Антигипоксанты список препаратов какие лучше принимать


Антигипоксанты сердечной недостаточности

Антигипоксантами называют средства, улучшающие усвоение организмом кислорода и снижающие потребность органов и тканей в кислороде, тем самым способствующие повышению устойчивости организма к кислородной недостаточности.

Исследования убедительно свидетельствуют, что наиболее перспективны в борьбе с гипоксией в спорте фармакологические средства, воздействующие на митохондриальные комплексы.

Условно антигипоксанты могут быть разделены на группы:
– препараты непосредственно антигипоксического действия;
– корригирующие метаболизм в клетке:
– мембранопротекторного действия,
– прямого энергизирующего действия (влияющие на окислительно-восстановительный потенциал клетки, цикл Кребса и комплексы дыхательной цепи митохондрий);
– действующие на транспортную функцию крови:
– повышающие кислородную емкость крови,
– повышающие сродство гемоглобина к кислороду,
– вазоактивные вещества эндогенной и экзогенной природы.


Гипоксен

Олифен (гипоксен). Антигипоксант. Механизм действия олифена на клетки заключается в снижении потребления тканями кислорода, его более экономном расходовании в условиях гипоксии.

Олифен – фермент дыхательной цепи синтетической природы. Обладая высокой электронно-обменной емкостью за счет полифенольной структуры молекулы, олифен оказывает шунтирующее действие на стадии образования молочной кислоты из пировино-градной кислоты, образуя ацетил Ко А, который затем вовлекается в цикл трикарбоновых кислот.

Олифен на молекулярном уровне облегчает тканевое дыхание в условиях гипоксии за счет способности непосредственно переносить восстановленные эквиваленты к ферментным системам. Препарат многократно компенсирует недостаток убихинона в условиях гипоксии, так как содержит большое количество функциональных центров.

Таким образом, олифен компенсирует деятельность митохондриальной дыхательной цепи при наличии повреждений на ее участках.

Антиоксидантное действие олифена связано с его полифенольной структурой, которая защищает мембраны клеток и митохондрий от разрушительного воздействия свободных радикалов, образующихся в процессе перекисного окисления липидов. Этот патологический процесс запускается при экстремальных физических и психоэмоциональных воздействиях на организм.

Олифен улучшает переносимость гипоксии за счет увеличения скорости потребления кислорода митохондриями и повышения сопряженности окислительного фосфорилирования.


Будучи препаратом прямого действия, может обеспечить кислородом любую клетку за счет малых размеров собственных молекул. В связи с этим его применение возможно при всех видах гипоксии.

Экономное расходование энергетических запасов происходит за счет переведения с гликолитического на аэробное окисление энергетических субстратов, т е. на более выгодный механизм обмена.

При этом выход энергии увеличивается в 19 раз, так как при анаэробном гликолизе одной молекулы получается 2 молекулы АТФ, а при аэробном – 38 молекул АТФ.

Водорастворимый антиоксидант, обладая высокой энергетической емкостью, ставит большое количество электронных ловушек. Окислительно-восстановительный потенциал олифена – 680, коэнзима Q10 – 122.

Показания к применению в спорте: повышение работоспособности при выполнении мышечной работы в экстремальных условиях соревнований; экономное расходование кислорода тканями в условиях гипоксии; профилактика и преодоление состояния хронической усталости; ускорение восстановления организма после перенесенных нагрузок; улучшение периферического кровотока.

Выводится из организма через 6-8 часов. Побочное действие практически не встречается. В редких случаях возможна тошнота, сухость во рту.

Олифен улучшает усвоение других веществ (лекарств, витаминов) на 25%.

Кофермент Q-10

Убихинон (кофермент Q-10, коэнзим Q10) – вещество, которое вырабатывается организмом и поступает с пищей. Оно обнаружено в говядине (особенно во внутренних органах – сердце, печени, почках), жирной рыбе, шпинате, арахисе и цельных зернах. Несмотря на то что коэнзим Q10 (CoQ-10) можно найти во многих свежих продуктах, он неустойчив и легко разрушается окислением при переработке и приготовлении продуктов.


CoQ-10 участвует в работе электронтранспортной дыхательной цепи митохондрий. Уменьшает повреждение ткани, вызванное гипоксией, генерирует энергию и повышает толерантность к физическим нагрузкам. Как антиоксидант замедляет процесс старения (нейтрализует свободные радикалы, отдавая свои электроны). Укрепляет иммунную систему.

Наш организм может вырабатывать CoQ-10, если получает в необходимом количестве витамины В2 , В3 , В6 , С, фолиевую и пантотеновую кислоты. В случае нехватки любого из этих витаминов синтез CoQ-10 подавляется.

Не имеет токсичных доз и побочных эффектов.
CoQ-Ю принимается в дозировке от 30 до 100 мг в день. На данным момент нет достаточно объективных данных и достоверных объемных исследований по CoQ-1.

Никотинамид

Никотинамид. Амид никотиновой кислоты и сама никотиновая кислота (витамин РР, ниацин, витамин В3 ), являясь простетической группой ферментов НАД и НАДФ и переносчиками водорода, участвуют в процессах тканевого дыхания, метаболизме жиров, углеводов, аминокислот.

Цитохром С

Цитохром С (цито Мак). Гемопротеид, катализатор клеточного дыхания. Стимулирует окислительные реакции и активизирует тем самым обменные процессы в тканях, уменьшает гипоксию тканей при различных патологических состояниях. Эффект наступает через несколько минут после в/в введения и продолжается несколько часов.


При применении возможны аллергические реакции. Предрасположенным к аллергическим реакциям рекомендуется проводить пробу с введением 0,5-1 мл цитохрома С, разбавленного 1:10; или 0,1 мл внутрикожно.

Реамберин

Реамберин. Раствор (1,5%) для инфузий представляет собой хорошо сбалансированный полиионный раствор с добавлением янтарной кислоты, содержащий: натрия хлорида 6,0 г, калия хлорида 0,3 г, магния хлорида 0,12 г, натриевой соли янтарной кислоты 15 г, воды для инъекций до 1 литра. Сбалансированный препарат с осмолярностью, приближенной к нормальной осмолярности плазмы крови человека.

Основной фармакологический эффект препарата обусловлен способностью усиливать компенсаторную активацию аэробного гликолиза, снижать степень угнетения окислительных процессов в цикле Кребса, в дыхательной цепи митохондрий с увеличением внутриклеточного фонда макроэргических соединений (АТФ и креатин-фосфата). Сукцинат натрия (янтарная кислота) по клинической классификации относится к субстратным антигипоксантам. Включаясь в энергетический обмен как субстрат, соли янтарной кислоты направляют процессы окисления по наиболее экономичному пути.

Реамберин оказывает гепатозащитное действие, уменьшая продолжительность процессов перекисного окисления липидов и препятствуя истощению запасов гликогена в клетках печени.


Максимальный уровень концентрации препарата в крови при внутривенном введении наблюдается на первой минуте после введения. Через 40 мин его концентрация возвращается к значениям, близким к фоновым.

Рибоксин

Инозин (рибоксин). Действие инозина антигипоксическое, антиаритмическое, анаболическое. Повышает активность ряда ферментов цикла Кребса и энергетический баланс. Оказывает положительное влияние на обменные процессы в миокарде – увеличивает силу сокращений и способствует более полному расслаблению миокарда в диастоле (связывает ионы кальция, попавшие в цитоплазму в момент возбуждения клетки), в результате чего возрастает ударный объем; улучшается кровоснабжение тканей, в том числе коронарное кровообращение.

Используется для профилактики метаболических нарушений в миокарде при экстремальных физических нагрузках, при дистрофии миокарда на фоне тяжелых физических нагрузок, нарушениях сердечного ритма, для профилактики заболеваний печени.

При применении возможны тахикардия, обострение подагры, гиперемия и зуд кожи, другие аллергические реакции.

Актовегин

Актовегин (солкосерил) . Препарат биологического происхождения. Активирует клеточный метаболизм путем увеличения транспорта и накопления глюкозы и кислорода, усиления внутриклеточной утилизации. Улучшает трофику и стимулирует процесс регенерации.


Милдронат

Милдронат. Улучшает метаболические процессы. Повышает работоспособность, уменьшает симптомы психического и физического перенапряжения; обладает кардиопротекторным и регулирующим систему клеточного иммунитета действиями; устраняет функциональные нарушения в соматической и вегетативной нервной системах. Препарат вызывает уменьшение содержания свободного кар-нитина, снижает карнитинзависимое окисление жирных кислот.

Биодоступность – 78%. Максимальная концентрация в плазме достигается через 1 –2 часа после приема. Период полувыведения – 3-6 часов.

Используется для восстановления после тренировочной и соревновательной нагрузки; физическом перенапряжении, перетренированности.

В редких случаях возможен кожный зуд, диспептические явления, тахикардия, возбуждение, изменения АД.

Применять осторожно при тахикардии и гипотензии.

Винпоцетин

Кавинтон (винпоцетин) . Препарат, улучшающий мозговое кровообращение и процессы метаболизма в мозговой ткани; способствует транспортировке кислорода к тканям вследствие уменьшения сродства к нему эритроцитов, усиливая поглощение и метаболизм глюкозы; уменьшает повышенную вязкость крови, улучшает микроциркуляцию. Метаболизм глюкозы переключается на энергетически более выгодное аэробное направление. Стимулирует также и анаэробный метаболизм глюкозы.

Назначается в случае острой и хронической недостаточности мозгового кровообращения (транзиторная ишемия в видах спорта на выносливость); посттравматической и гипертензивной энцефалопатии (травмоопасные виды спорта); для уменьшения нарушений памяти; при головокружении; головной боли; двигательных расстройствах.

Антигипоксическим эффектом обладают также витамины С и Е, адаптогены, ноотропы, оксибутират лития, лимонная и фумаровая кислоты.

Использованные источники: youpowerhouse.com


Антиоксиданты и антигипоксанты: действие и отличие, список препаратов и природных веществ

Антигипоксанты список препаратов какие лучше принимать

Многие люди, особенно, те, которым нередко приходится лечиться в стационарах по поводу хронических заболеваний, замечали, что, помимо основного лечения, добавляются препараты антигипоксанты и антиоксиданты, на первый взгляд, не имеющие прямого отношения к их болезни. Да и при выписке часто рекомендуют приобрести в аптеке витамины и антиоксидантные комплексы, которые помогут пациенту справиться со своим недугом. Часто антиоксиданты рекомендуют беременным женщинам, подросткам, людям с ослабленным иммунитетом или работающим в неблагоприятных либо экстремальных условиях.

Гипоксический синдром

Такой патологический процесс, как гипоксический синдром, происходящий на клеточном уровне, хотя и редко встречается в чистом виде, тем не менее, часто сопровождает (осложняет) многие и без того серьезные состояния.

Недостаточное получение клетками кислорода:

  • Нарушает энергетический баланс;
  • Активирует свободнорадикальное окисление;
  • Повреждает мембраны жиров и протеинов.

Антигипоксанты список препаратов какие лучше принимать

гипоксия на примере нарушения кровоснабжения мозга, мозг максимально заметно реагирует на недостаток кислорода

Для восстановления оптимальной энергопродукции путем снижения потребления тканями кислорода и нормализации его утилизации со второй половины 20 века используют лекарственные средства, названные антигипоксантами, которые, в первую очередь, показаны в следующих случаях:

  1. Шоковые состояния;
  2. Недостаточность сердечной деятельности;
  3. Коллапс, кома;
  4. В периоде гестации и во время родов – гипоксия плода;
  5. Анемический синдром;
  6. Тяжелые отравления и абстиненция;
  7. Обширные хирургические операции.

Таким образом, антигипоксанты – лекарственные вещества, которые по своим характеристикам обладают способностями снижать либо вовсе нивелировать симптомы гипоксии.

Антигипоксанты

Антигипоксанты список препаратов какие лучше принимать

Очень многие антигипоксанты пациенты называют «сосудистыми препаратами» или средствами для лечения сердечных болезней, поскольку они признаны лучшими в лечении патологии сердечно-сосудистой системы. В принципе, все лекарства, улучшающие кровоснабжение (сосудистые), выполняют и антигипоксическую функцию. Например, любой человек, которого тронули проблемы нарушения мозгового кровообращения либо сердечной деятельности, наверняка, не раз получал такие лекарственные средства, как:


  • Винпоцетин и Кавинтон, что одно и то же – препараты растительного происхождения (производные основного алколоида барвинка — винкамина), они считаются лучшими в своей группе, поскольку не отличаются большим набором противопоказаний и при этом заметно улучшают кровообращение и метаболизм в тканях мозга;
  • Пирацетам – улучшает мозговой кровоток и процессы метаболизма в тканях головного мозга, защищает нейроны ГМ от повреждающего воздействия гипоксии, позитивно влияет на память и внимание, помогает в обучении, применяется в неврологии, психиатрии, наркологии, педиатрии;
  • Рибоксин — нормализует обменные процессы в сердечной мышце и снижает проявления кислородного голодания тканей;
  • Милдронат (Мельдоний) – представляет собой аналог компонента, присутствующего в каждой живой клетке человеческого организма (γ-бутиробетаин), нормализует обмен и энергообеспечение тканей, подвергшихся кислородному голоданию. В последнее время в спортивной среде препарат был признан допингом и стал поводом для дисквалификации некоторых талантливых российских спортсменов;

  • Цитохром С – показан к применению у новорожденных (гипоксия в результате асфиксии), а также при сердечной недостаточности, бронхиальной астме, гипоксии миокарда (ишемической болезни сердца);
  • Инозин – активирует ферменты цикла трикарбоновых кислот (ЦТК, цикл Кребса), поддерживает энергетический баланс, позитивно влияет на обменные процессы в миокарде, повышает выносливость организма, стимулирует иммунный ответ;
  • Триметазидин – оказывает позитивное воздействие на клетки сердечной мышцы, оптимизирует их обменные и функциональные способности, способствует нормализации артериального давления, повышает толерантность к нагрузкам (умственным и физическим);
  • Фезам — комбинированное лекарственное средство, обеспечивающее мощный антигипоксический эффект.

Безусловно, список препаратов вышеназванными лекарствами не ограничивается, он довольно широк, к тому же, многие из них имеют несколько лекарственных форм. Например, Винпоцетин выпускается в таблетках (Винпоцетин, Винпоцетин форте, Винпоцетин-САР), аэрозоли (Винпоцетин-АКОС), концентратов для приготовления инфузионных растворов (Винпоцетин-АКОС, Винпоцетин-САР, Винпоцетин-ЭСКОМ) или Рибоксин, выпускаемый в таблетках (Рибоксин-Ферейн, Рибоксин-Лект) и растворах для внутривенного введения (Рибоксин буфус).

К медикаментозным средствам с фармакологическим эффектом «антигипоксический» относятся назальные капли Семакс, которые, помимо антигипоксического, дают антиоксидантный и ангиопротекторный эффект, а также гель и мазь Солкосерил, обладающие регенерирующим и ранозаживляющим действием.

Между тем, многие из приведенного списка препаратов, хотя и обозначены в некоторых справочниках, как антигипоксические средства, не лишены антиоксидантного действия, поэтому не стоит удивляться, если в других источниках они будут отнесены к группе антиоксидантов и антигипоксантов.

Свободные радикалы

Народ ныне грамотный и пациенты наслышаны, что существуют некие свободные радикалы, которые весьма опасны для здоровья человека и способны запустить любой патологический процесс. Свободные радикалы – это нестабильные частицы (неустойчивые), наделенные свободным (неспаренным) электроном, пару которому эти частицы так и норовят забрать из нормальных молекул, повреждая при этом здоровую клетку. Отдавая «свое», клетка страдает и теряет способность к физиологическому функционированию. Самое печальное, что в подобных ситуациях одно цепляется за другое, возбуждая цепную реакцию, остановить которую сам организм бывает не в состоянии по причине потери защитных сил.

Антигипоксанты список препаратов какие лучше принимать

Однако следует заметить, что некоторое, совсем небольшое количество таких радикалов, должно присутствовать в организме и выполнять определенную задачу, например: помогать бороться с болезнетворными микроорганизмами или препятствовать образованию опухолевых клеток.

Появляются свободные радикалы в ходе биохимических реакций расщепления продуктов питания и утилизации кислорода. Накопление лишних свободных радикалов ведет к:

  1. Повреждению и гибели клеток;
  2. Падению иммунитета;
  3. Преждевременному старению организма;
  4. Возникновению вредных мутаций;
  5. Развитию онкологического процесса.

В условиях ослабления иммунной защиты, свободные радикалы начинают особо активную деятельность, принося, порой, непоправимый вред органам и системам.

Одним из способов борьбы с лишними свободными радикалами является применение антиоксидантов, как раз-таки имеющих в своей молекуле недостающий свободный электрон, отдавая который данные препараты нейтрализуют вредное влияние этих нестабильных частиц.

Антигипоксанты список препаратов какие лучше принимать

антиоксидант отдает электрон свободному радикалу и нейтрализует его действие, не давая «забирать» электроны у клеток организма и разрушать их

Антиоксиданты

Самые лучшие антиоксиданты – природные, то есть, те, которые содержат витамины и которые легко найти в доступных продуктах питания:

  • Альфа-токоферола ацетат – витамин E (арахис, кукуруза, горох, спаржа);
  • Аскорбиновая кислота – витамин C (цитрусовые, капуста белокочанная, особенно, в квашеном виде, клюква, сладкий болгарский перец);
  • Бета-каротин – провитамин A (морковь, брокколи, шпинат).

В качестве антиоксидантного средства, предупреждающего старение организма, нередко рекомендуют селен, который содержится в чесноке, фисташках, кокосе. Селен входит в число главных природных антиоксидантов. Он стимулирует иммунитет, ведет активную борьбу со свободными радикалами, тормозит воспалительные реакции, вызванные вирусной и бактериальной инфекцией, предупреждает развитие опухолевых заболеваний, участвует в обменных процессах. Селен решает еще много полезных задач, однако следует помнить, что при неразумном использовании человеком (применение в больших дозах или поступление селена извне из других источников) столь ценный химический элемент может стать опасным.

Рисунок: антиоксиданты в продуктах

Антигипоксанты список препаратов какие лучше принимать

В аптеке всегда можно увидеть готовые препараты, обозначенные как антиоксидантные (поливитаминные) комплексы (например, широко распространенный – Антиоксикапс). Почти во всех случаях эти средства в своем составе имеют витамины различных групп (Е, А, С) и отдельные химические элементы: селен (Антиоксикапс с селеном), цинк (Антиоксикапс с цинком), железо (Антиоксикапс с железом), йод (Антиоксикапс с йодом).

Между ними нет четкой границы

Очевидно, что препараты антиоксиданты и антигипоксанты бывает довольно трудно разграничить, ведь они дополняют друг друга при лечении многих патологических состояний. У этих лекарств похожие цели: помочь организму справиться в критических ситуациях, а также предотвратить развитие нежелательных последствий, полученных по причине повреждения и гибели клеток (даже, если, на первый взгляд, жизни пока ничего не угрожает), и вместе они — сила. Блокируя свободно-радикальные реакции, препятствуя перекисному окислению жиров на мембранах клеток, обеспечивая нормальное дыхание тканей, данные препараты являются достаточно эффективными профилактическими и одновременно самостоятельными лекарственными средствами в отношении:

  1. Ишемической болезни сердца, инфаркта миокарда;
  2. Острого нарушения мозгового обращения как по ишемическому , так и по геморрагическому типу;
  3. Кардиалгий, вызванных гормональным дисбалансом;
  4. Заболеваний, связанных с нарушением кровообращения в каком-то отдельно взятом регионе;
  5. Атеросклеротического процесса;
  6. Сосудистых осложнений сахарного диабета;
  7. Септических состояний;
  8. Обширных ожогов, травм, массивных кровопотерь;
  9. Профессиональной деятельности, связанной с экстримом;
  10. Хронических болезней дыхательной системы (бронхов, легких).

Кроме этого, антигипоксанты и антиоксиданты, входя в состав любой комплексной терапии, поддерживают на должном уровне клеточный и гуморальный иммунитет, предотвращая его снижение и потерю защиты организма. В общем, практически универсальные лекарственные средства, которые хороши на все случаи жизни.

Антигипоксанты список препаратов какие лучше принимать

Антиоксиданты, наряду с антигипоксантами, принимают активное участие в борьбе с последствиями гипоксии, а антигипоксанты также не остаются в стороне от свободно-радикальных процессов, поэтому многие лекарственные средства, обладающие такими характеристиками, относят к общей фармацевтической группе «Препараты антигипоксанты и антиоксиданты», например:

  • Распространенный и довольно популярный препарат Актовегин – он улучшает питание и дыхание тканей, ускоряет процессы метаболизма в них и способствует их регенерации;
  • Полидигидроксифенилентиосульфонат натрия – несет выраженный антигипоксический эффект, поддерживая в оптимальном режиме аэробные процессы и дыхание тканей (в митохондриях клеток), повышает устойчивость к психоэмоциональным и физическим нагрузкам;
  • Этилтиобензимидазола гидробромид – помогает органам и тканям «выжить» в условиях кислородного голодания, оказывает антиастеническое, психо- и иммуностимулирующее действие, повышает трудоспособность, внимание, выносливость;
  • Эмоксипин – тормозит свободно-радикальные реакции клеточных мембран, и, таким образом, защищает их, активирует антиоксидантные ферменты, несет выраженный антигипоксический эффект;
  • Этилметилгидроксипиридина сукцинат – блокирует свободно-радикальное окисление, защищает мембраны клеток от повреждения и, вместе с тем, обладает ноотропным и выраженным антигипоксическим действием;
  • Пробукол – имея гипохолестеринемические свойства, нормализует липидный обмен, а заодно – «работает» в качестве антиоксидантного средства.

В эту же группу можно зачислить и препараты, о которых мы рассказали выше, то есть, трудно выделить «чистый антиоксидант» либо «чистый антигипоксант».

Между тем, читатель должен понимать, что списки препаратов (наиболее распространенных) приводятся отнюдь не для того, чтобы пациенты занялись самолечением. Не глядя на то, что многие антигипоксанты и антиоксиданты свободно продаются в аптеке, применять их без участия врача крайне нежелательно. Как любые медикаментозные средства, они могут давать индивидуальные реакции, обусловленные повышенной чувствительностью к некоторым компонентам, либо не совмещаться с отдельными препаратами других фармацевтических групп.

Использованные источники: sosudinfo.ru

Гипоксия миокарда

Антигипоксанты список препаратов какие лучше принимать

Термином «гипоксия» называют любую кислородную недостаточность в тканях и органах. Разнообразные причины вызывают снижение содержания кислорода, а без него клетки организма не способны вырабатывать энергию на свое существование и погибают.

Анаэробным (бескислородным) способом «добывания» энергии обладают некоторые жизненные органы, но он не обеспечивает полных потребностей по расходу. Если не вмешаться в этот процесс с помощью лечения, наступит стадия необратимых некротических изменений.

Гипоксия миокарда — патологическое состояние «голода» сердечной мышцы. Оно возможно в двух видах:

  • локальная гипоксия — когда кислорода не хватает только миокарду;
  • как частное проявление общей недостаточности в организме.

Болезни сердечной мышцы снижают ее силу, нарушают доставку крови к тканям и переводят патологию с местного на общий уровень.

Почему возникает гипоксия?

Миокард страдает от кислородного дефицита по следующим причинам:

  • недостаточная концентрация кислорода в окружающей среде — возникает в душном помещении, в накуренной обстановке, в горной местности, в баллонах аквалангиста при подводных путешествиях;
  • нарушенная приспособительная реакция — при стрессовых ситуациях, повышенной физической нагрузке сердцу требуется больше кислорода;
  • срыв правильного функционирования системы дыхания — спазм бронхов, недостаточная площадь ткани легких для обмена углекислого газа на кислород (при бронхиальной астме, эмфиземе, воспалении легких, тромбозе легочной артерии, туберкулезе органов дыхания);
  • нарушения в количестве эритроцитов, снижение уровня гемоглобина приводит к уменьшению связывания молекул кислорода и его доставки (анемии, тяжелая стадия эритремии, лейкозы);
  • действие ядов, интоксикация — вызывают блокировку ферментов, участвующих в процессах усвоения энергообразующих веществ;
  • циркуляторная гипоксия — при заболеваниях сердца и сосудов, вызывающих снижение систолического выброса крови из-за слабости миокарда (острый инфаркт, кардиопатии, ишемия, сердечная недостаточность при пороках).

В большинстве случаев у пациентов имеется смешанная форма, в заболевании участвует 2 и более фактора.

В возникновении гипоксии миокарда основным «виновником» чаще всего является срыв нервно-гуморальной регуляции деятельности сердца. Изменения в области продолговатого мозга или гипоталамуса, где находятся центры управления сердечно-сосудистой системой, должны компенсировать потребности сердечной мышцы. Нарушение этой связи чревато проявлениями энергетического голода.

Клинические проявления

Симптомы при гипоксии миокарда могут развиваться внезапно (острая форма) или нарастать постепенно (хроническая). Скорость нарастания признаков кислородного «голода» зависит от интенсивности фактора поражения и индивидуальных особенностей организма, способности накапливать и хранить энергетические ресурсы и защищать себя.

Острая форма может без лечения привести к летальному исходу в течение нескольких минут или часов. Хронический процесс идет годами. Одновременно проявляются симптомы недостаточности головного мозга. Некоторые исследователи выделяют подострую форму, длящуюся несколько десятков часов. Точных разделительных критериев не существует.

Для умеренной гипоксии характерно:

  • тахикардия, групповые экстрасистолы, приступы пароксизмального нарушения ритма, это вызвано усилением частоты сердечных сокращений для компенсации подачи крови к внутренним органам;
  • одышка — физиологический механизм повышения вентилирующей способности легких;
  • посинение губ и пальцев;
  • боли в области сердца типа приступов стенокардии.

При измерении артериального давления возможны повышенные цифры.

Молниеносная форма, например, вызванная кардиогенным шоком, быстро приводит к нарастающей сердечной слабости, падению артериального давления. Аритмии носят опасный для жизни характер — фибрилляция желудочков, пароксизмальная мерцательная аритмия.

Особенности хронической гипоксии

Хроническая форма кислородной недостаточности миокарда развивается постепенно и зависит от:

  • преобладающего механизма развития патологии;
  • степени выраженности и длительности гипоксии;
  • условий среды, в которой проживает пациент;
  • индивидуальной чувствительности человека к недостатку энергии.

Человек с хорошо развитым иммунитетом отличается высоким уровнем обменных процессов в тканях, поэтому у него длительное время сохраняются и работают приспособительные механизмы.

Диагностика

Гипоксия миокарда в начальной стадии обнаруживается:

  • по составу кровяных элементов, компенсаторно происходит повышенный выброс в периферическую кровь эритроцитов, соответственно, растет уровень гемоглобина;
  • при снижении функционирования других органов, в первую очередь печеночных клеток, что сказывается на изменении биохимических тестов;
  • при определении кислорода в тканях — менее 95% от нормального уровня.

При токсическом поражении можно выявить вредоносные химические вещества (соли тяжелых металлов, свинец, яды).

Дальнейшее течение заболевания приводит к:

  • изменению в кислую сторону баланса (показатель рН крови указывает на ацидоз) из-за накопления шлаков и молочной кислоты;
  • повышению концентрации в крови углекислого газа;
  • снижению уровня насыщения кислородом до 60 – 80%.

Что необходимо для лечения?

Лечение гипоксии требует устранения основных факторов заболевания:

  • необходимо насыщение воздушной смеси кислородом через вдыхание, в тяжелом состоянии перевод больного на искусственную вентиляцию легких;
  • при анемиях — переливание компонентов крови, введение препаратов железа;
  • использование антидотов при отравлении токсическими веществами;
  • устранение бронхоспазма и терапия болезней легких;
  • выведение накопившихся шлаков, восстановление нормального кислотно-щелочного баланса;
  • улучшение сократимости мышцы сердца, устранение признаков сердечной недостаточности;
  • нормализация кровообращение по артериям и венам, исключение застоя и механических препятствий;
  • улучшение реологических (вязкости) свойств крови.

Как насытить миокард кислородом

Пациентам-хроникам рекомендуется больше бывать на свежем воздухе. Прогулки в парках и скверах позволяют дышать более чистым воздухом, усилить вентиляцию легких.

При обострении рекомендуется ограничить двигательный режим.

Лекарственные препараты, усиливающие устойчивость миокарда к кислородной недостаточности, называются антигипоксантами. Они подразделяются на 3 группы:

  • имеющие широкий спектр действия (прямые);
  • непрямого воздействия;
  • смешанные.

Группа 1

Антигипоксанты прямого действия стимулируют энергетические процессы в тканях сердечной мышцы за счет:

  • восстановления аэробного и усиления анаэробного способов получения энергии через активизацию дыхательных ферментов цитохрома С, убихинона;
  • утилизации накопившихся шлаков, остатков кислот;
  • уменьшения воздействия свободных окислителей-радикалов;
  • защиты коронарных сосудов;
  • снятия ишемии миокарда;
  • имеющихся антиаритмических свойств;
  • восстановления связей с центрами головного мозга.

В группу входят такие препараты:

  • Милдронат,
  • Мексидол,
  • Актовегин,
  • Оксибутират натрия,
  • Бетимил,
  • Неотон,
  • Пирацетам,
  • Предуктал,
  • Цитомак.

Группа 2

При непрямом воздействии эффект обеспечивается переводом сердца на меньший уровень потребления кислорода. Препараты одновременно понижают все процессы метаболизма. Они необходимы в экстренной ситуации на короткий срок, чтобы повысить выживаемость тканей. Длительное введение невозможно, поскольку снизится умственная работа головного мозга.

Подобным воздействием обладают:

  • успокаивающие и снотворные лекарства;
  • средства, применяемые для общего наркоза;
  • некоторые блокаторы кальциевых каналов;
  • часть α-адреноблокаторов.

Эти средства позволяют пережить трудный период, стимулировать приспособительные процессы в сердце, но не обеспечивают устойчивой адаптации к стрессам.

Группа 3

Препараты смешанного действия обладают свойствами обеих предыдущих групп. К ним относятся лекарства, разработанные и полученные из растений в сочетании с витаминными комплексами (витаминов Е, А, группы В, Д, С) и необходимыми для миокарда микроэлементами (калий, магний, железо, селен, хром и другие).

Показаны при хронической форме гипоксии, особенно в лечении детей и пожилых людей.

Растительные антигипоксанты

В терапии хронических форм рекомендуется использовать растительные сборы, отвары трав. Их можно составить самостоятельно, но лучше проконсультироваться с врачом.

К средствам выраженного действия относятся:

  • боярышник,
  • болотный аир,
  • арника,
  • донник,
  • крапива,
  • черная смородина (листья и плоды),
  • рябина (плоды),
  • мелисса,
  • липа (листья).

Умеренное действие оказывают:

Слабыми антигипоксантами считаются:

Лечение гипоксии следует начинать как можно раньше. Развитие необратимых изменений в миокарде можно предотвратить с помощью растительных средств, принимая их в отварах.

Использованные источники: serdec.ru

Основные принципы лечения сердечной недостаточности (CН):

  1. Выяснение и устранение причин, вызвавших СН.
  2. Улучшение сократительной способности сердца (сердечные гликозиды СГ, другие средства с положительным инотропным действием).
  3. Уменьшение нагрузки на сердце (полноценный отдых, рациональный режим; борьба с избыточной массой тела; вазодилататоры; антагонисты РААС).
  4. Удаление из организма избытка натрия и воды (ограничение соли и жидкости в диете; диуретики; антагонисты РААС, в тяжелых случаях удаление жидкости из полостей-торакоцентез, парацентез, диализ).
  5. Улучшение энергетического обмена в миокарде (препараты калия, антигипоксанты, фосфорилированные углеводы).

Лечение сердечной недостаточности проводятся с учетом стадии заболевания поэтапно, что отражено в таблице 29.

Таблица 29. Этапы лечения больных с сердечной недостаточностью (по Н.А. Мазур, 1988 с дополнениями)

Мероприятие или
препарат

Ограничение
физической нагрузки

Исключить
большие нагрузки

Ограничение потребления
поваренной соли

Комбинация
диуретиков трех групп

У отдельных
групп больных

Сборы с кардиотоническим,
седативным, мочегонным
действием

На I этапе терапии возможно применение лекарственных растений, не содержащих сердечных гликозидов, но обладающих кардиотоническим, антигипоксическим, седативным и мочегонным эффектами Наиболее эффективны сборы, в состав которых входят ЛРС:

  • с кардиотоническими свойствами (пл, цв и ли боярышников, тр астрагала шерстистоцветкового, пл лимонника).
  • с анигипоксическим действием (ли липы и крапивы, тр чистеца буквицецветного и донника).
  • с седативными свойствами (тр пустырника, ко и ке валерианы, шишки хмеля)
  • с мочегонным эффектом (тр. грыжника, почечного чая, горца птичьего и др.).

На втором этапе лечения препаратами выбора становятся сердечные гликозиды. Терапия сердечными гликозидами проводится в две фазы: насыщающая фаза — от начала лечения до достижения относительной компенсации, поддерживающая фаза — с момента достижения компенсации продолжается месяцы, годы (иногда пожизненно).

Сердечные гликозиды противопоказаны при выраженной брадикардии, предсердно-желудочковой блокаде различной степени, остром миокардите, нестабильной стенокардии,изолированном митральном стенозе, субаортальном стенозе, амилоидозе сердца. Осторожность необходима при остром инфаркте миокарда, гипокалиемии, алкалозе у пожилых больных. В высоких дозах СГ могут вызывать преждевременные роды.

При одновременном применении с диуретиками, глюкокортикоидами, препаратами кальция возрастает токсичность сердечных гликозидов. Калий повышает безопасность дигитализации, поэтому СГ необходимо сочетать с обогащенной калием диетой и препаратами, содержащими этот ион в достаточном количестве (калия хлорид в виде раствора, порошка, калий-нормин-калия хлорид в таблетках по 1 г).

Диуретики могут применяться на любой стадии СН. Выбор препарата определяется тяжестью состояния больного. На стадии достаточный эффект дают препараты, ускоряющие клубочковую фильтрацию, производные ксантина, а также калийсберегающие и растительные диуретики (табл.34).

Среди вазодилататоров все более широко применяются ингибиторы конвертирующего фермента. У нас в стране их назначают при СН, резистентной к лечению сердечными гликозидами и диуретиками. За рубежом в последние годы их назначают чаще, особенно у пациентов с артериальной гипертензией. Механизм действия антагонистов РААС сложен и включает: 1) блокаду образования ангиотензина 11; 2) блокаду разрушения брадикинина; 3) активацию синтеза простагландина Е и простациклина; 4) снижение синтеза альдостерона; 5) снижение выработки катехоламинов; 6) прямое сосудорасширяющее действие. Каптоприл назначают в дозе 12,5 мг во избежание резкого снижения АД, а в дальнейшем доза может быть увеличена.

По своей сосудорасширяющей активности он приближается, к нитропруссиду натрия, обеспечивает эффективную разгрузку малого круга кровообращения, уменьшает ЧСС, увеличивает диурез. Препараты расширяют артериолы и венулы, снижают и пред и постнагрузку, что обеспечивает снижение потребности миокарда в кислороде. Они совместимы с диуретиками и сердечными гликозидами и повышают их лечебное действие. Препараты малотоксичны, но могут вызывать ухудшение функции почек у больных со стенозом почечных артерий. Острожность требуется при использовании их у больных с выраженным истощением запаса солей и при гиповолемии (см. также раздел «Лечение гипертонической болезни»).

На ряду с антагонистами РААС применяют и другие вазодилататоры, влияние которых на гемодинамику представлено в таблице 36.

Таблица 36. Сравнительная характеристика влияния вазодилататоров на гемодинамику

Использованные источники: www.mordovnik.ru

Источник: dezkil.ru

Антигипоксический эффект лекарственных средств

Кислородпотребляющие тканевые процессы рассматриваются как мишень для действия антигипоксантов. Автор указывает, что современные методы лекарственной профилактики и лечения как первичных, так и вторичных гипоксий основываются на использовании антигипоксантов, стимулирующих транспорт кислорода в ткань и компенсирующих отрицательные метаболические сдвиги, возникающие при кислородной недостаточности. Перспективным является подход, основанный на использовании фармакологических препаратов, способных изменить интенсивность окислительного метаболизма, что открывает возможность управления процессами утилизации кислорода тканями. Антигипоксанты — бензопомин и азамопин не оказывают угнетающие действия на митохондриальные системы фосфорилирования. Наличие ингибирующего действия исследуемых веществ на процессы ПОЛ различной природы позволяет предполагать влияние соединений указанной группы на общие звенья в цепи радикалообразования. Не исключена возможность и того, что антиоксидантный эффект связан с непосредственной реакцией исследуемых веществ со свободными радикалами. В концепции фармакологической защиты мембран при гипоксии и ишемии торможение процессов ПОЛ несомненно играет положительную роль. Прежде всего, сохранение антиоксидантного резерва в клетке препятствует дезинтеграции мембранных структур. Следствием этого является сохранение функциональной активности митохондриального аппарата, что служит одним из важнейших условий поддержания жизнеспособности клеток и тканей в условиях жестких, деэнергизирующих воздействий. Сохранение мембранной организации создаст благоприятные условия для диффузионного потока кислорода в направлении межтканевая жидкость — цитоплазма клетки — митохондрия, что необходимо для поддержания оптимальных концентраций О2 в зоне его взаимодействия с цигохромом. Применение антигипоксантов бензомопина и гутимина увеличивало выживаемость животных после клинической смерти на 50% и 30% соответственно. Препараты обеспечивали более стабильную гемодинамику в постреанимационном периоде, способствовали снижению содержания молочной кислоты в крови. Гутимин оказывал положительное влияние на исходный уровень и динамику исследуемых показателей в восстановительном периоде, но менее выражено, чем у бензомопина. Полученные результаты свидетельствуют о том, что бензомопин и гутимин оказывают профилактический защитный эффект при умирании от кровопотери и способствуют повышению выживаемости животных после 8-минутной клинической смерти. При изучении тератогенной и эмбриотоксической активности синтетического антигипоксанта — бензомопина — доза 208,9 мг/кг массы тела с 1-го по 17-й день беременности оказалась частично смертельной для беременных самок. Задержка эмбрионального развития, очевидно, связана с общетоксическим действием на мать высокой дозы антигипоксанта. Таким образом, бензомопин при введении внутрь беременным крысам в дозе 209,0 мг/кг в период с 1-го по 17-й или с 7-го по 15-й день беременности не приводит к тератогенному действию, но обладает слабым потенциальным эмбриотоксическим эффектом.

В работах показано антигипоксическое действие агонистов бензодиазепиновых рецепторов. Последующее клиническое применение бензодиазепинов подтвердило их высокую эффективность как антигипоксантов, хотя механизм этого эффекта не выяснен. В эксперименте показано наличие в мозге и в некоторых периферических органах рецепторов к экзогенным бензодиазепинам. В опытах на мышах диазепам отчетливо отдаляет сроки развития нарушения ритма дыхания, появление гипоксических судорог и увеличивает длительность жизни животных (в дозах 3; 5; 10 мг/кг — продолжительность жизни в основной группе составила соответственно — 32 ± 4,2; 58 ± 7,1 и 65 ± 8,2 мин, в контроле 20 ± 1,2 мин). Полагают, что антигипоксический эффект бензодиазепинов связан с системой бензодиазепиновых рецепторов, не зависимых от ГАМК-ергического контроля, по крайней мере от рецепторов типа ГАМК.

В ряде современных работ убедительно показана высокая эффективность антигипоксантов при лечении гипоксически-ишемических поражений головного мозга при ряде осложнений беременности (тяжелые формы гестоза, фетоплацентарная недостаточность и др.), а также и в неврологической практике.

К регуляторам, обладающим выраженным антигапоксическим действием, относятся такие вещества, как: 

  • ингибиторы фосфолипаз (мекаприн, хлорохин, батаметазон, АТФ, индометацин);
  • ингибиторы циклооксигеназ (превращающих арахидоновую кислоту в промежуточные продукты) — кетопрофен;
  • ингибитор синтеза тромбоксанов — имидазол;
  • активатор синтеза простагландина РС12-циннаризин.

Коррекция гипоксических расстройств должна осуществляться комплексно с привлечением антигипоксангов, оказывающих действие на различные звенья патологического процесса, прежде всего на начальные этапы окислительного фосфорилирования, во многом страдающие от дефицита высокоэнергетических субстратов, таких как АТФ.

Именно поддержание концентрации АТФ на уровне нейронов в условиях гипоксии становится особенно значимым.

Процессы, в которых участвует АТФ, можно разделить на три последовательных этапа:

  1. деполяризация мембран, сопровождающаяся инактивацией Nа, К-АТФ-азы и локальным увеличением содержания АТФ;
  2. секреция медиаторов, при которой наблюдаются активация АТФ-азы и повышенный расход АТФ;
  3. трата АТФ, компенсаторно включающая систему ее ресинтеза, необходимого для реполяризации мембран, удаления Са из терминалей нейронов, восстановительных процессов в синапсах.

Таким образом, адекватное содержание АТФ в нейрональных структурах обеспечивает не только адекватное протекание всех стадий окислительного фосфорилирования, обеспечивая энергетический баланс клеток и адекватное функционирование рецепторов, в конечном итоге позволяет сохранять интегративную и нейро-трофическую деятельность головного мозга, что является задачей первостепенной важности при любых критических состояниях.

При любых критических состояниях эффекты гипоксии, ишемии, нарушения микроциркуляции и эндотоксемии затрагивают все сферы жизнеобеспечения организма. Любая физиологическая функция организма или патологический процесс являются результатом интегративных процессов, в ходе которых решающее значение имеет нервная регуляция. Поддержание гомеостаза осуществляется высшими корковыми и вегетативными центрами, ретикулярной формацией ствола, зрительным бугром, специфическими и неспецифическими ядрами гипоталамуса, нейрогипофизом.

Эти нейрональные структуры управляют деятельностью основных «рабочих блоков» организма, таких как дыхательная система, кровообращение, пищеварение и т. д., через рецепторно-синаптический аппарат.

К гомеостатическим процессам со стороны ЦНС, поддержание функционирования которых особенно важно при патологических состояниях, относятся координированные приспособительные реакции.

Адаптационно-трофическая роль нервной системы при этом проявляется изменениями нейрональной активности, нейрохимическими процессами, сдвигами метаболизма. Симпатическая нервная система в патологических условиях меняет функциональную готовность органов и тканей.

В самой нервной ткани в патологических условиях могут иметь место процессы, которые в определенной степени аналогичны адаптационно-трофическим изменениям на периферии. Реализуются они посредством монаминергических систем мозга, берущих начало от клеток мозгового ствола.

Во многом именно функционированием вегетативных центров определяется течение патологических процессов при критических состояниях в постреанимационном периоде. Поддержание адекватного церебрального метаболизма позволяет сохранять адаптационно-трофические влияния нервной системы и предотвращать развитие и прогрессирование синдрома полиорганной недостаточности.

trusted-source[5], [6], [7]

Актовегин и инстенон

В связи с изложенным в ряду антигипоксантов, активно влияющих на содержание циклических нуклеотидов в клетке, следовательно, церебральный метаболизм, интегративную деятельность нервной системы, стоят многокомпонентные препараты «Актовегин» и «Инстенон».

Возможности фармакологической коррекции гипоксии с помощью актовегина изучаются уже давно, но по ряду причин его использование как прямого антигипоксанта в терапии терминальных и критических состояний явно недостаточно.

Актовегин-депротеиноризированный гемодериват из сыворотки крови молодых телят-содержит комплекс низкомолекулярных олигопептидов и производных аминокислот.

Актовегин стимулирует энергетические процессы функционального метаболизма и анаболизма на клеточном уровне независимо от состояния организма, главным образом в условиях гипоксии и ишемии за счет увеличения накопления глюкозы и кислорода. Повышение транспортировки глюкозы и кислорода в клетку и усиление внутриклеточной утилизации ускоряют метаболизм АТФ. В условиях применения актовегина наиболее характерный для условия гипоксии анаэробный путь окисления, ведущий к образованию всего двух молекул АТФ, сменяется аэробным путем, в ходе которого образуется 36 молекул АТФ. Таким образом, использование актовегина позволяет в 18 раз увеличить эффективность окислительного фосфорилирования и повысить выход АТФ, обеспечивая адекватное его содержание.

Все рассмотренные механизмы антигипоксического действия субстратов окислительного фосфорилирования, и прежде всего АТФ, реализуются в условиях применения актовегина, особенно в больших дозах.

Использование больших доз актовегина (до 4 г сухого вещества в сутки внутривенно капельно) позволяет добиваться улучшения состояния больных, уменьшения длительности ИВЛ, снижения частоты развития синдрома полиорганной недостаточности после перенесенных критических состояний, снижения летальности, сокращения сроков пребывания в реанимационных отделениях.

В условиях гипоксии и ишемии, особенно церебральной, чрезвычайно эффективно сочетанное применение актовегина и инстенона (многокомпонентного активатора нейрометаболизма), обладающего свойствами стимулятора лимбико-ретикулярного комплекса за счет активации анаэробного окисления и пентозных циклов. Стимуляция анаэробного окисления даст энергетический субстрат для синтеза и обмена нейромедиаторов и восстановления синаптической передачи, депрессия которой является ведущим патогенетическим механизмом расстройств сознания и неврологического дефицита при гипоксии и ишемии.

При комплексном применении актовегина и инстенона удается добиться и активации сознания больных, перенесших острую тяжелую гипоксию, что свидетельствует о сохранении интегративных и регуляторно-трофических механизмов ЦНС.

Об этом же свидетельствует снижение частоты развития церебральных расстройств и синдрома полиорганной недостаточности при комплексной антигипоксической терапии.

Пробукол

Пробукол в настоящее время является одним из немногих доступных и дешевых отечественных антигипоксантов, которые вызывают умеренное, а в ряде случаев и значительное снижение содержание холестерина (ХС) в сыворотке крови. Снижение уровня липопротеидов высокой плотности (ЛПВП) пробукол вызывает за счет обратного транспорта ХС. Об изменении обратного транспорта при терапии пробуколом судят в основном по активности переноса эфиров ХС (ПЭХС) от ЛПВП к липопротеидам очень низкой и низкой плотности (ЛПОНП и Л ПН П соответственно). Существует также и другой фактор — апопротсин Е. Показано, что при применении пробукола в течение трех месяцев снижается уровень холестерина на 14,3%, а через 6 месяцев — на 19,7%. По мнению М. Г. Твороговой и соавт. (1998) при применении пробукола эффективность гиполипидемического действия зависит в основном от особенностей нарушения обмена липопротеидов у пациента, а не определяется концентрацией пробукола в крови; увеличение дозы пробукола в большинстве случаев не способствует дальнейшему снижению уровня холестерина. Выявлены выраженные антиоксидантные свойства у пробукола, при этом повышалась стабильность эритроцитарных мембран (снижение ПОЛ), выявлен также умеренный липидснижающий эффект, постепенно исчезавший после лечения. При применении пробукола отмечается у некоторых больных снижение аппетита, вздутие кишечника.

Перспективным является применение антиоксиданта коэнзима Q10, который влияет на окисляемость липопротеинов в плазме крови и антиперекисную резистентность плазмы у больных ишемической болезнью сердца. В ряде современных работ выявлено, что прием больших доз витамина Е и С приводит к улучшению клинических показателей, уменьшению риска развития ИБС и уровня смертности от этого заболевания.

Существенно отметить, что изучение динамики показателей ПОЛ и АОС на фоне лечения ИБС различными антиангинальными препаратами показало, что исход лечения находится в прямой зависимости от уровня ПОЛ: чем выше содержание продуктов ПОЛ и ниже активность АОС, тем меньше эффект проводимой терапии. Однако в настоящее время антиоксиданты еще не получили широкого распространения в повседневной терапии и профилактике ряда заболеваний. 

Мелатонин

Существенно отметить, что антиоксидантные свойства мелатонина не опосредованы через его рецепторы. В экспериментальных исследованиях с использованием методики определения присутствия в исследованной среде одного из самых активных свободных радикалов ОН было выявлено, что мелатонин обладает значительно более выраженной активностью в плане инактивации ОН, чем такие мощные внутриклеточные АО, как глутатион и маннитол. Также в условиях in vitro было продемонстрировано, что мелатонин обладает более сильной антиоксидантной активностью в отношении пероксильного радикала ROO, чем хорошо известный антиоксидант — витамин Е. Кроме того, приоритетная роль мелатонина в качестве протектора ДНК была показана в работе Starak (1996), и выявлен феномен, свидетельствующий о главенствующей роли мелатонина (эндогенного) в механизмах АО защиты.

Роль мелатонина в защите макромолекул от окислительного стресса не ограничивается только ядерной ДНК. Белково-протективные эффекты мелатонина сравнимы с таковыми у глутатиона (одного из самых мощных эндогенных антиоксидантов).

Следовательно, мелатонин обладает протективными свойствами и в отношении свободнорадикального повреждения протеинов. Безусловно, большой интерес представляют исследования, в которых показана роль мелатонина в прерывании ПОЛ. Одним из наиболее мощных липидных АО до последнего времени считался витамин Е (а-токоферол). В экспериментах in vitro и in vivo при сравнении эффективности витамина Е и мелатонина было показано, что мелатонин в 2 раза активнее в плане инактивации радикала ROO, чем витамин Е. Такая высокая АО эффективность мелатонина не может быть объяснена только способностью мелатонина прерывать процесс липидной пероксидации путем инактивации ROO, а включает в себя еще и инактивацию радикала ОН, являющегося одним из инициаторов процесса ПОЛ. Помимо высокой АО активности самого мелатонина, в экспериментах in vitro было выявлено, что его метаболит 6-гидроксимелатонин, образующегося при метаболизме мелатонина в печени дает значительно более выраженный эффект в отношении ПОЛ. Следовательно, в организме механизмы защиты от свободнорадикального повреждения включают в себя не только эффекты мелатонина, но и по крайней мере одного из его метаболитов.

Для акушерской практики важно также положение о том, что одним из факторов, приводящих к токсическим воздействиям бактерий на организм человека является стимуляция бактериальными липополисахаридами процессов ПОЛ.

В эксперименте на животных продемонстрирована высокая эффективность мелатонина в отношении защиты от оксидативного стресса, вызываемого липополисахаридами бактерий.

Авторы исследования подчеркивают, что АО эффект мелатонина не ограничивается каким-либо одним видом клеток или тканей, а носит организменный характер.

Помимо того, что мелатонин сам обладает АО свойствами, он способен стимулировать глутатионпероксидазу, участвующую в превращении редуцированного глутатиона в его оксидированную форму. В процессе этой реакции молекула Н2О2, активная в плане выработки чрезвычайно токсичного радикала ОН, превращается в молекулу воды, а ион кислорода присоединяется к глутатиону, образуя оксидированный глутатион. Показано также, что мелатонин может инактивировать фермент (нитрикоксидсинтетазу), осуществляющий активацию процессов выработки оксида азота.

Перечисленные выше эффекты мелатонина позволяют считать его одним из наиболее мощных эндогенных антиоксидантов.

Антигипоксический эффект нестероидных противовоспалительных средств

В работе Nikolov и соавт. (1983) в опытах на мышах изучали влияние индометацина, ацетилсалициловой кислоты, ибупрофена и др. на время выживания животных при аноксической и гипобарической гипоксии. Индометацин применяли в дозе 1 -10 мг/кг массы тела внутрь, а остальные антигипоксанты в дозах от 25 до 200 мг/кг. Установлено, что индометацин увеличивает время выживания с 9 до 120%, ацетилсалициловая кислота с 3 до 98% и ибупрофен с 3 до 163%. Изученные вещества были наиболее эффективны при гипобарической гипоксии. Авторы считают перспективным поиски антигипоксантов среди ингибиторов циклооксигеназы. При изучении антигипоксического действия индометацина, вольтарена и ибупрофена А. И. Берсзнякова и В. М. Кузнецова (1988) установили, что эти вещества в дозах соответственно 5 мг/кг; 25 мг/кг и 62 мг/кг обладают антигипоксическими свойствами независимо от вида кислородного голодания. Механизм антигипоксического действия индометацина и вольтарена связан с улучшением доставки кислорода тканям в условиях его дефицита, нет реализации продуктов метаболического ацидоза, уменьшением содержания молочной кислоты, усилением синтеза гемоглобина. Вольтарен, кроме того, способен увеличивать количество эритроцитов.

Показано также защитное и восстанавливающее действие антигипоксантов при постгипоксическом торможении освобождения дофамина. В эксперименте показано, что антигипоксанты способствуют улучшению памяти, и применение гутимина в комплексе реанимационной терапии облегчало и ускоряло ход восстановления функций организма после умеренного по тяжести терминального состояния.

trusted-source[8], [9], [10], [11], [12], [13]

Антигипоксические свойства эндорфинов, энкефалинов и их аналогов

Показано, что специфический антагонист опиатов и опиоидов налоксон укорачивает продолжительность жизни животных, находящихся в условиях гипоксической гипоксии. Было высказано предположение, что эндогенные морфиноподобные вещества (в частности, энкефалины и эндорфины), возможно, играют защитную роль при осгрой гипоксии, реализуя антигипоксическое действие через опиоидные рецепторы. В опытах на мышах-самцах показано, что лейэнксфалин и эндорфин являются эндогенными антигипоксантами. Наиболее вероятный путь защиты организма от острой гипоксии опиоидными пептидами и морфином связан с их способностью снижать кислородный запрос тканей. Кроме того, определенное значение имеет и антистрессорный компонент в спектре фармакологической активности эндогенных и экзогенных опиоидов. Поэтому мобилизация эндогенных опиоидных пептидов на сильный гипоксический стимул является биологически целесообразной и носит защитный характер. Антагонисты наркотических анальгетиков (налоксон, налорфин и др.) блокируют опиоидные рецепторы и тем самым предотвращают протективное действие эндогенных и экзогенных опиоидов в отношении острой гипоксической гипоксии.

Показано, что высокие дозы аскорбиновой кислоты (500 мг/кг) могут снижать действие избыточного накопления меди в гипоталамусе, содержание катехоламинов.

Противогипоксическое действие катехоламинов, аденозина и их аналогов

Общепризнанно, что адекватная регуляция энергетического обмена во многом определяет устойчивость организма к экстремальным условиям, а целенаправленное фармакологическое воздействие на ключевые звенья естественного адаптивного процесса является перспективным для разработки эффективных веществ-протекторов. Наблюдаемая при стресс-реакции стимуляция окислительного метаболизма (калоригенный эффект), интегральным показателем которого служит интенсивность потребления кислорода организмом в основном связана с активацией симпато-адреналовой системы и мобилизацией катехоламинов. Показано важное адаптивное значение аденозина, который выполняет роль нейромодулятора и «ответного метаболита» клеток. Как было показано в работе И. А. Ольховского (1989), различные адреноагонисты — аденозин и его аналоги вызывают дозозависимое снижение потребления организмом кислорода. Антикалоригенный эффект клонидина (клофелина) и аденозина увеличивает устойчивость организма к гипобарической, гемической, гиперкапничсской и цитотоксической формам острой гипоксии; препарат клофелин повышает устойчивость больных к операционному стрессу. Противогйпоксическая эффективность соединений обусловлена относительно самостоятельными механизмами: метаболическим и гипотермическим действием. Эти эффекты опосредуются соответственно (а2-адренергическими и А-аденозиновыми рецепторами. Стимуляторы этих рецепторов отличаются от гутимина более низкими значениями эффективных доз и более высокими протекторными индексами.

Снижение кислородного запроса и развитие гипотермии предполагает возможное увеличение устойчивости животных к острой гипоксии. Противогипоксическое действие клонидида (клофелина) позволило автору предложить использование этого соединения при проведении хирургических вмешательств. У больных, получавших клофелин, более стабильно поддерживаются основные гемодинамические показатели, значительно улучшаются параметры микроциркуляции.

Таким образом, вещества, способные стимулировать (а2-адренорецепторы и А-рецепторы при парентеральном введении, увеличивают устойчивость организма к острой гипоксии различных генезов, а также к другим экстремальным ситуациям, включающим развитие гипоксических состояний. Вероятно, снижение окислительного метаболизма под влиянием аналогов эндогенных риуляторных веществ может отражать воспроизведение естественных гипобиотических приспособительных реакций организма, полезных в условиях чрезмерного действия повреждающих факторов.

Таким образом, в повышении толерантности организма к острой гипоксии под влиянием а2-адренорецепторов и А-рецепторов первичным звеном являются метаболические сдвиги, вызывающие экономизацию расхода кислорода и снижение теплопродукции. Это сопровождается развитием гипотермии, потенцирующей состояние сниженного кислородного запроса. Вероятно, полезные в условиях гипоксии сдвиги метаболизма связаны с рецепторно обусловленными изменениями тканевого пула цАМФ и последующей регуляторной перестройкой окислительных процессов. Рецепторная специфичность защитных эффектов позволяет автору использовать новый рецепторный подход к поискам веществ-протекторов на основе скрининга агонистов а2-адренорецепторов и А-рецепторов.

В соответствии с генезом нарушений биоэнергетики с целью улучшения обмена, а, следовательно, и повышения устойчивости организма к гипоксии, используется: 

  • оптимизация защитно-приспособительных реакций организма (она достигается, например, благодаря сердечным и вазоактивным средствам при шоке и умеренных степенях разрежения атмосферы);
  • уменьшение кислородного запроса организма и энергозатрат (большинство применяемых в этих случаях средств — общие анестетики, нейролептики, центральные релаксанты, — повышают лишь пассивную резистентность, снижая работоспособность организма). Активная резистентность к гипоксии может быть лишь в том случае, если препарат антигипоксант обеспечивает экономизацию окислительных процессов в тканях с одновременным повышением сопряженности окислительного фосфорилирования и продукции энергии в ходе гликолиза, ингибирования нефосфорилирующего окисления;
  • улучшение межорганного обмена метаболитами (энергией). Его можно добиться, например, путем активации гликонеогенеза в печени и почках. Таким образом поддерживается обеспечение этих тканей основным и наиболее выгодным при гипоксии энергетическйм субстратом-глюкозой, уменьшается количество лактата, пирувата и других продуктов обмена, вызывающих ацидоз и интоксикацию, уменьшение аутоингибирования гликолиза;
  • стабилизация структуры и свойств мембран клеток и субклеточных органелл (поддерживается способность митохондрий утилизировать кислород и осуществлять окислительное фосфорилирование, снижать явления разобщенности и восстанавливать дыхательный контроль).

Стабилизация мембран поддерживает способность клеток к утилизации энергии макроэргов — наиболее важный фактор сохранения активного транспорта электронов (К/Nа-АТФ-аза) мембран, и сокращений мышечных белков (АТФ-аз миозина, сохранение конформационных переходов актомиозина). Названные механизмы в той или иной мере реализуются в защитном действии антигипоксантов.

По данным исследований под влиянием гутимина уменьшается потребление кислорода на 25 — 30% и снижается температура тела на 1,5 — 2 °С без нарушения высшей нервной деятельности и физической выносливости. Препарат в дозе 100 мг/кг массы тела вдвое уменьшал процент гибели крыс после двусторонней перевязки каротидных артерий, обеспечивал в 60% случаев восстановление дыхания у кроликов, подвергнутых 15-минутной аноксии мозга. В постгипоксическом периоде у животных отмечены меньший кислородный запрос, уменьшение содержания в сыворотке крови свободных жирных кислот, лактацидемии. Механизм действия гутимина и его аналогов сложен как на клеточном, так и на системном уровнях. В реализации противогипоксического действия антигипоксантов имеет значение ряд моментов:

  • снижение кислородного запроса организма (органа), в основе которого, по-видимому, лежит экономизация использования кислорода с перераспределением его потока в интенсивно работающие органы;
  • активация аэробного и анаэробного гликолиза «ниже» уровня его регуляции фосфорилазной и цАМФ;
  • существенное ускорение утилизации лактата;
  • торможение экономически невыгодного в условиях гипоксии липолиза в жировой ткани, что ведет к снижению содержания в крови неэтерифицированных жирных кислот, уменьшает их долю в энергетическом обмене и повреждающее действие на мембранные структуры;
  • прямое стабилизирующее и антиоксидантное действие на мембраны клеток, митохондрий и лизосом, что сопровождается сохранением их барьерной роли, а также функций, связанных с образованием и использованием макроэргов.

Источник: ilive.com.ua


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.