Аппарат для запуска сердца


Это, наверное, самый известный медицинский аппарат в мире. Благодаря фильмам многие уверены, что с помощью дефибриллятора можно вернуть к жизни после остановки сердца. Помните кадры, где больной бездыханно лежит на кушетке, на медицинских мониторах видна ровная линия, а врач орет: «Дефибриллятор!»? Затем по классике жанра доктор должен крикнуть несколько раз «Разряд!», прижимая прибор к груди пациента, и – о чудо! – у больного снова появился пульс, а ровная линия вернулась в «живую» кривизну. Вроде бы все правильно, никакой фантастики: сердце остановилось и его простимулировали электроразрядом. Герои фильма радуются – пациент будет жить, зрители успокаиваются после счастливой развязки кульминационной сцены и только те, что в реальной жизни работают с тем же дефибриллятором, подобные кадры смотрят с ухмылкой. Ну не может этот прибор воскрешать из мертвых и запускать остановившееся сердце! Тогда зачем он нужен и в каких случаях применяют дефибриллятор настоящие врачи? В принципе, ответ на этот вопрос заложен уже в самом названии прибора, но для всех, у кого нет медицинского образования, попробуем объяснить более доступно, что такое дефибриллятор.

Что нужно сердцу, чтобы сокращаться


В среднем человеческое сердце за минуту сокращается от 60 до 100 раз. Это происходит за счет работы специальных стимулирующих клеток в верхней стенке правого предсердия (так называемого синусно-предсердного узла). Благодаря им создается электрический дифференциал между внешней и внутренней стороной клеточной мембраны. В некий момент они посылают импульс через всю сердечную мышцу в ее нижнюю часть, заставляя мускул сократиться. Казалось бы, раз сердце работает от посылаемых импульсов, то что тогда не так с электростимуляцией извне? Чтобы понять это, идем дальше.

Электрический дифференциал в синусно-предсердном узле создается не просто так, а благодаря наличию электролитов калия, натрия и кальция. Электрозаряд от них проходит через стенки клеток по специальным каналам (у каждого свой). За миг до сокращения сердечной мышцы калий содержится внутри клеток, а кальций и натрий снаружи. Когда натрий проникает внутрь клетки, он начинает выдавливать калий наружу, тем самым создается электрический потенциал. Затем открываются каналы для кальция и он также прорывается внутрь. Так возникает заряд, необходимый для импульса. Затем импульс из синусно-предсердного узла идет в предсердие, а тогда уже в другом узле (атриовентрикулярном) зарождается пульс. Благодаря этой сложной схеме кровь из верхнего отдела сердца перекачивается в нижний, а импульс распространяется по другим частям сердечной мышцы. И только правильная работа всего этого механизма может создать сердцебиение.


Если в системе происходит сбой, возможны разные последствия. Но нас сейчас интересует состояние фибрилляции. Такое случается, если синусно-предсердный узел не выдает необходимый для сердца импульс. Тогда клетки сердечной мышцы некоторое время пытаются создать необходимый импульс сами, но в таком случае сокращение разных частей сердца идет вразнобой (начинается фибрилляция) и мышца теряет способность перекачивать кровь. Понятное дело, что так долго продолжаться не сможет и вскоре наступает остановка сердца. Но пока мышца еще пребывает в состоянии фибрилляции, есть надежда на дефибриллятор.

Когда применяют дефибриллятор

Дефибриллятор – это устройство, применяемое в медицине для устранения состояния фибрилляции, то есть неравномерного, учащенного, аритмичного и непродуктивного сокращения сердечной мышцы, предсердий либо желудочков.

Состояние фибрилляции на кардиограмме будет выглядеть как кривая линия с множеством мелких скачков вверх и вниз (а не как ровная прямая из фильмов). Такой график указывает на то, что разные части сердца сокращаются с разной силой и со своим собственным ритмом. И вот как раз электроразряд дает шанс восстановить правильный ритм сокращений. Воздействие электрическим током, более мощным, чем сокращения сердечной мышцы, позволяет выровнять этот процесс и заставить разные части сердца снова работать в унисон.


«Чудо» дефибриллятора в том, что электрический ток активизирует электролиты и они снова в своем «графике» начинают проходить по каналам. А вот та самая прямая линия на сердечных мониторах – это асистолия. Она говорит о том, что электролиты, необходимые для создания импульса, в клетках отсутствуют. Задача врачей – применить дефибрилляцию до того, как у больного началась асистолия. Позже все, что может сделать дефибриллятор, – сжечь сердце жаром от разряда.

Медицинские показания к дефибрилляции:

  • фибрилляция желудочков (хаотичное сокращение со скоростью 200-300 ударов в минуту);
  • трепетание желудочков (сокращение ритмичное, но со скоростью около 300 ударов в минуту);
  • трепетание предсердий (ритмичное, но учащенное сокращение до 240 ударов в минуту);
  • фибрилляция предсердий (хаотичное сокращение, 300 ударов в минуту).

При фибрилляции желудочков проводят так называемую экстренную дефибрилляцию (то, что, собственно, и показывают в фильмах).

При нарушениях ритма предсердий процедуру могут делать планово. В таких случаях говорят о кардиоверсии.

Когда процедуру не делают

Единственное противопоказание к использованию дефибриллятора – остановка сердца. В таких случаях процедура с использованием электрического тока будет просто бесполезной. Правильнее это время потратить на другие, более эффективные в такой ситуации методы реанимации.

При остановке сердца врачи обычно пытаются спасти пациента силами непрямого массажа сердца и искусственной вентиляцией легких, больному вводят эпинефрин, адреналин, атропин, гидрокарбонат натрия.

Противопоказания к плановой дефибрилляции:


  • наличие тромбов в предсердиях;
  • синусовая или политопная предсердная тахикардия;
  • электролитные нарушения;
  • противопоказания к анестезии;
  • отравление гликозидами.

Что такое дефибриллятор

Дефибриллятор – это медицинский прибор, предназначенный для воздействия на сердечную мышцу электротоком с целью восстановить и синхронизировать ее ритм. Для процедуры используют высокое напряжение (около 1000 вольт). Во время «шокотерапии» сердце больного принимает примерно 300 Дж электроэнергии (приблизительно такое же количество использует 100-ваттная лампа за 3 секунды).

Впервые метод дефибрилляции применили еще в 1899 году. Это было научное исследование на животных. Два физиолога из Женевского университета обнаружили, что воздействие на сердце небольшим электроразрядом может вызывать фибрилляцию желудочков, в то время как более мощный ток, наоборот, устраняет этот процесс.

Первым человеком, испытавшим на себе эффект процедуры с электрическим разрядом, стал 14-летний мальчик. В 1947 году профессор хирургических наук Клод Бек с помощью электрического тока сумел восстановить нормальный ритм сердца у ребенка. В Советском Союзе лечения электрическим током инициировали В. Эскин и А. Климов. В 1959 году Бернард Лаун и Барух Берковиц определили оптимальное время процедуры при разных случаях аритмий.


Первый портативный дефибриллятор был создан в 1965 году. Придумал устройство профессор из Северной Ирландии Фрэнк Пантридж.

На создание аппарата врача подтолкнул тот факт, что в 1960-х годах применять дефибриллятор можно было только в медучреждениях, но многие пациенты с больным сердцем умирали по дороге в больницу. Изобретение Пантриджа очень отличалось от современных портативных аппаратов. Прибор весил около 70 килограммов, а «утюжками» в нем служили огромные свинцовые плиты. Но даже такой аппарат уже можно было перевозить в автомобилях скорой помощи, и в этом был его огромный плюс.

Какие бывают

Дефибрилляторы нового поколения – это, как правило, многофункциональные приборы, принимающие на себя также функции кардиостимулятора и кардиоскопа. Но не все приборы для стимуляции сердца одинаково сложные.

Сегодня на рынке медтехники представлены приборы 4 типов:

  • профессиональные;
  • автоматические;
  • универсальные (комбинированные);
  • имплантируемые.

Профессиональный дефибриллятор – это многофункциональное устройство, обычно применяемое в реанимациях и отделениях скорой помощи. Это тот самый, известный из фильмов прибор из двух электродов-«утюжков», прикладываемых к груди больного.


Работать с таким устройством могут только специально обученные врачи, так как мощность разряда и продолжительность процедуры реаниматологу приходится определять самостоятельно в индивидуальном порядке.

Кроме того, во время дефибрилляции важно правильно разместить «утюжки». Для процедуры больного укладывают на ровную твердую поверхность, освобождают от одежды, а «утюжки» обрабатывают специальным гелем-проводником тока.

Электроды прижимают к грудной клетке с усилием в 8-10 кг. Во время воздействия разрядом к телу больного, а также поверхности, на которой он лежит, запрещено прикасаться.

Аппараты такого типа обычно снабжены монитором и встроенным принтером. Плюс профессионального дефибриллятора – возможность многоразового использования электродов, что в итоге сказывается на стоимости расходных материалов. Но есть у него и недостатки.

В частности, аппарат такого типа весьма габаритный и больше подходит для стационарного использования. Он довольно капризен в уходе, требует специального обслуживания. К тому же далеко не каждый врач сможет работать с таким прибором.

Автоматический дефибриллятор требует минимального участия реаниматолога. Такие устройства самостоятельно распознают нарушения ритма сердечных сокращений и дают сигнал, когда выполнять разряд.

В отличие от профессиональных приборов, автоматические снабжены не «утюжками», а одноразовыми электродами-липучками, которые фиксируют на груди пациента. Работать с такими устройствами могут люди, прошедшие базовую медицинскую подготовку.

Приборы популярны среди спасателей, волонтеров, спортивных тренеров. Такого типа дефибрилляторы могут быть в гостиницах, на бортах самолетов и в поездах.


В списке преимуществ автоматических моделей – компактность, легкость хранения и транспортировки, а также возможность использовать прибор без специальных навыков и знаний. Главными минусами аппарата называют высокую стоимость и отсутствие некоторых функций, присущих в профессиональных моделях.

Комбинированное устройство для дефибрилляции – это универсальная модель, в которой сочетаются функции профессионального и автоматического аппарата. Точнее сказать, это автоматическое устройство, дополненное дисплеем, принтером и элементами для ручного управления.

Имплантируемый дефибриллятор – это миниатюрный аппарат, предназначенный для вшивания. Часто используется вместе с кардиостимулятором. Кроме того, существуют мини-дефибрилляторы, которые фиксируют на теле больного. Такие устройства постоянно контролируют сердечный ритм и в случае необходимости воздействуют на мышцу электроразрядом.

По типу генерируемых импульсов имплантируемые устройства бывают монофазные (все реже применяются) и биполярные (более эффективные, чаще используются в современной медицинской практике).


Человеческое тело состоит из огромного количества разных мышц. Но есть среди них одна, от которой зависит абсолютно все. Это сердце. Оно редко останавливается мгновенно.

Прежде чем сердечная мышца окончательно прекратит перекачивать кровь, некоторое время она еще будет делать слабые попытки сокращаться.

Именно в это время еще есть шанс спасти человека. Конечно, если поблизости найдется дефибриллятор и квалифицированный врач.

Источник: FoodandHealth.ru

Кардиостимулятор. Что это такое, виды, как работает, сколько стоит, операция по установке, жизнь с ним

Кардиостимулятор – это аппарат, искусственный водитель сердечного ритма, который имплантируют при заболеваниях сердца, связанных с нарушением частоты его биения. Абсолютными показаниями для его установки являются такие болезни как брадикардия с клиническими симптомами, асистолии протяженностью более 3 сек., брадиаритмии с частотой сердцебиения ниже 60 ударов в мин.

Электрокардиостимулятор – что это такое?

Кардиостимулятор — это такое устройство, которое регулирует частоту сердечного ритма. При нарушении сердцебиения он нормализует сердечную активность путем генерации электрических импульсов.

Представляет собой аппарат, состоящий из:

  • Аккумулятора, помещенного в герметичный корпус c титановым покрытием. Он вшивается под кожу в верхней части грудной клетки. Его габариты 5-10 см, вес не более 50 г. Титановый сплав уменьшает риск отторжения аппарата до минимума.

  • Чипа, также встроенного в корпус, который отвечает за анализ и контроль сердечных сокращений.
  • Электродов (электро-катетеров), помещенных в камеры сердца и соединенных с аккумулятором. Они проводят электрические разряды к определенным зонам сердца. Число электродов варьируется от 1-го до 3-х в зависимости от вида аппарата.

Работа элемента питания рассчитана на срок от 5 до 15 лет. Плановая замена корпуса происходит в пределах от 3-х до 12 лет, в зависимости от периода на который рассчитана эксплуатация прибора. Операция производится под местной анестезией. Процедура длится 15-20 мин, пациента выписывают максимум через 2-е суток.

Электроды, помещенные в камеры сердца, обычно не требуют замены и подключаются к новому корпусу. Контрольные посещения врача, для определения состояния здоровья человека и качества работы прибора, выполняются 1 раз в 2-12 месяцев. Частота посещений зависит от типа модели кардиостимулятора, емкости аккумулятора и прошедшего после операции времени.

Как аппарат взаимодействует с сердцем?

Кардиостимулятор — это такое приспособление, которое действует по определенному принципу. Чтобы нормализовать работу миокарда, на определенные участки сердца с помощью электро-катетеров посылаются электрические импульсы. Ранние модели устройств работают в непрерывном режиме, импульсы тока посылаются постоянно.


Модернизированные типы устройств, при нормальном сердцебиении, находятся в режиме ожидания, из которого они выходят при нарушении ритмов биения сердца. Если в течение определенного программой времени миокард не начинает сокращаться в правильном ритме, прибор переходит в режим активности. Электроимпульсами он восстанавливает нормальную работу сердца (работа по требованию).

Аппарат для запуска сердца

На некоторых моделях электрокардиостимуляторов (ЭКС, пейсмейкеров) присутствует режим отслеживания.

Он позволяет собрать данные по работе сердца, отследить такие нарушения как:

  • фибрилляция желудочков;
  • трепетание предсердий;
  • мерцательную аритмию.

Собранная информация передается врачам для дальнейшего анализа. Заряд аккумуляторов на датчиках такого типа расходуется быстрее.

Чувствуется ли работа электрокардиостимулятора?

Непосредственно сразу после операции большая часть пациентов испытывает неприятные чувства от функционирования прибора при его активном режиме.

Они воспринимаются человеком как:

  • чувство гудения в груди;
  • вибрация;
  • подергивания и сокращения в груди;

Ощущения могут усиливаться во время сна, когда пациент лежит на боку. Работа прибора может чувствоваться во время активных физических усилий или эмоциональных переживаниях. В течение 2 месяцев происходит постепенное привыкание к работе датчика и чувство дискомфорта пропадает.

Разновидности кардиостимуляторов и специальные режимы работы

Кардиостимулятор — это такое устройство, которое может иметь несколько режимов работы. C 1974 г. принято кодирование маркировки аппаратов из 3-5 букв.

Аппарат для запуска сердца

Их обозначения:

V – желудочек (Ventricle).

D – предсердие с желудочком (Dual).

D – предсердие с желудочком.

О – отсутствие функции чувствительности.

Т – запуск импульсов генератора (Triggering).

D – блокирование и запуск (Dual).

O – отсутствие реакции.

А, V, D — наличие второго электрода.

Распространенные режимы стимуляции:

Кардиостимуляторы постоянного ношения разделяют по зонам воздействия.

1-камерный кардиостимулятор

Кардиостимулятор с 1 электро-катетером, который крепится в предсердии или желудочке. Ранние модели генерировали импульсы в асинхронном режиме, постоянно, по запрограммированной частоте сокращений. Современные 1-камерные стимуляторы работают по требованию.

Их недостаток состоит в том, что сокращения предсердия и желудочка могут периодически совпадать и в этом случае кровь из желудочка попадает в предсердие и в вены сердца.

Аппарат для запуска сердца

Имплантация аппаратов с 1 электродом показана лишь при постоянной форме мерцательной аритмии и синдроме слабости синусового узла (СССУ). В остальных случаях отдается предпочтение ЭКС с количеством электродов от 2-х и выше.

2-камерный кардиостимулятор

При установке этой модели стимулятора в сердце укрепляется 2 электрода. При подобной стимуляции ритмы желудочка и предсердия согласовываются, сохраняется физиологический темп сердцебиения, что гарантирует правильный кровоток в сердце, полное заполнение сосудов кровью и комфорт пациента.

Распространенное крепление электродов:

  • в предсердии и в желудочке (предсердно-желудочковая стимуляция);
  • в ушке правого предсердия и в венечном (коронарном) синусе сердца (биатриальная стимуляция);

В 2-камерном кардиостимуляторе может присутствовать функция частотной адаптации. В маркировке она обозначается буквой R. Функция позволяет изменить частоту ритмовождения, запрограммировать продолжительность атриовентрикулярной задержки.

Кардиостимуляторы с частотной адаптацией позволят заняться такими видами спорта как плавание, бег. Однако дополнительные опции аппарата приводят к более короткому сроку эксплуатации аккумулятора. Однако дополнительные опции аппарата приводят к более короткому сроку эксплуатации аккумулятора.

Аппарат для запуска сердца

2-камерный кардиостимулятор имплантируют при:

  • патологии с урежением и учащением сердечных сокращений;
  • брадикардии с пульсом ниже 40 уд./мин;
  • тяжелые нарушения сократительной функции миокарда при физической активности;
  • синдром каротидного синуса;
  • атриовентрикулярная (АВ) блокада от 2 и выше степени;

3-камерный кардиостимулятор

Аппараты с 3 электродами, стимулируют 3 сердечных отдела (предсердие и два желудочка). Стимуляция происходит в определенной последовательности, обеспечивая естественное движение крови по камерам сердца. Конфигурация прибора позволяет эксплуатировать его в режиме 1 или 2-камерного кардиостимулятора.

Часто ЭКС оснащен сенсорным датчиком и имеет функцию частотной адаптации. Датчики снимают показания о частоте дыхания, процессах нервной активности, температуру пациента. На основании этих данных выбирается оптимальный режим кардиостимулятора.

Датчик вживляют при:

  • Нарушении сердечной деятельности (ресинхронизации).
  • Диссинхронии сердечных камер на фоне брадиаритмии или брадикардии тяжелой формы.
  • Ригидном синусовом ритме, спровоцированным истощением резервов органа.

Временный кардиостимулятор

Для предупреждения летальных исходов при нарушении ритма сердечной деятельности в медицинской практике применяется временный кардиостимулятор.

Аппарат для запуска сердца

Его устанавливают при:

  • Инфаркте миокарда.
  • Аритмии.
  • При инфаркте правого желудочка и некоординированном сокращении предсердий и желудочков.
  • Абсолютной блокаде.
  • При трепетаниях предсердий I типа.
  • Наджелудочковой тахикардии с участием АВ-узла и устойчивых мономорфных желудочковых тахикардий.
  • Замедленная частота сердечных сокращений в комплексе с обморочным состоянием.
  • Желудочковых тахикардий на фоне брадикардии и прочих опасных для жизни патологий.

Аппарат устанавливается врачом – реаниматологом. Способы установки прибора:

Аппарат для запуска сердца

  • Главная страницаАппарат для запуска сердца
  • Медицина и электроника
  • Спасительные разряды

Спасительные разряды

Это казалось ясным еще со времени Ломоносова, Рихтера и Франклина — разряд электрического тока смертелен. Но дерзкая, пытливая мысль исследователей не унималась. Не раз ведь бывало, что одно и то же средство в одних случаях, в определенных дозах и условиях убивало, а в других — излечивало. Так почему бы таким средством не быть и электрическому току? И вот племянник и ученик Гальвани Альдини решил проделать новый эксперимент. Он уговорил предоставить ему для опыта труп обезглавленного преступника, который за два часа до того был казнен. Альдини решил током оживить сердце, но попытки оказались безуспешными. Подобный эксперимент повторил другой итальянский ученый — Вассали, который воздействовал электрическим зарядом на сердце также только что обезглавленного преступника. Под влиянием электрического тока сердце стало ритмически сокращаться.

Сорок лет спустя хирург Бостон, вспомнив эксперименты Альдини и Вассали, во время операции спас жизнь больному с помощью электрического заряда в сердце. Больной умирал, не выдержав воздействия наркоза хлороформом. В 1902 г. русский хирург А. А. Кулябко оживил сердце трехмесячного ребенка, погибшего от пневмонии. Эти примеры не единственны.

Вопросы оживления организма, лечения внезапной «необоснованной» смерти являются предметом молодой (зародившейся в начале нашего столетия) науки реаниматологии. Речь идет о тех случаях, когда жизненно важные системы организма еще могли бы выполнять свои функции, если бы им своевременно была оказана необходимая помощь — «подтолкнули» бы остановившееся сердце, как подталкивают маятник остановившихся часов.

На помощь приходит воздействие электрическим током на сердце при его остановке или возникновении фибрилляции. Состояние фибрилляции заключается в прекращении ритмических сокращений сердца. Вместо них возникают беспорядочные, хаотические подергивания отдельных групп мышечных волокон. Кровообращение при этом мгновенно прекращается. В современных сложных операциях на сердце фибрилляция желудочков — явление очень часто встречающееся.

Метод импульсной дефибрилляции — из числа парадоксов, широко известных в медицине, когда воздействие на живой организм одинаковым средством в одном случае убивает, в другом — врачует. Давно известно, например, что укус среднеазиатской гюрзы для человека смертелен. В малых же, строго обоснованных дозах змеиный яд исцеляет от многих недугов, в том числе — и от укусов змей (за счет приобретения иммунитета от инъекций специальной сыворотки на основе змеиного яда). Также и с электричеством? Вспомним смерть Рихмана от удара молнии! Да что там молния. Известно, что и 220 В тока вполне достаточно, чтобы человеку нанести смертельную травму. Происходит это потому, что через сердце проходит ток силой 0,1—0,2 А, вызывая фибрилляцию. Смысл устранения фибрилляции электрическим током заключается в следующем. На хаотически сокращающиеся волокна сердечной мышцы воздействуют мощным кратковременным электроимпульсом определенной величины и длительности, заставляя волокна сокращаться одновременно и так же синхронно расслабляться. После этого потерявший ранее управление синусовый узел вновь обретает способность подчинять вышедшие из «повиновения» волокна, восстанавливая их ритм.

Импульсное электрическое воздействие на остановившееся сердце производится через два металлических диска, накладываемых на грудную клетку со стороны сердца и под лопатку. Через эти два электрода пропускается мощный электрический разряд длительностью 0,01 с при максимальном значении тока 40 А; мгновенная мощность может достигать величины порядка 60 кВт. Формирование такого импульсного разряда осуществляется с помощью простого индуктивно-емкостного контура, при этом емкость заряжается до 7 кВ. Работа с таким напряжением в условиях скорой помощи требует большой квалификации медицинского персонала.

Наш организм — удивительное творение природы. При дефибрилляции для «запуска» остановившегося сердца на нем рассеивается энергия до 200 джоулей. Такую энергию производит при ударе камень массой один килограмм, упавший с высоты 20 метров. Столь сильное действие, кроме терапевтического эффекта (дефибрилляция сердца), может иногда сопровождаться повреждающим действием. Поэтому вопросы снижения величины воздействия путем выбора оптимальной формы дефибриллирующего импульса, обеспечивающего максимальную терапевтическую эффективность при минимальной вероятности травмы, являются актуальными для исследователей и практиков.

Дефибрилляторы, выпускаемые в нашей стране, имеют так называемую биполярную форму импульса, что позволяет в два-три раза снизить энергию, воздействующую на пациента, по сравнению с аппаратами, использующими другие формы дефибриллирующих импульсов.

До сих пор речь шла о вентрикулярной фибрилляции (мерцании желудочков), приводящей к остановке сердца и клинической смерти. Этот метод лечения эффективен при резком и длительном нарастании частоты сердцебиений (тахикардии) и фибрилляции предсердий.

При фибрилляции предсердий транспортировка крови не нарушается и не создается угроза жизни больного, но во избежание осложнений необходимо вывести сердце из этого состояния. Воздействуя в этом случае мощным импульсом на работающий орган, необходимо исключить возможность его попадания в ранимую фазу сердечной деятельности (фронт зубца Т). Для этих целей используются так называемые кардиосинхронизируемые дефибрилляторы, импульс разряда которых синхронизируется R -зубцом.

Лечение тахикардии и мерцания предсердий методом дефибрилляции возможно только при нахождении пациента в состоянии анестезии. Ведь в сознательном состоянии пациент не выдерживает развиваемого дефибриллятором мощного воздействия из-за болевых ощущений.

Применение электроимпульсной терапии сердечных аритмий у больных, состояние которых может оцениваться как терминальное, становится практически невозможным ввиду осложнений, вызываемых фармакологическим наркозом. Это привело к поискам более совершенного и безопасного метода общего обезболивания при дефибрилляции. В качестве такого метода был использован электронаркоз, который в настоящее время делает первые шаги в области хирургии, экспериментальной и клинической реаниматологии. Наркоз интерференционным электрическим током стимулирует миндалевидный комплекс, оказывающий модулирующее влияние на систему гипоталамус — гипофиз — кора надпочечников в условиях тяжелой гипоксии.

Но в отличие от хирургии, где требуется длительное отключение сознания больного на время операции, при дефибрилляции, наоборот, нужен эффективный наркоз, кратковременно отключающий сознание больного. Такой аппарат впервые был создан в СССР и начал успешно использоваться в клинической практике не только у нас, но и за рубежом. Аппарат обеспечивает кратковременный электронаркоз путем воздействия интерференционными токами через две пары электродов, размещаемых на сосцевидных отростках и в положении «лоб—затылок». При этом обеспечивается кратковременная длительность электронаркоза порядка долей секунды и осуществляется автоматический синхронный запуск дефибриллятора во время бессознательного состояния больного. После разряда дефибриллятора воздействие интерференционными токами автоматически прекращается. С целью обеспечения безопасности предусмотрена автоматическая блокировка дефибриллятора в тех случаях, когда интерференционные токи не обеспечивают достаточного уровня обезболивания.

Результаты клинического использования нового прибора показали, что после дефибриллирующего воздействия двигательная реакция пациента не отличается от обычной, характерной для дефибрилляции с фармакологическим наркозом. Сознание больного восстанавливается сразу же после дефибрилляции. Более того, по мере необходимости дефибрилляция, синхронная с электронаркозом, может повторяться неоднократно (до 3— 5 раз).

Случается, что больная сердечная мышца расслабляется, дряблеет настолько, что доставка крови к органам и тканям или замедляется, или прекращается вовсе. Ритмы нормально работающего, здорового сердца рождаются в предсердиях, затем по так называемому «пучку Гиса» проводятся в желудочки, заставляя их сокращаться и проталкивать кровь. Но вот ритм сердечной активности нарушен. Кровь «перекачивается» неравномерно, с задержками, человек теряет сознание, наступает смертельная угроза. Для восстановления нормального функционирования сердца требуется подача непрерывной последовательности импульсов, чтобы снова стимулировать сокращение сердечной мышцы. С такой задачей призваны справляться электрокардиостимуляторы — аппараты, способные продолжительное время управлять работой сердца.

В 1928—1932 гг. были установлены основные принципы стимуляции сердца, однако экспериментальные исследования и внедрение в медицинскую практику начались в 50-х годах. Именно тогда были созданы кардиостимуляторы. Эти на первых порах громоздкие приборы предназначались для поддержания сердечной деятельности в послеоперационный период или в критических постинфарктных ситуациях. Их можно использовать короткое время, но нарушения функции проводящей системы сердца нередко становятся необратимыми, и больной нуждается в искусственной стимуляции пожизненно. Словом, возникла необходимость в создании миниатюрного стимулятора, чтобы действовал он достаточно долго и его можно было имплантировать в организм пациента. И снова на помощь пришла медицинская электроника.

Здесь предстояло решить целый комплекс проблем: нужно было добиться, чтобы вживленный аппарат не был отторгнут организмом как чужеродный элемент, чтобы электродная система стимулятора была надежной и долговечной, найти оптимальную электронную структуру построения стимулятора, обеспечивающую бесподстроечный режим его работы и эффективное управление функционированием сердечной мышцы, создать долговечные и энергоемкие источники питания, разработать безопасные методы хирургического вживления стимуляторов в организм.

Словом, решалась проблема создания биотехнической системы, автоматически управляющей процессами жизнедеятельности сердца. И она потребовала объединения усилий специалистов различных научных направлений — физиологов, хирургов, клиницистов, математиков, физиков, инженеров и целого ряда других. И это определило успех решения проблем.

Энергетики, например, разработали атомные источники питания кардиостимуляторов, использующие распад ядер плутония Pu 238 или радиоактивного изотопа прометия ( Pm 147 ). Инженеры разработали специальные приборы наружного контроля за работой стимулятора, осуществляя который, через определенные периоды времени можно определить «резерв» батареи стимулятора. Хирурги разработали и провели операции по вживлению стимуляторов, их повторной замене. Перечисление всех составляющих, обеспечивающих успех проблемы просто невозможно. Ведь на это ушло четыре десятилетия активных творческих поисков многих ученых, конструкторов, медиков, смело шедших по непроторенным дорогам к поставленной цели.

Сейчас усовершенствованы не только конструкция кардиостимуляторов, система энергопитания, позволяющая им бесперебойно функционировать в течение многих лет, но появилась возможность программирования: по мере необходимости настраивать аппарат на ускоренный или, наоборот, замедленный ритм, изменять амплитуду стимулирующего импульса и другие рабочие параметры. Появились двухкамерные стимуляторы, соединенные не только с желудочком, но и с предсердием. В отличие от обычных стимуляторов, которые следят только за состоянием желудочков, двухкамерные сначала регистрируют электрический потенциал предсердий и в соответствии с уровнем их активности дозируют подачу импульсов в желудочки. Такая последовательность крайне важна для адаптации к смене физиологической нагрузки.

В нашей стране создание и внедрение электростимуляторов — важнейшая составная часть совершенствования деятельности кардиологической службы. «Учеными и инженерами многое сделано для создания и выпуска современной диагностической и лечебной аппаратуры для кардиологических больных, — отмечал Академик Е.И. Чазов. — Разработаны управляемая по радио система электрической стимуляции сердца, пульт контроля за пациентами с нарушением сердечного ритма, алгоритмы работы анализатора положения эндокардионального электрода для диагностики дислокации его и возможной пенетрации в миокард. Созданы новые модели аппаратов для электрокардиостимуляции при полной поперечной блокаде сердца и некоторых других нарушениях сердечного ритма с радиоизотопным источником энергий. Усовершенствованы искусственные клапаны сердца, созданы новые материалы для сосудистых протезов с тромборезисторными свойствами».

Много сделано «в борьбе за сердце» — «поставлены под ружье» новейшие достижения науки, призваны на помощь самые совершенные аппараты. Но еще много предстоит совершить врачам в этой благородной борьбе. И пусть их вдохновляют прекрасные слова французского медика Верниола: «Врачи будущего, во главе с реаниматорами, это — сильные духом люди, которыми руководит чувство их личной ответственности, а также глубокое чувство ценности жизни человека».

Как работает дефибриллятор?

Дефибриллятор — медицинское устройство, которое создано с целью применения в электроимпульсной терапии. Зачастую используется при различных нарушениях ритмах, которые сопровождаются слишком высокой частотой сердечных сокращений. Первые опыты с дефибрилляцией проводились еще в 1899 году на собаках. Их основная цель была — изучение механизма смерти от электрического тока, поскольку само понятие дефибрилляции еще не было до конца сформировано. Этим занялась в 1932 году команда Хукера. В результате их опытов была доказана возможность проведения электрошоковой реанимации.

Первый автономный дефибриллятор был создан в Советском Союзе в середине 50-х годов Климовым и Эскиным, но по различным причинам оказалось невозможным проводить широкую популяризацию экспериментов.

Первый прототип кардиовертера-дефибриллятора весил около 27 кг. Он был создан Барухом Берковицем, тогда как основную разработку прибора проводит Золла Бернард Лаун. С помощью подобного устройства создавался импульс энергией 100 Дж, который мог использоваться на открытом сердце. Чтобы разряд можно было использовать через закрытую грудную клетку, подавался импульс в среднем 300 Дж.

Видео Как работает дефибриллятор? — Теории за 1 минуту | BrainTime

Принцип действия дефибриллятора

В основу работы устройства заложена генерация кратковременных электрочастотных импульсов, передача которых передается телу пациента через специально предусмотренные приспособления:

  • утюжки — профессиональные приборы, которые настраиваются вручную;
  • электроды — наклеиваются и действуют в автоматическом режиме.

Во время использования дефибриллятора должны быть выполнены четкие меры безопасности:

  1. Перед постановкой электродов их поверхности смазываются специальным токопроводящим гелем, в некоторых случаях используется специальный увлажняющий раствор.
  2. Электроды или утюжки прижимаются к телу максимально плотно, чтобы не терялось напряжение и не возникли ожоги.
  3. Категорически нельзя допускать соприкосновение электродов между собой или посредством электропроводящего геля.
  4. Возле больного находятся только люди, проводящие дефибрилляцию, остальные отдаляются на достаточное расстояние.
  5. Во время работы с дефибриллятором нельзя прикасаться к металлическим предметам.
  6. Различные приборы, регистрирующие ЭКГ или контролирующие искусственную вентиляцию легких, должны быть отсоединены.

Первый разряд пропускают около 0,01 сек, его напряжение составляет не более 7 кВ. Для его подачи используется конденсатор, работающий в автоматическом режиме либо от сети 220 Вт. Этот одиночный разряд возбуждает волокна сердечной мышцы, в результате чего распространяемая волна фибрилляции блокируется. Последующая синхронизация возбуждения, касающаяся отдельных областей миокарда, способствует восстановлению нормальной деятельности сердца.

Важно помнить, что во время пропускания разряда 96% напряжения приходится на ткани грудной клетки, и лишь 4% доходит до сердца.

Начало дефибрилляции с небольших разрядов конденсатора позволяет предотвратить развитие постреанимационных кардиомиопатий. Также в зависимости от модели отличается измерение энергии заряда. Если в импортных моделях измеряющей единицей является ватт-секунда и джоуль, то в отечественных — киловольт.

Особенности работы современных дефибрилляторов

Сегодня дефибрилляторы выпускаются зачастую с автоматическим режимом работы. Это позволяет ими пользоваться даже непрофессиональным медработникам. Такие модели сегодня широко используются в самолетах, поездах, их укладывают в аптечки, которые затем применяют в медпунктах различного расположения.

Стоит отметить, что в случае оказания помощи автоматическим дефибриллятором на протяжении первых минут от начала приступа, эффективность его использования достигает 98%.

Основные отличия современных дефибрилляторов:

  • Уровень разряда зачастую подбирается в автоматическом режиме, для этого прибор сопоставляет различные показатели (пол и возраст больного, его рост и вес, сопротивление тканей).
  • Прибором подбирается оптимальная поляризация и размещение электродом.
  • При необходимости пользователь оповещается устройством с помощью подсказок и сигналов.
  • При нормализации сердечной деятельности автоматически срабатывает кнопка, блокирующая подачу разряда.

Ключевые ошибки при дефибрилляции

  • Перед началом дефибрилляции не проводились реанимационные мероприятия или же после массажа сердца был выполнен длительный перерыв.
  • Электроды к грудной клетке прижимались с недостаточной силой.
  • У больного определялась мелковолновая фибрилляция и для усиления энергоресурсов сердечной мышцы не были приняты необходимые меры.
  • Напряжение разряда было выбрано неправильно (слишком высокое или, наоборот, слишком низкое).

Таким образом, делать дефибрилляцию могут только осведомленные в этом деле люди. С помощью подобного метода устранения фибрилляции удается спасать больных в разных условиях и при различных обстоятельствах.

Похожие статьи

На ранних стадиях развития варикоза чаще всего применяют консервативное лечение, к которому относится прием таблетированных препаратов и нанесение мазей на пораженные участки тела. В тяжелых случаях прибегают к удалению вен. С этой целью сегодня широко используется лечение варикоза лазером. При успешном его выполнении общее самочувствие больного заметно улучшается.

В критических ситуациях, когда у человека не определяется сердечный ритм или дыхание, в первую очередь выполняется сердечно-легочная реанимация. С помощью стандартных приемов можно помочь больному избежать смерти или хотя бы поддержать его жизнедеятельность до прибытия медработников.

В диагностике сердечно-сосудистых заболеваний важную роль играют своевременная диагностика. Нередко достаточно провести стандартное ЭКГ, чтобы поставить правильный диагноз. В других случаях требуется разноплановое исследование сердца, что позволяет установить точную причину болезни и провести эффективное лечение.

Отзывы, противопоказания и установка кардиостимулятора сердца

Сердце – мышечный орган, который способен самостоятельно вырабатывать электрические импульсы и сокращаться под их воздействием. У здорового человека синоатриальный узел производит эти стимулы с частотой 59-89 в минуту. Постоянная ритмичная деятельность насоса гарантирует перекачивание крови по всему организму.

Существуют заболевания, вследствие которых сердце работает с перебоями, в результате чего появляются признаки сердечной недостаточности или внезапная смерть. Имплантация кардиостимулятора дает возможность наладить автоматическую сократимость сердца и значительно повысить качество жизни пациента с высоким риском.

Что такое кардиостимулятор и как он работает?

Аппарат для запуска сердцаЭлектрокардиостимулятор (ЭКС) – медицинский аппарат, разработанный для поощрения или навязывания нормального ритма пациентам, у которых сердцебиение недостаточно частое или существует блокада передачи сигнала между разными участками органа. Представляет собой малогабаритный аппарат размером 3 на 5 сантиметров, весом 30-45 граммов, срок службы без замены батарей варьируется от 5 до 15 лет.

Принцип работы устройства основан на нанесении участку сердца внешних электрических стимулов, которые вырабатывает ЭКС, для обеспечения нормального сокращения миокарда. Усовершенствованные (частотно-адаптивные) ЭКС дополнительно имеют сенсорные датчики, способные откликаться на изменение частоты дыхания, активности нервной системы и температуры тела. Также существуют кардиостимуляторы, укомплектованные дефибриллятором. Современные модели имеют функцию неинвазивной замены параметров работы при помощи специальных устройств.

Чип, вмонтированный в аппарат, анализирует генерируемые сердцем сигналы, передавая их непосредственно к миокарду и обеспечивая им синхронизацию. Проводники, вживленные под эндокард, – передатчики информации от внешней части прибора в сердце и данных о работе самого миокарда обратно. Окончание каждого электрода оборудовано металлическим наконечником, который собирает показатели сердечной активности и генерирует импульсы исключительно в случае необходимости. При развитии критического снижения сердечного ритма или асистолии ЭКС начинает работать в постоянном режиме, вырабатывая стимулы с частотой, заданной при его имплантации. Если произошло внезапное возобновление автоматизма сердца, аппарат переходит в состояние ожидания.

В экстренных случаях применяют временную электрокардиостимуляцию. При наружной (трансторакальной) ЭКС электроды накладывают на грудную клетку. Поскольку процедура очень болезненна, то требует глубокой седации и обезболивания. Чреспищеводная манипуляция подразумевает установку временного аппарата в пищеводе, в связи с чем имеет ограниченное применение.

Классификация искусственных водителей ритма

В зависимости от зоны воздействия различают несколько разновидностей кардиостимуляторов:

  1. Однокамерный ЭКС. Размещается и стимулирует сокращения только в одной из камер сердца (предсердие или желудочек). Использование этого прибора очень ограничено, поскольку он не удовлетворяет физиологическую работу мышцы. Применяют его при наличии постоянной формы мерцательной аритмии, устанавливают в правом желудочке. Недостатки: предсердия и далее работают в своем ритме и при совпадении их сокращений с желудочковыми возникает обратный ток крови, приносящий ее в сердце.
  2. Двухкамерный ЭКС. Электроды размещают в двух камерах сердца: генерация импульса поочередно вызывает сокращения предсердий и желудочков, обеспечивая физиологическую работу миокарда. При использовании такого водителя ритма индивидуально подбирают режим частоты, что улучшает адаптацию пациента к физическим нагрузкам.
  3. Трехкамерный ЭКС – одна из самых новых и дорогостоящих разработок. Проводники импульса размещают в правом предсердии и желудочках. Используется для ликвидации десинхронизации камер при тяжелой брадикардии, сердечной недостаточности третьей-четвертой степеней, ригидном синусовом ритме.

Международная кодировка устройств

Аппарат для запуска сердцаПервая буква кода обозначает стимулируемую сердечную камеру, вторая – полость, электрическую активность которой считывает кардиостимулятор. «Т» в третьем положении означает, что аппарат работает в триггерном режиме (искусственные сигналы синхронизированы с разрядами, которые генерирует сердце). Обозначение «D» (dual – TI) указывает на то, что ЭКС с двумя электродами в правых отделах сердца работает одновременно в двух режимах. Символ «О» характеризует «асинхронный» ритм функционирования кардиостимулятора (частота импульсов установлена автоматически при имплантации).

Кардиовертер-дефибриллятор

Имплантированный кардиовертер-дефибриллятор (ИКД) – мини-копия прибора, используемого во время реанимации при остановке сердечной деятельности. Поскольку устройство имеет прямой доступ к миокарду, для эффективного сокращения требуется значительно меньшая сила разряда.

ИКД предназначен для профилактики внезапной остановки сердечной деятельности у пациентов с пароксизмальными аритмиями (фибрилляцией и желудочковой тахикардией).

Система ИКД укомплектована электродами, фиксированными под эндокардом пациента и непосредственно аппаратом, оснащенным микросхемой и аккумулятором длительного заряда, который вживляют в подкожно-жировую клетчатку на груди.

  • постоянный контроль сердечной деятельности;
  • сбор параметров сократимости;
  • в случае возникновении жизнеугрожающих нарушений ритма – лечение.

Источник: lazerskin.ru

Имплантируемый кардиовертер-дефибриллятор (ИКД) — представляет собой устройство, которое автоматически распознает и проводит антиаритмическую терапию большинства тахиаритмий сердца, в том числе желудочковой тахикардии (ЖТ)  и фибрилляции желудочков (ФЖ).

Устройство кардиовертера-дефибриллятора ИКД

Имплантируемый дефибриллятор имеет небольшие габариты — не больше пейджера — и вживляется под кожу верхней части грудной клетки. Имплантируемый дефибриллятор состоит из металлической (титановой) коробочки, в которой находятся микросхема и батарея. ИКД стимулирует сердце когда сердце останавливается или когда сокращается неритмично или слишком медленно. ИКД также может определять электрическую активность сердца. Если кардиостимулятор определяет, что сердце сокращается самостоятельно, он не посылает электрический импульс, т.е. не стимулирует сердце.

Кроме обычных функций поддерживать сердечный ритм на определенной частоте, имплантируемый дефибриллятор следит за возникновением аномальных, неправильных ритмов. При возникновении тахиаритмий ИКД путем специальных алгоритмов стимуляции выполнит безболевое восстановление синусового ритма, или дефибрилляцию.

Имплантируемый кардиовертер-дефибриллятор (ИКД) состоит из:

• Батарея (аккумулятор), которая  снабжает электрической энергией имплантируемый дефибриллятор для того, чтобы он мог стимулировать сердце (посылать электрический импульс по электроду к сердцу). Маленькая герметичная литиевая батарея служит много лет. Когда батарея истощается, имплантируемый дефибриллятор полностью заменяется.

• Микросхема -подобна маленькому компьютеру внутри кардиостимулятора. Микросхема трансформирует энергию батареи в слабые электрические импульсы, которые пациент не чувствует. Микросхема контролирует продолжительность и мощность электрической энергии, затрачиваемой для импульса.

• Коннекторный блок — прозрачный блок из пластика находится в верхней части имплантируемого дефибриллятора. Коннекторный блок служит для соединения электродов и кардиостимулятора.

Электроды

Имплантируемый дефибриллятор через вены соединяется с сердцем посредством специальных электродов. Электроды крепятся в полости правого предсердия и в полости правого желудочка. В зависисмости от вида ИКД (однокамерный, двухкамерный, трехкамерный) каждый электрод имеет свои конструктивные особенности и предназначен для стимуляции одной из камер сердца.

Электрод представляет собой специальный спиральный проводник, обладающий достаточной гибкостью, чтобы выдерживать кручение и сгибание, вызываемые движениями тела и сокращениями сердца. Электрод передает сердцу электрический импульс, вырабатываемый импульсным генератором, и несет обратно информацию об активности сердца.

Контакт электрода с сердцем осуществляется через металлическую головку на конце провода. С помощью нее стимулятор "следит" за электрической активностью сердца и посылает электрические импульсы (стимулирует) только тогда, когда они требуются сердцу.

Для лучшей фиксации электрода к миокарду были разработаны специальные электроды активной фиксации. На конце электрода находится ввинчиваемая спираль, при помощи которой электрод фиксируется к той области, которую необходимо стимулировать. Спираль выдвигается в процессе имплантации электрода и, если возникает необходимость его замены, ввинчивается в обратном направлении и такой электрод легко удаляется.

В том случае, если сердечная деятельность полностью отсутствует или ритм очень редкий, стимулятор переходит в режим постоянной стимуляции и посылает импульсы к сердцу с заданной частотой. Если будет проявляться собственный ритм сердца, стимулятор перейдет в режим ожидания, т.е. будет функционировать в режиме по требованию (on demand).

Программатор

Программатор представляет собой специальный компьютер, который используется для контроля и изменения настроек кардиостимулятора. Программатор находится в больнице. Врач использует этот специальный компьютер для того, чтобы видеть, как кардиостимулятор работает и, если необходимо, изменить настройки кардиостимулятора.

Во время контрольного осмотра или когда Вы находитесь в больнице, врач может поместить головку программатора (она очень напоминает компьютерную «мышку») над имплантированным кардиостимулятором. Это позволяет:

• Получить информацию из кардиостимулятора. Информация, полученная из кардиостимулятора, показывает как кардиостимулятор и сердце работают. На основании этой информации врач может изменять настройки кардиостимулятора.

• Изменить настройки кардиостимулятора. При необходимости врач может поменять настройки имплантированного кардиостимулятора без каких либо хирургических операций.

Какие существуют типы ИКД?

Однокамерный ИКД

Однокамерный ИКД применяется в случаях фибрилляции предсердий или когда у пациента нет преходящих блокад проведения и сердечный ритм полностью соответствует потребностям организма.  Стимулятор имеет один желудочковый электрод, который размещают в полости правого желудочка. При возникновении ЖТ или ФЖ кардиостимулятор производит разряд дефибриллятора. Стимулятор имеет алгоритм сверхчастой и программированной стимуляции для предотвращения приступа ЖТ «безболевой стимуляцией». Кроме высокой эффективности алгоритма безболевой стимуляции в купировании ЖТ, данный режим практически не расходует заряд батареи ЭКС. Разряд дефибриллятора в этом случае не производится.Если у пациента брадикардия, то ИКД работает как обычный кардиостимулятор.

Двухкамерный ИКД

Двухкамерный ИКД содержит две камеры стимуляции, предназначенные для стимуляции правого предсердия и правого желудочка. Электроды размещаются в соответствующих зонах, тем самым прослеживая сердечный ритм в предсердиях и в желудочках. При АВ блокадах ИКД осуществляет кардиостимуляцию предсердного и желудочкового ритмов. Антитахикардитическая терапия осуществляется на всех уровнях, в том числе может купировать внезапное учащение предсердного ритма при трепетании предсердий, предсердной тахикардии, наджелудочковой тахикардии антитахикардитеческой стимуляцией (АТС). АТС широко применяется для осуществления безболевой терапии ЖТ, тем самым сохраняя заряд батареи ИКД.

Трехкамерный ИКД (КРТ/ИКД)

Кардиовертер-дефибриллятор с кардиоресинхронизирующей терапией. КРТ/ ИКД применяется для терапии сердечной недостаточности (СН), синхронизируя желудочки сердца в единый цикл сокращений сердца. КРТ/ИКД может осуществлять весь спектр антиаритмической терапии, в том числе осуществлять терапию разрядом дефибриллятора для восстановления сердечного ритма.

Как работает ИКД

Терапия тахиаритмий

Кардиостимулятор ИКД, постоянно «следит» за электрической активностью Вашего сердца. Он всегда может сказать какой у Вас ритм, в том числе выполнять функцию «Холтеровского монитора» записывая в память фрагменты сердечного ритма, помогая врачу узнать о ритме пациента больше, чем обычная электрокардиограмма. Если в сердце возникает тахиаритмия, то алгоритмы стимулятора проведут электрическую терапию в автоматическом режиме. Вид лечения, программа функций стимулятора зависит от параметров настройки, которые выбирает Ваш доктор. После имплантации ИКД доктор должен сообщить, какую терапию он установил.

Фибрилляция желудочков – событие, очень опасное для Вашей жизни. ИКД специально разработан, чтобы восстановить синусовый ритм шоковым разрядом. Это называется дефибрилляцией. Ваш ИКД обладает возможностью безболевого восстановления ритма (антитахикардитическая функция) и антибрадикардитической функцией лечения всех типов брадиаритмий.

Дефибрилляция

Если ИКД обнаруживает ФЖ, то он обеспечивает высокой энергией шокового разряда. Это называется дефибрилляцией. Во время дефибрилляции разряд подается непосредственно в сердце. Для восстановления синусового ритма требуется намного меньше энергии (1/10-ти) по сравнению с внешней дефибрилляцией, которую выполняют врачи в экстренных ситуациях.

Общее время от начала приступа ФЖ к разряду дефибриллятора составляет около 10 секунд. За это время происходит накопление энергии в ИКД, что необходимо для воспроизведения высокого разряда при дефибрилляции.

Кардиоверсия — восстановление ритма сердца разрядом дефибриллятора (разрядом шоковой энергии). Существует два вида электрической кардиоверсии, внешняя, путем наложения на грудную клетку специальных пластин, и внутренняя – через электрод в правом желудочке разрядом электрического тока.

Антитахикардитическая стимуляция (АТС)

Антитахикардитическая стимуляция получила широкое применение для подавления большинства тахиаритмий сердца, в том числе ЖТ. Смысл АТС заключается в определении нарушений сердечного ритма и подавлении приступа путем сверхчастой или программированной стимуляцией.

АТС широко применяется для осуществления безболевой терапии ЖТ, тем самым сохраняя заряд батареи. При неэффективности АТС или при ФЖ производит разряд дефибриллятора.

При возникновении желудочковой тахикардии ИКД выполнит проверку неправильного ритма и выполнит необходимую терапию для восстановления синусового ритма. Вид программы антитахикардитической функции определяет Ваш врач при программировании ИКД. Если установлена антитахикардитическая функция (безболевое купирование тахиаритмий), то во время приступа ЖТ стимулятор восстановит правильный ритм сердца частой, с определенной последовательностью электростимуляцией. Такая стимуляция называется антитахикардитическая терапия, при ее возникновении пациент ее не ощущает.

Антибрадикардитическая стимуляция

Если ритм сердца становится очень медленным или возникают пропуски (паузы), ИКД может работать, как работает самый простой кардиостимулятор, применяемый при брадикардиях. Камеры предсердной и желудочковой стимуляции синхронизируют верхний и нижний ритмы, тем самым создавая оптимальный вид стимуляции.

Система тревоги

ИКД может иметь встроенную функцию оповещения пациента о необходимости обращения к врачу для оценки состояния. ИКД может быть запрограммирован таким образом, что при состояниях, требующих неотложного обращения к врачу, подаются 30-секундные звуковые сигналы. Два различных тона сигнала соответствуют различным причинам. Сигналы повторяются каждые 24 часа до тех пор, пока врач не считает информацию с помощью программатора. При звуковом сигнале ИКД нужно  немедленно обратиться к врачу!

Процедура имплантации ИКД

Имплантация электрокардиостимулятора — хирургическая операция, при которой выполняется небольшой разрез в правой (если Вы левша) или левой (если Вы правша) подключичной области. В зависимости от того, какой именно кардиостимулятор будет Вам имплантирован, один, два или три электрода будут введены через вену и установлены внутри сердца под контролем рентгенографии.

Как и после большинства хирургических вмешательств, после имплантации кардиостимулятора будет назначен короткий курс профилактической терапии антибиотиками и противовоспалительными препаратами.

Перед операцией лечащий врач ограничит или отменит прием некоторых лекарственных препаратов, выбор анестезии будет определен врачом анестезиологом. Операция имплантации (вшивания) стимулятора представляется простой, поскольку мало травмирует ткани, проводится в операционной, оснащенной рентгеновским аппаратом. Под ключицей пунктируется (прокалывается) вена, в нее вводится специальная пластмассовая трубка (интродьюсер), через которую в верхнюю полую вену вводятся эндокардиальные электроды. Под контролем рентгена электроды направляется в правое предсердие и правый желудочек, где и фиксируются.

Самой сложной процедурой является установка и закрепление кончика электрода в предсердии и желудочке так, чтобы получить хороший контакт. Обычно хирург делает несколько проб, все время измеряя порог возбудимости, т.е. наименьшую величину импульса (в вольтах), на которые сердце отвечает сокращением, видимым по ЭКГ. Задача состоит в том, чтобы найти наиболее чувствительное место и в то же время получить хорошую графику ЭКГ, регистрируемую с устанавливаемых электродов. После фиксации электродов они подключаются к стимулятору, который помещается в сформированное ложе под фасцией жировой клетчатки или под мышцами грудной клетки.

Разумеется, операция требует строгой стерильности и тщательной остановки кровотечения, чтобы избежать скопления крови под кожей и нагноения. Сам стимулятор и электроды поставляются в стерильном виде. В общей сложности все манипуляции занимают от одного часа до двух.

В нашей клиники с успехом  выполняются операции имплантации ИКД и последующее его программирование в оптимальном режиме.

Источник: volynka.ru

По разным данным, из-за кардиологических заболеваний погибают от 40 до 60% людей, особенно в зрелом и пожилом возрасте. Для диагностики и лечения болезней и структурных аномалий сердца в кардиологии применяют несколько видов специального оборудования.

К диагностическим приборам относятся:

  • фонендоскоп, применяемый для прослушивания (аускультации) ритма сердца и выявления шумов на этапе предварительного обследования;
  • тонометр — используется для простого измерения артериального давления. Существует и более сложный прибор для оценки АД и всех основных показателей гемодинамики — компьютерный тахоосциллоскоп;
  • электрокардиограф — прибор, часто используемый для проведения функциональной кардиодиагностики. Регистрируя разность потенциалов, он позволяет определить частоту биений сердца, выявить нарушения электролитного обмена и повреждения миокарда;
  • велоэргометрический комплекс рассчитан на регистрацию биопотенциалов сердца в стрессовых условиях, при выполнении физической нагрузки;
  • эхокардиограф (УЗ-сканер) — ультразвуковая система для визуализации внутренних структур сердца, индикации их размеров, оценки направления и интенсивности кровотока, определения состояния клапанов, желудочков, предсердий. Часто применяется в сочетании с допплеровской системой;
  • мониторинговое оборудование для долгосрочной (в течение нескольких суток) регистрации ЭКГ в условиях повседневной деятельности, измерения артериального давления и ритма сердца. Холтеровские мониторы помогают выявить развивающуюся аритмию, гипертонию, ишемическую болезнь на ранних, бессимптомных стадиях.

В профильных центрах используют специальные устройства (капнометры, кардиоинтервалографы) для уточнения специфических параметров сердечной деятельности.
К новейшим разработкам в области ранней диагностики скрытых патологий относится кардиовизор — прибор, генерирующий трёхмерное изображение всех структур сердца. Благодаря программному модулю позволяет рассчитывать степень риска для жизни и прогнозировать течение болезни.

В реанимации, для экстренной помощи применяют дефибрилляторы — устройства, воздействующие электрическими импульсами, помогая «запустить» сердце после остановки или критических нарушений ритма.

Самое сложное и технологичное оборудование задействовано в инвазивной диагностике и кардиохирургии: катетеры для ангиографии и трансплантаций, мониторы пациента, внешние и имплантируемые электрокардиостимуляторы — приспособления, помогающие кардиологам точно определять причины нарушений сердечной деятельности и проводить хирургические вмешательства.

В особую группу выделяют аэробные тренажёры и реабилитационную технику: дорожки для ходьбы и бега, велотренажёры. Используя их под наблюдением специалистов, можно увеличить резерв сердечнососудистой системы, повысить её устойчивость к стрессам и ежедневным нагрузкам.

Источник: medbuy.ru

В группе риска возникновения фибрилляции находятся мужчины, средний возраст 45-75 лет.

…Эффектная картинка. «Разряд! Еще разряд!» Уверенные руки врача держат на обнаженной груди пациента электроды. Пациент без сознания. И вот на мониторе реанимационного аппарата вместо прямой линии бодро побежали зубцы. Врач облегченно снимает шапочку, вытирая со лба пот. Возвращение к жизни произошло, врачи победили смерть!..

Так в большинстве художественных фильмов показывают процесс дефибрилляции. А как всё происходит в жизни?

 

Что такое дефибрилляция и фибрилляция

Приставка «де» (лат.) означает отмену, удаление, ликвидацию. Дефибрилляция – процесс устранения фибрилляции желудочков сердца.

Фибрилляция (мерцание) и трепетание желудочков – патологические состояния, при которых не происходит эффективных сердечных сокращений. Это практически остановка сердца.

Фибрилляция не может прекратиться спонтанно – только под действием электрической дефибрилляции.

Сердце имеет собственную проводящую систему, способную генерировать и передавать ко всем своим клеткам электрические импульсы. Благодаря этому происходит последовательное сокращение камер сердца. Организм получает кислород и отдает углекислый газ, другие токсические продукты обмена веществ, которые выводятся через кровь.

При фибрилляции такая слаженная работа клеток исчезает. Отдельные мышечные волокна сокращаются хаотично.

Сердце начинает напоминать «колеблющийся студень». Оно теряет способность сокращаться.

На ЭКГ, вместо классических зубцов, регистрируются хаотичные, неправильной формы волны с частотой 200-500 колебаний в минуту.

 

Каждая минута снижает вероятность возвращения к жизни на 10 %

По существу, фибрилляция – остановка сердца. Из-за нее происходит до 90 % случаев внезапной сердечной смерти.

Кровообращение прекращается.

Кислород перестает поступать в органы и ткани, развивается гипоксия (кислородное голодание). Клетки переходят на экономный анаэробный (безкислородный) путь обмена веществ. Но при этом образуется много токсических недоокисленных продуктов, развивается ацидоз (закисление). В отсутствие кровообращения ядовитые отходы не могут быть удалены. Клетки гибнут.

Наиболее чувствительны к гипоксии клетки головного мозга.

Оказать экстренную медицинскую помощь необходимо в первые 4-10 мин. (оптимально 4-6 мин – время, которое без серьезных последствий может продержаться без кислорода кора головного мозга). Каждая минута снижает вероятность возвращения к жизни на 10 %.

Если на 1-й минуте можно спасти 90 % пациентов, то к 10-й минуте, как правило, не выживает никто.

 

Причины возникновения фибрилляции

Первая и самая основная – инфаркт миокарда.

К фибрилляции также могут привести другие заболевания сердца (гипертрофическая кардиомиопатия, нарушения ритма); метаболические изменения, токсины, передозировка лекарственных средств, воздействие электрическим током (несчастный случай, удар молнии).

 

Возможно ли завести «мотор» после «короткого замыкания». Суть дефибрилляции

Итак, при фибрилляции нарушается слаженная работа клеток сердца, они выходят из-под контроля и начинают сокращаться хаотично.

Однако электрическая активность клеток при фибрилляции сохранена.

Это отличает фибрилляцию сердца от асистолии (отсутствия систолы, сокращения) – полной остановки сердца. При асистолии на ЭКГ регистрируется прямая линия. При неоказании своевременной помощи, фибрилляция переходит в асистолию. Связано это с тем, что клетки сердца тоже страдают от кислородного голодания и токсических отходов и гибнут.

Асистолия может быть и первичным состоянием (на ее долю приходится около 10 % внезапных кардиальных смертей).

При асистолии в сердце происходит внезапное полное прекращение возбудимости, «короткое замыкание».

В этом случае прогноз крайне неблагоприятен. Асистолию, если это возможно, надо перевести в фибрилляцию. Клетки должны быть электрически активны, иначе «завести мотор» не удастся.

Дефибрилляция – воздействие на сердце током слабой силы, но высокого напряжения.

Это приводит к подавлению всех электрических импульсов, направление которых не совпадает с направлением тока дефибриллятора. Все патологические очаги возбуждения угнетаются, остаются только те, которые дают суммарный вектор нормального сердечного сокращения. Эффективная работа сердца восстанавливается.

 

Как проводится дефибрилляция

Дефибриллятор состоит из двух блоков: накопительный и электродный. В первом электрическая энергия накапливается и преобразуется (уменьшается сила тока, одновременно повышается напряжение). Электроды накладываются на грудь и подают к сердцу электрический ток. Существуют одно- и многоканальные дефибрилляторы. Одноканальный имеет один электрод, а многоканальный – два.

Желательно, чтобы модель дефибриллятора предусматривала наличие электрокардиомонитора. Он позволяет вести запись ЭКГ вне разряда.

Пациент лежит на ровной поверхности. Между электродами и телом необходима прокладка: например, электропроводящий гель, салфетки, смоченные гипертоническим раствором NaCl или водой. Тому, кто оказывает помощь, нельзя касаться тела пациента и других предметов (даже поверхности, на которой лежит человек. Электроды устанавливаются справа под ключицей и слева по передней подмышечной линии кнаружи от верхушки сердца (тогда электрическая сила импульса совпадет с направлением нормальной электрической оси сердца). Разряд подается последовательно с нарастающей мощностью: 200 Дж > 300 Дж > 360 Дж.

 

Базовая сердечно-легочная реанимация. Что делать, если на ваших глазах человек упал и потерял сознание

Ждать, когда подоспеет скорая помощь с дефибриллятором, некогда. В запасе не более 10 мин. Что делать?

Предположить остановку сердца можно при:

  • отсутствии дыхания и пульса (проверить на сонных артериях),
  • отсутствии реакции зрачка на свет,
  • синем или сером цвете лица.

Забить тревогу: кто-то вызывает реанимационную бригаду, а кто-то начинает базовую сердечно-легочную реанимацию (CЛР): непрямой массаж сердца и искусственное дыхание «рот в рот». Если помощь оказывает один человек – на 15 сердечных толчков 2 вдоха; если двое – соотношение вдувания и нажатия 1:5.

Суть СЛР: происходит искусственная имитация кровообращения. Легкие «дышат», а сердце «сокращается».

Организм меньше страдает от гипоксии.

Задача – продержаться до прибытия реаниматологов с дефибриллятором и набором медикаментов.

 

Государственные программы

Чем раньше будет оказана специализированная помощь, тем лучше прогноз для жизни и ее качество. В странах Европы и США приняты и реализуются программы по оснащению автоматическими дефибрилляторами (АВД) не только медицинских учреждений и машин скорой помощи, но и общественных мест: торговых центров, вокзалов, аэропортов, отелей, концертных залов, школ.

В аэропортах США не имеет право приземлиться самолет без дефибриллятора на борту.

Дефибриллятор обязательно устанавливается в каждой государственной школе штата Нью-Йорк. Более 50 % государственных учреждений США оснащены АВД.

По мнению британских экспертов, установка АВД в общественных местах и обучение персонала их эффективному использованию, позволит сберечь тысячи жизней в ближайшие 10 лет. В Венгрии у всех частных врачей есть АВД. В Германии все крупные предприятия оснащены АВД

В 2015 году в нашей стране завершилась пятилетняя госпрограмма «Кардиология». В рамках этой программы сегодня практически все медицинские учреждения и машины скорой помощи оснащены самыми современными бифазными дефибрилляторами с максимальной мощностью 360 Дж, которые рекомендует Европейская ассоциация нарушений ритма сердца.

Принята госпрограмма «Здоровье народа и демографическая безопасность Республики Беларусь» (рассчитана до 2020 года), где отдельным пунктом идет оснащение общественных мест дефибрилляторами.

Не меньшее значение, чем оборудование общественных мест АВД, имеет медицинская грамотность населения. Вовремя распознать остановку сердца и провести базовую СЛР – залог спасения не одной человеческой жизни.

 

Последствия проведения дефибрилляции

После остановки сердца выживают только 30 %.

К нормальной жизни, без серьезных последствий для здоровья, возвращаются всего 3,5 %!

Связано это обычно с поздним оказанием помощи, когда от ишемии уже пострадали головной мозг, сердце, почки, печень. Важно не просто сохранить жизнь. Не менее важно сохранить ее качество.

Самый чувствительный к ишемии орган – головной мозг. Если восстановить сердечную деятельность удается лишь на 7-10 минутах, у пациента возможны психические и неврологические нарушения. Запоздалая помощь приведет к глубокой инвалидности пострадавшего, который на всю жизнь останется «овощем».

 

Как предотвратить внезапную смерть

Помните, на первом месте – с огромным перевесом – среди причин внезапной сердечной смерти идет инфаркт миокарда. Профилактика сердечной смерти – это профилактика ИБС и инфаркта миокарда.

Здоровый образ жизни, правильное питание, культивирование только полезных привычек, медикаментозная коррекция артериальной гипертензии.

Наша жизнь в наших руках!

 

Главное фото статьи с сайта healthversed.com

Источник: cardio.today


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.