития многих опасных заболеваний.

Источник: krov.expert

Строение[ | ]

Гемоглобин является сложным белком класса хромопротеинов, то есть в качестве простетической группы здесь выступает гем — порфириновое ядро, содержащее железо. Гемоглобин человека является тетрамером, то есть состоит из 4 протомеров. У взрослого человека они представлены полипептидными цепями α1, α2, β1 и β2. Субъединицы соединены друг с другом по принципу изологического тетраэдра. Основной вклад во взаимодействие субъединиц вносят гидрофобные взаимодействия. И α-, и β-цепи относятся к α-спиральному структурному классу, так как содержат исключительно α-спирали. Каждая цепь содержит восемь спиральных участков, обозначаемых буквами от A до H (от N-конца к C-концу).

Гем представляет собой комплекс протопорфирина IX, относящегося к классу порфириновых соединений, с атомом железа(II). Этот кофактор нековалентно связан с гидрофобной впадиной молекул гемоглобина и миоглобина.

Железо(II) характеризуется октаэдрической координацией, то есть связывается с шестью лигандами. Четыре из них представлены атомами азота порфиринового кольца, лежащими в одной плоскости. Две другие координационные позиции лежат на оси, перпендикулярной плоскости порфирина. Одна из них занята азотом остатка гистидина в 93-м положении полипептидной цепи (участок F). Связываемая гемоглобином молекула кислорода координируется к железу с обратной стороны и оказывается заключённой между атомом железа и азотом ещё одного остатка гистидина, располагающегося в 64-м положении цепи (участок E).

Всего в гемоглобине человека четыре участка связывания кислорода (по одному гему на каждую субъединицу), то есть одновременно может связываться четыре молекулы. Гемоглобин в лёгких при высоком парциальном давлении кислорода соединяется с ним, образуя оксигемоглобин. При этом кислород соединяется с гемом, присоединяясь к железу гема на 6-ю координационную связь. На эту же связь присоединяется и монооксид углерода, вступая с кислородом в «конкурентную борьбу» за связь с гемоглобином, образуя карбоксигемоглобин.

Связь гемоглобина с монооксидом углерода более прочная, чем с кислородом. Поэтому часть гемоглобина, образующая комплекс с монооксидом углерода, не участвует в транспорте кислорода. В норме у человека образуется 1,2 % карбоксигемоглобина. Повышение его уровня характерно для гемолитических процессов, в связи с этим уровень карбоксигемоглобина является показателем гемолиза.

Физиология[ | ]

В отличие от миоглобина гемоглобин имеет четвертичную структуру, которая придаёт ему способность регулировать присоединение и отщепление кислорода и характерную кооперативность: после присоединения первой молекулы кислорода связывание последующих облегчается. Структура может находиться в двух устойчивых состояниях (конформациях): оксигемоглобин (содержит 4 молекулы кислорода; напряжённая конформация) и дезоксигемоглобин (кислорода не содержит; расслабленная конформация).

Устойчивое состояние структуры дезоксигемоглобина усложняет присоединение к нему кислорода. Поэтому для начала реакции необходимо достаточное парциальное давление кислорода, что возможно в альвеолах лёгких. Изменения в одной из 4-х субъединиц влияет на оставшиеся, и после присоединения первой молекулы кислорода связывание последующих облегчается.

Отдав кислород тканям, гемоглобин присоединяет к себе ионы водорода и углекислый газ, перенося их в лёгкие[6].

Гемоглобин является одним из основных белков, которыми питаются малярийные плазмодии — возбудители малярии, и в эндемичных по малярии районах земного шара весьма распространены наследственные аномалии строения гемоглобина, затрудняющие малярийным плазмодиям питание этим белком и проникновение в эритроцит. В частности, к таким имеющим эволюционно-приспособительное значение мутациям относится аномалия гемоглобина, приводящая к серповидноклеточной анемии. Однако, к несчастью, эти аномалии (как и аномалии строения гемоглобина, не имеющие явно приспособительного значения) сопровождаются нарушением кислород-транспортирующей функции гемоглобина, снижением устойчивости эритроцитов к разрушению, анемией и другими негативными последствиями. Аномалии строения гемоглобина называются гемоглобинопатиями.

Гемоглобин высокотоксичен при попадании значительного его количества из эритроцитов в плазму крови (что происходит при массивном внутрисосудистом гемолизе, геморрагическом шоке, гемолитических анемиях, переливании несовместимой крови и других патологических состояниях). Токсичность гемоглобина, находящегося вне эритроцитов, в свободном состоянии в плазме крови, проявляется тканевой гипоксией — ухудшением кислородного снабжения тканей, перегрузкой организма продуктами разрушения гемоглобина — железом, билирубином, порфиринами с развитием желтухи или острой порфирии, закупоркой почечных канальцев крупными молекулами гемоглобина с развитием некроза почечных канальцев и острой почечной недостаточности.

Ввиду высокой токсичности свободного гемоглобина в организме существуют специальные системы для его связывания и обезвреживания. В частности, одним из компонентов системы обезвреживания гемоглобина является особый плазменный белок гаптоглобин, специфически связывающий свободный глобин и глобин в составе гемоглобина. Комплекс гаптоглобина и глобина (или гемоглобина) затем захватывается селезёнкой и макрофагами тканевой ретикуло-эндотелиальной системы и обезвреживается.

Другой частью гемоглобинообезвреживающей системы является белок гемопексин[en], специфически связывающий свободный гем и гем в составе гемоглобина. Комплекс гема (или гемоглобина) и гемопексина затем захватывается печенью, гем отщепляется и используется для синтеза билирубина и других жёлчных пигментов, или выпускается в рециркуляцию в комплексе с трансферринами для повторного использования костным мозгом в процессе эритропоэза.

Гемоглобин при заболеваниях крови[ | ]

Дефицит гемоглобина может быть вызван, во-первых, уменьшением количества молекул самого гемоглобина (см. анемия), во-вторых, из-за уменьшенной способности каждой молекулы связать кислород при том же самом парциальном давлении кислорода.

Гипоксемия — это уменьшение парциального давления кислорода в крови, её следует отличать от дефицита гемоглобина. Хотя и гипоксемия, и дефицит гемоглобина являются причинами гипоксии. Если дефицит кислорода в организме в общем называют гипоксией, то местные нарушения кислородоснабжения называют ишемией.

Прочие причины низкого гемоглобина разнообразны: кровопотеря, пищевой дефицит, болезни костного мозга, химиотерапия, отказ почек, атипичный гемоглобин.

Повышенное содержание гемоглобина в крови связано с увеличением количества или размеров эритроцитов, что наблюдается также при истинной полицитемии. Это повышение может быть вызвано: врождённой болезнью сердца, лёгочным фиброзом, слишком большим количеством эритропоэтина.

См. также[ | ]

  • Гемоглобин А
  • Гемоглобин С (мутантная форма)
  • Эмбриональный Гемоглобин (эмбриональный)
  • Гемоглобин S (мутантная форма)
  • Гемоглобин F (фетальный)
  • Кобоглобин
  • Нейроглобин
  • Анемия
  • Порфирия
  • Талассемия
  • Эффект Вериго — Бора

Источник: ru-wiki.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.