Синдром кесслера


Синдром (Эффект) Кесслера — гипотетическое развитие событий на околоземной орбите, когда космический мусор, появившийся в результате многочисленных запусков искусственных спутников, приводит к полной непригодности ближнего космоса для практического использования.[1] Впервые такой сценарий детально описал консультант НАСА Дональд Кесслер.[2][3]

  • 1 Появление и исчезновение космического мусора
  • 2 Серьёзность
  • 3 Предложения по сокращению замусоренности космоса
  • 4 См. также
  • 5 Ссылки

Появление и исчезновение космического мусора

Каждый спутник, космический зонд или пилотируемая миссия могут быть потенциальными источниками космического мусора. По мере роста количества спутников на орбите и устаревания существующих, риск лавинообразного развития синдрома Кесслера всё возрастает.


К счастью, взаимодействие с атмосферой на низких околоземных орбитах, которые используются чаще всего, ликвидирует основную часть мусора. Столкновения летательных аппаратов с мусором на меньших высотах также не столь опасны, поскольку при этом любые тела теряют скорость, а с ней и свою кинетическую энергию, а затем, как правило, сгорают в плотных слоях атмосферы.

На высотах, где трение об атмосферу незначительно, время «жизни» космического мусора значительно возрастает. Слабое влияние атмосферы, солнечного ветра и притяжения Луны могут постепенно привести к снижению его орбиты, но на это может потребоваться не одна тысяча лет.

Серьёзность

Коварство синдрома Кесслера заключается в «эффекте домино». Столкновение двух достаточно крупных объектов приведёт к появлению большого количества новых осколков. Каждый из этих осколков способен в свою очередь столкнуться с другим мусором, что вызовет «цепную реакцию» рождения всё новых обломков. При достаточно большом количестве столкновений или взрыве (например, при столкновении между старым спутником и космической станцией, или в результате враждебных действий), количество лавинообразно возникших новых осколков может сделать околоземное пространство совершенно непригодным для полетов[4].

Предложения по сокращению замусоренности космоса


Предлагается уже на этапе проектирования спутников предусматривать средства их удаления с орбиты — торможения до скорости входа в плотные слои атмосферы, где они сгорят, не оставляя опасных крупных частей, либо перевод на «орбиты захоронения» (значительно выше орбит ГСО-спутников). Также разрабатываются методы коррекции орбит элементов космического мусора с помощью мощного наземного лазера непрерывного действия[5].

См. также

  • Космический мусор
  • Орбита захоронения
  • Столкновение спутников Космос-2251 и Iridium 33

Источник: dic.academic.ru

В 1957 году с запуска первого искусственного спутника началась космическая эра. С этого момента на земной орбите начали появляться предметы, которые позже назвали космическим мусором. Об опасности подобных вещей предостерегал еще в 1964 году в «Звездных дневниках Ийона Тихого» известный польский писатель-фантаст Станислав Лем, правда, там дело касалось системы Сириуса.

История появления синдрома

В 1978 году в одной из своих статей для журнала «Geophysical Research» консультант НАСА Дональд Кесслер проанализировал происходящее после возможных взрывов околоземных спутников, отработавших свой срок и болтающихся на орбите.


Консультант НАСА Дональд Кесслер. Источник изображения: canacopegdl.com

Также в анализ было включено постоянное увеличение количество мусора на орбите, остающееся после различных космических полетов. После размышлений и расчетов Кесслер пришел к выводу, что количество мусора на орбите увеличивается такими темпами, что в будущем может полностью перекрыть орбиту, лишив возможности совершать околоземные полеты в связи с опасностью столкновений.

В те годы большинство специалистов просто не придали значения статье американского специалиста. Прошло 4 десятилетия и многие на ситуацию взглянули иначе. Конечно, и в наши дни до закупоривания земной орбиты чрезвычайно далеко, но опасность столкновения с космическим мусором сейчас является реальным фактом. А ведь его количество постоянно увеличивается.


Как появляется мусор на орбите

Вариантов появления на орбите космического мусора довольно много, и каждая космическая держава, хотя и в разной мере, способствует увеличению его количества.

Увеличение количества космического мусора на орбите Земли. Источник изображения: nasa.gov

Рекорд в количестве загрязнений, правда, далеко не по опасности, поставили американцы в 1963 году во время проведения эксперимента «Вестфорд». В то время дальняя связь осуществлялась путем отражения радиоволн от ионосферы. Надежностью этот способ не отличается, и специалисты США распылили на высоте 3500-3800 км примерно 480 миллионов тончайших проволочек-диполей (толщина 17,8 мкм, длина 17.8 мм). Идея была красивая — над полярной шапкой распыляются проволочки, которые создают своеобразное отражающее радиоволны зеркало.

Мировая общественность отнеслась к идее американских ученых с явным неодобрением. Реакция газеты «Правда» была вполне предсказуемой — она выразилась в статье с названием «Американцы загрязняют космос». ТАСС и вовсе заявил об новых происках американской военщины. Против выступили и ученые Королевского общества. Эксперимент по-быстрому прекратили. А проволочки на орбите остались. В течение 10 лет почти все проволочки сошли с орбиты, но 38 комков фиксировались еще в 2016 году.


Искусственные спутники и космический мусор на орбите Земли. Источник изображения: exposingtruth.com

Существенный вклад в появление космического мусора внес в 2007 году Китай. Коммунисты в рамках увеличения своей обороноспособности испытывали противоспутниковую ракету «Фэнъюнь 1С». Целью для ракеты был метеорологический спутник с истекшим сроком эксплуатации, кружащийся на высоте 865 км. Китайцы доказали свою возможность сбивать вражеские спутники, результатом стало появление на орбите почти 3,5 тысячи крупных обломков. За первые десять лет примерно 600-700 из них сгорело вследствие трения об атмосферу. А остальные пока продолжают кружиться по нисходящим орбитам. Но это крупные обломки. А обломков больше сантиметра образовалось примерно 40 тысяч, и каждый из них несет в себе потенциальную угрозу. Одно дело если такой кусочек мусора попадет в спутник и уничтожит его, неприятно, но не более. А вот попадание в МКС может привести к тяжелым последствиям и даже катастрофе.


Истчоник изображения: giphy.com

Особую опасность космический мусор представляет из-за «эффекта домино». Отработавшие свой срок спутники на самом деле летают не в космосе, а в верхних слоях земной атмосфера. Со временем они тормозятся о воздух, входят в плотные слои и там успешно сгорают. МКС кружит вокруг Земли на высоте около 400 км и за сутки просаживается примерно на 100 м. Для возвращения вверх время от времени требуется включать коррекционные двигатели. Но спутник так не скорректируешь. Различные возмущения (солнечные вспышки и ветер, гравитационные воздействия Луны и прочее) способны изменить орбиту таких спутников. В случае их столкновения образуется множество осколков разлетающихся во все стороны с различными скоростями. А эти осколки способны поразить другие спутники. Дальше картина вполне понятна. Первое такое столкновение произошло в 2009 году над Таймыром. Тогда, закончивший эксплуатацию «Космос-2251» врезался в работающий спутник глобальной системы связи «Иридиум». Высота столкновения 789 км, разлетелось больше 2000 сравнительно больших фрагментов. Малые куски учету не поддаются.


Как мы можем защититься от космического мусора

Кто предупрежден — тот вооружен. Главным средством защиты от столкновения с космическим мусором является мониторинг движения крупных обломков. Если вероятность столкновения обломка с МКС превышает 0.01%, экипаж в обязательном порядке надевает скафандры и переходит в один из внешних модулей. Станция также в обязательном порядке включает двигатели для перехода на другую орбиту. Обычно такое происходит раз в год, но в 2012 году по причине опасности столкновения орбиту меняли целых 4 раза. Для защиты от мелкого космического мусора в 2007 году российскими космонавтами было установлено 17 панелей. Но от крупных осколков они не спасут.

Спутники связи на геостационарной орбите (примерно 35 786 км) придумали защищать по-другому. Влияния земной атмосферы на такой высоте практически нет, поэтому их просто переводят перед выводом из эксплуатации на высоту в 300 км выше. Ее так и назвали — орбита захоронения.

Согласно исследованиям, еще в начале нашего века человечество преодолело рубеж, после которого синдром Кесслера вступил в действие. Если даже представить фантастическую ситуацию, что запуски в космос прекратились 10 лет назад, то количество космических обломков сейчас бы все равно нарастало исключительно за счет их столкновений между собой.


Источник изображения: giphy.com

Если вам понравилась статья, то поставьте лайк и подпишитесь на канал Научпоп. Наука для всех. Оставайтесь с нами, друзья! Впереди ждёт много интересного!

Источник: zen.yandex.ru

 

Орбиту можно обозначить как путь небесного тела в гравитационном поле другого тела. Притяжение небесного тела не позволяет спутнику улететь, а центробежная сила не дает ему упасть. Орбиты есть у искусственных спутников Земли, и у спутников планет.
мля движется по орбите вокруг Солнца. Но и само наше светило движется по орбите вокруг центра Галактики. Один оборот Солнце делает за 225–250 миллионов лет, двигаясь по своей орбите со скоростью 217 км/с. Движется и Галактика. Ее скорость относительно фонового реликтового излучения составляет 552 км/с. Но, вероятнее всего, это не орбитальная скорость. Как полагают ученые, Млечный Путь и соседние галактики движутся в сторону Великого Аттрактора, являющегося центром тяжести Ланиакеи, сверхскопления галактик, которое, конечно, уже сложно назвать нашим домом, но нашим районом можно.

 

Для того чтобы спутник мог находиться на орбите достаточно долго, его скорость должна быть равна или превышать первую космическую, но не быть больше второй космической скорости. Если скорость спутника Земли будет меньше, он упадет на поверхность планеты, если больше, то он уже станет спутником Солнца.

 

Синдром кесслера


 

 

Первые полеты в космос зачастую не были орбитальными полетами. То есть космический корабль пересекал линию Кармана – условную границу атмосферы и космического пространства, – но искусственным спутником Земли так и не становился. Так, например, первый американец в космосе Алан Шепард совершил именно суборбитальный полет.

 

Спустя три недели после полета Юрия Гагарина 5 мая 1961 года ракета-носитель  «Редстоун» вывела космический корабль «Меркурий-Редстоун-3» с Аланом Шепардом на борту в космос. Космический корабль достиг высоты 186,5 километра, после чего совершил посадку в океане. Всего полет продлился около 15,5 минут. Из них примерно 5 минут Шепард находился в состоянии невесомости.  Гагарин же находился в космосе 1 час 48 минут. И, в отличие от американского корабля, «Восток-1» совершил один виток вокруг планеты, после чего совершил управляемый спуск на Землю.

 

Синдром кесслера

 

Суборбитальные полеты весьма перспективны с точки зрения туризма. По сравнению с полноценными полетами в космос, они представляются более дешевыми. Американская компания Blue Origin как раз и делает ставку именно на них. Многоразовый корабль и ракета для суборбитальных полетов, создаваемые компанией, названы именно в честь Шепарда – New Shepard. Согласно устоявшемуся определению, суборбитальный полет – это космический полет летательного аппарата по баллистической траектории со скоростью, меньшей первой космической. То есть такой скоростью, которой недостаточно для вывода на орбиту искусственного спутника Земли.

 

 

Так почему же освоение космоса для некоторых стран началось с суборбитальных полетов? Просто для вывода спутника на орбиту требуется достичь большей скорости на старте, а следовательно, требуется ракета большей мощности, чем для «простого» полета в космос. Сравните хотя бы ракеты New Shepard и Falcon 9. Первая космическая скорость для нашей планеты равна 7,9 км/с. А вот чтобы преодолеть тяготение Земли, например для запуска автоматических межпланетных станций, требуется достичь скорости 11,2 км/с.

 

Для каждого небесного тела имеются свои значения космических скоростей. Луна намного менее массивная, чем Земля, и поэтому и первая, и вторая космические скорости здесь меньше. Для того чтобы выйти на окололунную орбиту (например для того чтобы вернуться с поверхности Луны на корабль, оставшийся на окололунной орбите), требуется скорость 1,7 км/с. Чтобы начать полет к Земле, – уже 2,4 км/с.

 

 

Геостационарная орбита (ГСО), наверное, самая «дорогая» орбита из всех, находящихся в околоземном пространстве. Количество мест на ней ограничено объективными причинами. Ее длина – 264 924 км, и находиться на ней могут только определенное количество спутников, чтобы не мешать друг другу. Неслучайно некоторые экваториальные страны в разное время предъявляли свои «территориальные» претензии на ГСО. Взять под свой суверенитет орбиту пытались Бразилия, Колумбия, Индонезия, Конго, Кения и другие страны.

 

Синдром кесслера

 

Уникальность орбиты обусловлена тем, что она проходит строго над экватором и только на одной высоте – 35 786 км над уровнем моря. Только на этой высоте спутник, обращающийся в направлении вращения Земли, имеет период обращения, равный периоду вращения Земли. Это позволяет спутнику как бы зависать над одной точкой. Для наблюдателя с Земли он будет все время находиться в одной точке неба – точке стояния. А если так, то это позволяет для приема сигнала, и в первую очередь телевизионного, использовать сравнительно простую и недорогую аппаратуру – спутниковые тарелки. К слову, точка стояния спутника Eutelsat 36B, с которого осуществляется вещание на европейскую часть России «Триколор ТВ» – 36° в. д. Это непосредственно над территорией Кении.

 

Конечно, геостационарная орбита имеет много преимуществ. Но все же спутниковое телевещание в нашей стране началось не с нее. Первый советский спутник связи «Молния-1» был выведен на высокую эллиптическую орбиту. Ее апогей (максимальная высота) достигал 40 000 километров и на каждом втором витке находился над территорией СССР. Наклонение орбиты составляло 63,4°. Благодаря этому спутник хорошо был виден принимающими станциями практически на всей территории страны.

 

Конечно, о приеме сигнала на антенны, подобные современным спутниковым тарелкам, и речи быть не могло. В отличие от геостационарных спутников, «зависших» в одной точке, «Молния-1» постоянно перемещался по небу. Траекторию спутника в небе непрерывно отслеживали большие параболические антенны, поворачиваясь вслед его движению.

 

Синдром кесслера

 

Такая орбита была выбрана по двум причинам. На тот момент, а это начало 60-х годов, СССР просто не располагал ракетами-носителями, способными выводить спутники на геостационарную орбиту. Другая причина была в том, что геостационарная орбита не позволяет обеспечить телевещание и связь в высоких широтах и в районах Крайнего Севера.

 

 

Как уже было сказано, наклонение орбиты «Молния» составляло 63,4°. Наклонение геостационарной орбиты – 0°. Как видно из этого сравнения, наклонение орбиты искусственного спутника Земли – это угол между плоскостью его орбиты и плоскостью экватора планеты. Геостационарные спутники расположены прямо над экватором, поэтому и наклонение их орбиты нулевое. Как и в случае с орбитой «Молния», наклонение орбиты имеет важное практическое значение.

 

Российская Национальная орбитальная космическая станция, которая, возможно, придет на смену МКС после 2024 года, как предполагается, будет использовать орбиту с наклонением примерно как у первых спутников связи (64,8 градуса). Это, в частности, позволит с большей эффективностью доставлять грузы с космодромов, расположенных на российской территории.

 

Как правило, понятия «спутник» и «космический аппарат» отождествляются. Но, строго говоря, это не совсем одно и то же. Под спутником мы понимаем в первую очередь искусственный спутник Земли (ИСЗ) – космический летательный аппарат, вращающийся вокруг Земли по геоцентрической орбите. Космический аппарат – более широкое понятие, оно применяется в качестве общего названия технических устройств, используемых для выполнения разнообразных задач в космическом пространстве.

 

Космический аппарат, летящий к Юпитеру, конечно, тоже можно назвать спутником – спутником Солнца, его траектория движения принимает вид орбиты вокруг Солнца. Но, как правило, такие аппараты называют зондами, или автоматическими межпланетными станциями. Автоматическая межпланетная станция (АМС) – это космический аппарат, предназначенный для полета в межпланетном космическом пространстве (не по геоцентрической орбите).

 

 

Автоматическая межпланетная станция – это практически единственный на сегодня способ добраться до планет Солнечной системы. АМС «Луна-1», первая покинувшая зону притяжения Земли в 1959 году, и АМС «Юнона», достигшая орбиты Юпитера в этом году, – тому пример. Но мало кто задумывается, что к своим целям межпланетные зонды летают совсем не по прямой, а для полета используют не только двигатели, но и гравитацию планет посредством гравитационных маневров.

 

Гравитационный маневр – это разгон, замедление или изменение направления полета космического аппарата под действием гравитации небесных тел. Как правило, используется для экономии топлива и дополнительного разгона. Так, АМС «Юнона» в ходе полета к Юпитеру возвращалась к Земле и в результате гравитационного маневра в 2013 году увеличила свою скорость почти в три раза. И только после этого отправилась к своей цели.

 

Синдром кесслера

 

 

Срок службы спутников на орбите составляет несколько лет. Некоторые из них, расположенные на низких орбитах, после завершения своей миссии входят в атмосферу Земли и сгорают. Хотя в некоторых случаях обломки долетают до поверхности Земли. Как это было, например, со станцией «Мир». Но космические аппараты, расположенные на более высоких орбитах, могут находиться на них тысячелетиями. Что, естественно, мешает следующим космическим полетам. Особенно это актуально для геостационарной орбиты, которая, как известно, не безразмерная. Поэтому перед окончанием срока службы космические аппараты на остатках топлива уводят на так называемую орбиту захоронения. Это уменьшает вероятность столкновения с другими спутниками и освобождает место на орбите. Для геостационарных спутников такая орбита расположена на высоте на 200 км выше ГСО.

 

 

С момента вывода первого спутника в космос на орбите осталось огромное количество искусственных объектов: отслужившие свой срок спутники, отработанные ступени ракет, разгонные блоки, обломки взорвавшихся космических аппаратов и фрагменты, образовавшиеся в результате столкновения спутников. Рано или поздно засорение околоземной орбиты космическим мусором приведет к тому, что ближний космос станет полностью непригоден для практического использования. Такой сценарий неблагоприятного развития ситуации (впоследствии названный его именем) впервые детально описал консультант NASA Дональд Кесслер.

 

Синдром кесслера

 

Коварство синдрома Кесслера еще и в том, что чем больше объектов на орбите, тем больше вероятность их столкновения. Если произойдет столкновение двух достаточно больших объектов, то это приведет к появлению большого количества осколков. И каждый из них способен, в свою очередь, столкнуться с другими. Цепная реакция вызовет появление все новых и новых обломков, а следовательно, появление все большего количества космического мусора.

 

Источник: naked-science.ru

Появление и исчезновение космического мусора

Каждый спутник, космический зонд или пилотируемая миссия могут быть потенциальными источниками космического мусора. По мере роста количества спутников на орбите и устаревания существующих, риск лавинообразного развития синдрома Кесслера всё возрастает.

К счастью, взаимодействие с атмосферой на низких околоземных орбитах, которые используются чаще всего[каких?], постепенно уменьшает количество мусора. Столкновения летательных аппаратов с мусором на меньших высотах также не столь опасны, поскольку при этом любые тела теряют скорость, а с ней и свою кинетическую энергию, а затем, как правило, сгорают в плотных слоях атмосферы.

На высотах, где нагрев в результате торможения об атмосферу незначителен[каких?], время жизни космического мусора значительно возрастает. Слабое влияние атмосферы, солнечного ветра и притяжения Луны могут постепенно привести к снижению его орбиты, но на это может потребоваться не одна тысяча лет.

По моделям NASA, на низкой околоземной орбите (высота 200—2000 км) уже с 2007 года было достаточно крупного мусора и спутников для начала синдрома. Согласно расчётам, в среднем каждые пять лет будут происходить крупные столкновения, даже при условии полного прекращения космических запусков, а количество мусора будет расти[3].

Одним из первых о космическом мусоре заговорил польский писатель-фантаст Станислав Лем: «Вокруг самой крупной планеты Сириуса, настоящей жемчужины этой планетной системы, возникло кольцо наподобие колец Сатурна, но состоящее из пустых пивных и лимонадных бутылок. Космонавт, летящий этой дорогой, вынужден обходить не только тучи метеоритов, но и консервные банки, яичную скорлупу и старые газеты». В 1964 году эти слова из «Воспоминаний Ийона Тихого» казались шуткой, а сейчас такое кольцо вокруг Земли уже образовалось. Его, конечно, не видно глазом, но принимать защитные меры уже приходится.

Серьёзность

Коварство синдрома Кесслера заключается в «эффекте домино». Столкновение двух достаточно крупных объектов приведёт к появлению большого количества новых осколков. Каждый из этих осколков способен в свою очередь столкнуться с другим мусором, что вызовет «цепную реакцию» рождения всё новых обломков. При достаточно большом количестве столкновений или взрыве (например, при столкновении между старым спутником и космической станцией, или в результате враждебных действий), количество лавинообразно возникших новых осколков может сделать околоземное пространство совершенно непригодным для полетов[4].

Пожалуй, непревзойденный по количеству объектов (но не самый опасный) выброс космического мусора осуществили Соединенные Штаты в рамках проекта «Вестфорд». И произошло это за год до «выступления» Ийона Тихого. Тогда на полярной орбите высотой 3500—3800 км было распылено 480 млн тончайших медных проволочек-диполей (длиной 17,8 мм и толщиной 17,8 микрона). Идея состояла в том, чтобы создать в космосе искусственную среду, отражающую радиоволны для дальней связи взамен ненадежной ионосфере. Против эксперимента выступили астрономы из британского Королевского общества, в СССР газета «Правда» вышла с заголовком «США засоряют космос». ТАСС выступил заявлением, что «американская военщина полностью игнорирует те опасные последствия, которые могут возникнуть для человечества в связи с засорением околоземного пространства в результате таких экспериментов». Как бы то ни было, проект был вскоре закрыт. Большинство иголок из-за очень малых размеров сошли с орбиты в течение 10 лет. Но даже к 2016 году еще отслеживалось 38 комков иголок, которые не разделились при выбросе, и, будучи относительно крупными объектами, не сходят с орбиты.

В США, России и ЕС ведут постоянный мониторинг космического мусора. На сегодня отслеживается более 17,5 тыс. объектов. Из них 6 тыс. — действующие и неработающие космические аппараты и ступени ракет, а почти 10 тыс. — крупные обломки (5−10 см и более). Для всех этих объектов определяются орбиты, но точно прогнозировать их движение невозможно. Во-первых, есть погрешности измерения положений и скоростей, во-вторых, орбиты обломков все время немного меняются. Прежде всего на их движении сказывается сопротивление атмосферы, плотность которой на большой высоте непостоянна. Определенный вклад дает давление солнечного света, которое зависит от отражательных свойств и ориентации объекта. Есть влияние геомагнитного поля. Наконец, гравитационные возмущения от Луны, планет и неравномерного распределения массы внутри Земли не поддаются абсолютно точному учету. Поэтому «мусорные» объекты, несмотря на свою сугубо классическую природу, представляются на практике облаками вероятности.

Если по прогнозу вероятность столкновения МКС с каким-либо объектом превышает 0,01%, станция включает двигатели и совершает маневр уклонения. Делать это приходится в среднем раз в год, но, например, на 2012 год выпало целых четыре таких маневра. Иногда обнаружить угрозу удается слишком поздно и совершать маневр уже некогда. В таких случаях на станции объявляется эвакуация: экипаж надевает скафандры и занимает места в пристыкованных космических кораблях — их размер гораздо меньше и вероятность попасть под удар ниже. За время эксплуатации МКС такое происходило четырежды.[5]м

Проблема, однако, в том, что отслеживать с Земли можно только крупные обломки — как правило, диаметром больше 10 см. Но никакие защитные панели не устоят даже против сантиметрового «снаряда», летящего с орбитальной скоростью. Она на порядок выше, чем у автоматной пули, которая при таком разгоне приобрела бы энергию разорвавшейся гранаты. И таких «гранат» сантиметрового диаметра и больше, по современным оценкам, вокруг Земли летает уже около 700 тыс. Много? На самом деле — еще не очень. Если бы все эти обломки оказались минами на поверхности Земли, среднее расстояние между ними составило бы 25—30 км. А в космосе они еще и расходятся по высоте.

При взрывном разрушении на орбите появляются тысячи мелких обломков, большую часть из которых нельзя отследить с Земли. Эти фрагменты в свою очередь сталкиваются между собой и дробятся дальше. Такой лавинообразный рост количества орбитального мусора называется синдромом Кесслера, по имени консультанта NASA, который первым описал этот эффект. Неконтролируемое развитие синдрома Кесслера может привести к тому, что полеты в космос (или, по крайней мере, продолжительные работы на низких орбитах) надолго станут невозможными.

Чем меньше объект и чем ниже он движется, тем сильнее тормозит его земная атмосфера. С низких орбит мелкий мусор довольно быстро выпадает на Землю, сгорая в атмосфере. Даже МКС, летящая на высоте 400 км, теряет высоту со скоростью около 100 м в сутки. Но вот на высотах 700—1000 км обломки могут обращаться вокруг Земли веками, сталкиваясь друг с другом и порождая ливни обломков. Именно на этих высотах, где обломки живут долго, наиболее опасно развитие синдрома Кесслера.

Выше начинаются радиационные пояса Земли, и там летает не очень много спутников — в основном аппараты систем глобального позиционирования, поэтому мусора накапливается немного. Исключение — геостационарная орбита на высоте 35 786 км, где находятся сотни работающих и заброшенных аппаратов. Там не бывает быстрых столкновений на пересекающихся курсах: скорости относительных движений — как на автомобильной парковке. Но и они, впрочем, могут вызвать серьезные повреждения хрупких антенн и солнечных батарей, а побитый спутник в сервис не отвезешь. Потому в начале 2000-х годов, во избежание неприятностей, было решено, что все новые спутники после завершения эксплуатации должны переводиться на т.н. орбиту захоронения — примерно на 300 км выше геостационарной.[6]

Предложения по сокращению замусоренности космоса

Проблема космического мусора не решится сама собой. Число только крупных обломков приближается к 20 тыс., а на Землю они выпадают в среднем по одному в сутки (в период солнечного максимума втрое чаще, из-за разогрева и расширения верхней атмосферы, а в периоды минимумов — втрое реже). Но самое главное — синдром Кесслера уже сейчас играет большую роль в умножении числа мусорных объектов, чем новые космические запуски.Предлагается уже на этапе проектирования спутников и верхних ступеней ракет предусматривать средства их удаления с орбиты — торможения до скорости входа в плотные слои атмосферы, где они сгорят, не оставляя опасных крупных частей, либо перевод на «орбиты захоронения» (значительно выше орбит ГСО-спутников).

Также разрабатываются экспериментальные методы для изменения орбит элементов космического мусора, например, с помощью мощного наземного лазера непрерывного действия[7] или лазеров космического базирования.

См. также

  • Космический мусор
  • Орбита захоронения
  • Столкновение спутников Космос-2251 и Iridium 33
  • «Гравитация» — художественный фильм, изображающий столкновения станций и космического мусора
  • https://www.afisha.ru/exhibition/220793/
  • http://unnatural.ru/cascade-effect

Литература

  • D. J. Kessler, B. G. Cour-Palais. Collision Frequency of Artificial Satellites: The Creation of a Debris Belt. // Journal of Geophysical Research, Vol. 83, No. A6, pp. 2637—2646, June 1, 1978.
  • Donald J. Kessler, et al. The Kessler Syndrome: Implications to Future Space operations (англ.) // 33rd ANNUAL AAS GUIDANCE AND CONTROL CONFERENCE. — 2010. — Iss. February.

Источник: wiki2.red


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.