Определение электрической оси сердца на экг таблица


Что такое кардиография

Суть кардиографии состоит в исследовании электрических токов, возникающих при работе сердечной мышцы. Преимуществом данного метода является его относительная простота и доступность. Кардиограммой, строго говоря, принято называть результат измерения электрических параметров сердца, выведенных в виде временного графика.

Благодаря кардиограмме возможно получение следующей информации о сердечной мышце:

  • Частота сердечных сокращений,
  • Физическое состояние сердца,
  • Наличие аритмий,
  • Наличие острых или хронических повреждений миокарда,
  • Наличие нарушений обмена веществ в сердечной мышце,
  • Наличие нарушений электрической проводимости,
  • Положение электрической оси сердца.

Также электрокардиограмма сердца может использоваться для получения информации о некоторых заболеваниях сосудов, не связанных с сердцем.

ЭКГ обычно проводится в следующих случаях:

  • Ощущение аномального сердцебиения;
  • Приступы одышки, внезапной слабости, обмороки;
  • Боли в сердце;
  • Шумы в сердце;
  • Ухудшение состояния больных сердечно-сосудистыми заболеваниями;
  • Прохождение медкомиссий;
  • Диспансеризация людей старше 45 лет;
  • Осмотр перед операцией.

Также проведение электрокардиограмма рекомендуется при:

  • Беременности;
  • Эндокринных патологиях;
  • Нервных заболеваниях;
  • Изменениях в показателях крови, особенно при увеличении холестерина;
  • Возрасте старше 40 лет (раз в год).

Где можно сделать кардиограмму?

Если вы подозреваете, что у вас с сердцем не все в порядке, то можно обратиться к терапевту или кардиологу, чтобы он дал бы вам направление на ЭКГ. Также на платной основе кардиограмму можно сделать в любой поликлинике или больнице.

Методика проведения процедуры

Запись ЭКГ обычно проводится в лежачем положении. Для снятия кардиограммы используется стационарный или переносной аппарат – электрокардиограф. Стационарные аппараты устанавливаются в медицинских учреждениях, а переносные используются бригадами неотложной помощи. В аппарат поступает информация об электрических потенциалах на поверхности кожи. Для этого применяются электроды, прикрепляемые к области груди и конечностям.


Эти электроды называются отведениями. На груди и конечностях обычно устанавливается по 6 отведений. Грудные отведения обозначаются V1-V6, отведения на конечностях называются основными (I,II,III) и усиленными (aVL, aVR, aVF). Все отведения дают несколько разную картину колебаний, однако суммировав информацию со всех электродов, можно выяснить детали работы сердца в целом. Иногда используются дополнительные отведения (D, А, I).

После проведения процедуры обычно требуется расшифровка кардиограммы опытным врачом-кардиологом.

Холтеровское мониторирование

Помимо стационарных аппаратов существуют и портативные аппараты для суточного (холтеровского) мониторинга. Они прикрепляются к телу пациента вместе с электродами и записывают всю информацию, поступающую в течение длительного периода времени (обычно в течение суток). Этот метод дает гораздо более полную информацию о процессах в сердце по сравнению с обычной кардиограммой. Так, например, при снятии кардиограммы в стационарных условиях пациент должен находиться в состоянии покоя. Между тем, некоторые отклонения от нормы могут проявляться при физических нагрузках, во сне и т.д. Холтеровское мониторирование дает информацию о подобных явлениях.

Прочие типы процедур

Существует и еще несколько методов проведения процедуры. Например, это мониторинг с физической нагрузкой. Отклонения от нормы обычно более выражены на ЭКГ с нагрузкой. Наиболее распространенным способом обеспечить организму необходимую физическую нагрузку является беговая дорожка. Этот способ полезен в тех случаях, когда патологии могут проявляться лишь в случае усиленной работы сердца, например, при подозрении на ишемическую болезнь.


При фонокардиографии записываются не только электрические потенциалы сердца, но и звуки, которые при этом возникают в сердце. Процедура назначается, когда необходимо уточнить возникновение шумов в сердце. Данный метод нередко используется при подозрении на пороки сердца.

Рекомендации по прохождению стандартной процедуры

Необходимо, чтобы во время процедуры пациент был спокоен. Между физическими нагрузками и процедурой должен пройти определенный промежуток времени. Также не рекомендуется проходить процедуру после еды, употребления алкоголя, напитков, содержащих кофеин, или сигарет.

Причины, способные повлиять на ЭКГ:

  • Время суток,
  • Электромагнитный фон,
  • Физические нагрузки ,
  • Прием пищи,
  • Положение электродов.

Типы зубцов

Сначала следует немного рассказать о том, как работает сердце. Оно имеет 4 камеры – два предсердия, и два желудочка (левые и правые). Электрический импульс, благодаря которому оно сокращается, формируется, как правило, в верхней части миокарда – в синусовом водителе ритма – нервном синоатриальном (синусном) узле. Импульс распространяется по сердцу вниз, сначала затрагивая предсердия и заставляя их сокращаться, затем проходит атриовентрикулярный нервный узел и другой нервный узел – пучок Гиса, и достигает желудочков. Основную нагрузку по перекачке крови на себя берут именно желудочки, особенно левый, задействованный в большом круге кровообращения. Этот этап называется сокращением сердца или систолой.


После сокращения всех отделов сердца настает время их расслабления – диастолы. Затем цикл повторяется снова и снова – этот процесс и называется сердцебиением.

Состояние сердца, при котором не происходит никаких изменений в распространении импульсов, отражается на ЭКГ в виде прямой горизонтальной линии, называемой изолинией. Отклонение графика от изолинии называется зубцом.

Одно сердечное сокращение на ЭКГ содержит шесть зубцов: P, Q, R, S, T, U. Зубцы могут быть направлены, как верх, так и вниз. В первом случае они считаются положительными, во втором – отрицательными. Зубцы Q и S всегда положительны, а зубец R всегда отрицателен.

Зубцы отражают различные фазы сокращения сердца. P отражает момент сокращения и расслабления предсердий, R – возбуждения желудочков, T – расслабления желудочков. Также используются специальные обозначения для сегментов (промежутков между соседними зубцами) и интервалов (участков графика, включающих сегменты и зубцы) например, PQ, QRST.

Соответствие стадий сокращения сердца и некоторых элементов кардиограмм:


  • P – сокращение предсердий;
  • PQ – горизонтальная линия, переход разряда от предсердий через атриовентрикулярный узел на желудочки. Зубец Q может отсутствовать в норме;
  • QRS – желудочковый комплекс, наиболее часто использующийся в диагностике элемент ;
  • R – возбуждение желудочков;
  • S – расслабление миокарда;
  • T – расслабление желудочков;
  • ST – горизонтальная линия, восстановление миокарда;
  • U – может отсутствовать в норме. Причины появления зубца однозначно не выяснены, однако зубец имеет ценность для диагностики некоторых заболеваний.

Ниже приведены некоторые отклонения от нормы на ЭКГ и их возможные объяснения. Эта информация, разумеется, не отменяет того факта, что целесообразнее доверить расшифровку профессионалу-кардиологу, который лучше знает все нюансы отклонений от норм и связанных с ним патологий.

Основные отклонения от нормы и диагноз

 


Описание Диагноз
Расстояние между зубцами R неодинаково мерцательная аритмия, сердечная блокада, слабость синусного узла, экстрасистолия
Зубец P слишком высокий (более 5 мм), слишком широкий (более 5 мм), состоит их двух половин утолщение предсердий
Зубец P отсутствует на всех отведениях, кроме V1 ритм исходит не из синусного узла
Интервал PQ удлинен атриовентрикулярная блокада
Расширение QRS гипертрофия желудочков, блокада ножек пучка Гиса
Нет промежутков между QRS пароксизмальная тахикардия, фибрилляция желудочков
QRS в виде флажка инфаркт
Глубокий и широкий Q инфаркт
Широкий R (более 15 мм) в отведениях I,V5,V6 гипертрофия левого желудочка, блокада ножек пучка Гиса
Глубокий S в III, V1,V2 гипертрофия левого желудочка
S-T выше или ниже изолинии более чем на 2 мм ишемия или инфаркт
Высокий, двугорбый, остроконечный T перегрузка сердца, ишемия
Т сливающийся с R острый инфаркт

Таблица параметров кардиограммы у взрослых

Показатель Значение,c
QRS 0,06-0,1
P 0,07-0,11
Q 0,07-0,11
T 0,12-0,28
PQ 0,12-0,2

Норма длительности элементов кардиограммы у детей

Показатель Значение,c
QRS 0,06-0,1
P <0,1
PQ 0,2
QT <0,4

Нормы, указанные в таблице, также могут зависеть от возраста.

Ритмичность сокращений


Нарушение ритмичности сокращений называется аритмией. Нерегулярность ритма при аритмии измеряется в процентах. О неправильном ритме свидетельствует отклонение расстояния между аналогичными зубцами более чем на 10%. Синусовая аритмия, то есть, аритмия, сочетающаяся с синусовым ритмом, может быть вариантом нормы для подростков и молодых людей, но в большинстве случаях свидетельствует о начале патологического процесса.

Разновидностью аритмии является экстрасистолия. Он ней говорят в том случае, когда наблюдаются внеочередные сокращения. Единичные экстрасистолии (не более 200 в сутки при холтеровском мониторировании) могут наблюдаться и у здоровых людей. Частые экстрасистолии, появляющиеся на кардиограмме в количестве нескольких штук могут свидетельствовать об ишемии, миокардите, пороках сердца.

Частота сердечного ритма

Этот параметр наиболее прост и понятен. Он определяет количество сокращений за одну минуту. Количество сокращений может быть выше нормы (тахикардия) или ниже нормы (брадикардия). Норма частоты сердечного ритма у взрослых может составлять от 60 до 80 ударов. Однако, норма в данном случае понятие относительное, поэтому брадикардия и тахикардия далеко не всегда могут быть свидетельством патологии. Брадикардия может наблюдаться во время сна или у тренированных людей, а тахикардия – при стрессах, после физических нагрузок или при повышенной температуре.

Нормы частоты сердечных сокращений для детей разных возрастов


Возраст ЧСС, уд/мин
Новорожденные 140-160
6 месяцев 130-135
1 год 120-125
2 года 110-115
3 года 105-110
5 лет 100-105
8 лет 90-100
10 лет 80-85
12 лет и старше 70-75

Типы сердечного ритма

Существует несколько типов сердечного ритма в зависимости от того, где начинает распространяться нервный импульс, приводящий к сокращению сердца:

  • Синусовый ,
  • Предсердный,
  • Атриовентрикулярный,
  • Желудочковый.

В норме ритм всегда синусовый. При этом синусовый ритм может сочетаться как с ЧСС выше нормы, так и с ЧСС ниже нормы. Все остальные типы ритмов являются свидетельством проблем с сердечной мышцей.

Предсердный ритм

Предсердный ритм также нередко появляется на кардиограмме. Является ли предсердный ритм нормальным или же это разновидность патологии? В большинстве случаев предсердный ритм на ЭКГ не является нормальным. Тем не менее, это сравнительно легкая степень нарушения сердечного ритма. Она возникает в случае угнетения или нарушения работы синусного узла. Возможные причины – ишемия, гипертония, синдром слабости синусного узла, эндокринные нарушения. Тем не менее, отдельные эпизоды предсердных сокращений могут наблюдаться и у здоровых людей. Данный тип ритма может принимать как характер брадикардии, так и характер тахикардии.


Атриовентрикулярный ритм

Ритм, исходящий из атриовентрикулярного узла. При атриовентрикулярном ритме частота пульса, как правило, падает до величины менее 60 ударов в минуту. Причины – слабость синусного узла, атриовентрикулярная блокада, прием некоторых препаратов. Атриовентрикулярный ритм, сочетающийся с тахикардией, может встречаться при проведении операций на сердце, ревматизме, инфаркте.

Желудочковый ритм

При желудочковом ритме сократительные импульсы распространяются из желудочков. Частота сокращений падает до значения ниже 40 ударов в минуту. Наиболее тяжелая форма нарушения ритма. Встречается при остром инфаркте, пороках сердца, кардиосклерозе, недостаточности сердечного кровообращения, в предагональном состоянии.

Электрическая ось сердца

Еще одним важным параметром является электрическая ось сердца. Она измеряется в градусах и отражает направление распространения электрических импульсов. В норме она должна быть несколько наклонена к вертикали и составлять 30-69º. При угле в 0-30º говорят о горизонтальном расположении оси, при угле в 70-90º – о вертикальном. Отклонение оси в ту или иную сторону может свидетельствовать о каком-либо заболевании, например, о гипертонии или внутрисердечных блокадах.

Что означают заключения на кардиограммах?


Рассмотрим некоторые термины, которые может содержать расшифровка ЭКГ. Далеко не всегда они свидетельствуют о серьезных патологиях, однако в любом случае требуют обращению к врачу за консультацией, а иногда – дополнительных обследований.

Атриовентрикулярная блокада

Отражается на графике в виде увеличения длительности интервала P-Q. 1 степень болезни отражается в виде простого удлинения интервала. 2 степень сопровождается отклонением параметров QRS (выпадением данного комплекса). При 3 степени отсутствует связь между P и желудочковым комплексом, что означает, что желудочки и предсердия работают каждые в своем ритме. Синдром в 1 и 2 стадии не опасен для жизни, однако требует лечения, поскольку может перейти в чрезвычайно опасную 3 стадию, при которой высок риск остановки сердца.

Эктопический ритм

Любой сердечный ритм, не относящийся к синусовому. Может свидетельствовать о наличии блокад, ишемической болезни сердца или же являться вариантом нормы. Также может появляться в результате передозировки гликозидов, нейроциркуляторной дистонии, гипертонии.

Синусовая брадикардия или тахикардия

Синусовый ритм на ЭКГ, частота которого ниже (брадикардия) или выше (тахикардия) пределов нормы. Может являться как вариантом нормы, так и быть симптомом некоторых патологий. Однако в последнем случае этот симптом, скорее всего не будет единственным, указанным в расшифровке кардиограммы.

Неспецифические изменения ST-T

Что это такое? Эта запись говорит о том, что причины изменения интервала неясны, и требуется дополнительные исследования. Может свидетельствовать о нарушении обменных процессов в организме, например изменении баланса ионов калия, магния, натрия или же эндокринных нарушениях.

Нарушения, связанные с проводимостью внутри желудочков

Как правило, связаны с нарушением проводимости внутри нервного пучка Гиса. Может затрагивать ствол пучка или его ножки. Может приводить к запаздыванию сокращения одного из желудочков. Прямая терапия блокад пучка Гиса не проводится, лечится лишь заболевание, их вызвавшее.

Неполная блокада правой ножки пучка Гиса (НБПНПГ)

Распространенное нарушение желудочковой проводимости. В большинстве случаев, однако, оно не ведет к развитию патологий и не является их следствием. Если больной не имеет проблем с сердечно-сосудистой системой, то данный симптом не требует лечения.

Полная блокада правой ножки пучка Гиса (ПБПНПГ)

Это нарушение является более серьезным, по сравнению с неполной блокадой. Может свидетельствовать о поражениях миокарда. Обычно возникает у людей старшего и пожилого возраста, у детей и подростков обнаруживается редко. Возможные симптомы – одышка, головокружение, общая слабость и усталость.

Блокада передней ветви левой ножки пучка Гиса (БПВЛНПГ)

Встречается у пациентов, имеющих гипертензию, перенесших инфаркт. Может также свидетельствовать о кардиомиопатиях, кардиосклерозе, дефекте межпредсердной перегородки, недостаточности митрального клапана. Не имеет характерных симптомов. Наблюдается в основном у пожилых людей (старше 55 лет).

Блокада задней ветви левой ножки пучка Гиса (Б3ВЛНПГ)

Как отдельный симптом встречается редко, как правило, сочетается с блокадой правой ножки пучка. Может свидетельствовать об инфаркте, кардиосклерозе, кардиомиопатии, кальцинозе проводящей системы. О блокаде свидетельствует отклонение в электрической оси сердца вправо.

Метаболические изменения

Отражают нарушения питания сердечной мышцы. Прежде всего, это касается баланса калия, магния, натрия и кальция. Синдром не является самостоятельным заболеванием, а свидетельствует о других патологиях. Может наблюдаться при ишемии, кардиомиопатии, гипертонии, ревматизме, кардиосклерозе.

Низкий вольтаж ЭКГ

Электроды, установленные на теле пациента, улавливают токи определенного напряжения. Если параметры напряжения ниже нормы, то говорят о низком вольтаже. Это свидетельствует о недостаточной внешней электрической активности сердца и может являться следствием перикардита или ряда других заболеваний.

Пароксизмальная тахикардия

Редкое состояние, отличающееся от обычной (синусовой) тахикардии, прежде всего, тем, что при ней наблюдается очень высокая частота сердечных сокращений – более 130 уд/c. Кроме того, в основе пароксизмальной тахикардии лежит неправильная циркуляция электрического импульса в сердце.

Мерцательная аритмия

В основе мерцательной аритмии лежат мерцание или трепетание предсердий. Аритмия, вызванная мерцанием предсердий, может встречаться и при отсутствии патологий сердца, например, при диабете, интоксикациях, а также при табакокурении. Трепетание предсердий может быть характерно для кардиосклероза, некоторых видов ишемической болезни, воспалительных процессов миокарда.

Синоатриальная блокада

Затруднение выхода импульса из синусного (синоатриального) узла. Этот синдром является разновидностью синдрома слабости синусного узла. Встречается редко, преимущественно у пожилых людей. Возможные причины – ревматизм, кардиосклероз, кальциноз, тяжелая степень гипертонии. Может вести к тяжелой брадикардии, обморокам, судорогам, нарушениям дыхания.

Гипертрофические состояния миокарда

Свидетельствуют о перегрузке тех или иных отделов сердца. Организм чувствует данную ситуацию и реагирует на нее при помощи утолщения мышечных стенок соответствующего отдела. В некоторых случаях причины состояния могут быть наследственными.

Гипертрофия миокарда

Общая гипертрофия миокарда является защитной реакцией, свидетельствующей о чрезмерной нагрузке на сердце. Может приводить к аритмии или сердечной недостаточности. Иногда является следствием перенесенного инфаркта. Разновидностью болезни является гипертрофическая кардиомиопатия – наследственное заболевание, приводящее к неправильному расположению сердечных волокон и несущее в себе риск внезапной остановки сердца.

Гипертрофия левого желудочка

Наиболее часто встречающийся симптом, который не всегда свидетельствует о тяжелых патологиях сердца. Может быть характерен для артериальной гипертензии, ожирения, некоторых пороков сердца. Иногда наблюдается и у тренированных людей, людей, занимающихся тяжелым физическим трудом.

Гипертрофия правого желудочка

Более редкий, но и в то же время гораздо более опасный признак, чем гипертрофия левого желудочка. Свидетельствует о недостаточности легочного кровообращения, тяжелых легочных заболеваниях, пороках клапанов или о тяжелых пороках сердца (тетрада Фалло, дефект межжелудочковой перегородки).

Гипертрофия левого предсердия

Отражается в виде изменения зубца P на кардиограмме. При данном симптоме зубец имеет двойную вершину. Свидетельствует о митральном или аортальном стенозе, гипертонии, миокардите, кардиомиопатиях. Приводит к болям в груди, одышке, повышенной утомляемости, аритмиям, обморокам.

Гипертрофия правого предсердия

Встречается реже, чем гипертрофия левого предсердия. Может иметь множество причин – легочные патологии, хронические бронхиты, эмболии артерий, пороки трехстворчатого клапана. Иногда наблюдается при беременности. Может приводить к нарушениям кровообращения, отекам, одышке.

Нормокардия

Под нормокардией или нормосистолией подразумевается нормальная частота сердечных сокращений. Однако наличие нормосистолии само по себе не является свидетельством того, что ЭКГ в норме и с сердцем все в порядке, так как она может не исключать других патологий, например аритмий, нарушений проводимости, и т.д.

Неспецифические изменения зубца T

Этот признак характерен примерно для 1% людей. Подобное заключение делается в том случае, если его не удается однозначно связать с каким-либо другим заболеванием. Таким образом, при неспецифических изменениях зубца T необходимы дополнительные исследования. Признак может быть характерен для гипертонии, ишемии, анемии и некоторых других заболеваний, а может встречаться и у здоровых людей.

Тахисистолия

Также часто называется тахикардией. Это общее название ряда синдромов, при которых наблюдается повышенная частота сокращений различных отделов сердца. Различают желудочковую, предсердную, суправентрикулярную тахисистолии. Такие виды аритмий, как пароксизмальная тахикардия, мерцание и трепетание предсердий также относятся к тахисистолиям. В большинстве случаев тахисистолии являются опасным симптомом и требуют серьезного лечения.

Депрессия ST сердца

Депрессия сегмента ST часто встречается при высокочастотных тахикардиях. Зачастую она свидетельствует о недостатке снабжения кислородом сердечной мышцы и может быть характерной для коронарного атеросклероза. При этом отмечается появление депрессии и у здоровых людей.

Пограничная ЭКГ

Это заключение нередко приводит в испуг некоторых пациентов, которые обнаружили ее на своих кардиограммах и склонны думать, что «пограничный» означает чуть ли не «предсмертный». На самом деле подобное заключение никогда не дается врачом, а генерируется программой, анализирующий параметры кардиограммы, на автоматической основе. Его смысл состоит в том, что ряд параметров выходит за пределы нормы, однако однозначно сделать вывод о наличии какой-то патологии невозможно. Таким образом, кардиограмма находится на границе между нормальной и патологической. Поэтому при получении такого заключения требуется консультация врача, и, возможно, все не так уж и страшно.

Патологическая ЭКГ

Что это такое? Это кардиограмма, на которой однозначно были обнаружены какие-то серьезные отклонения от нормы. Это могут быть аритмии, нарушения проводимости или питания сердечной мышцы. Патологические изменения требуют немедленной консультации кардиолога, который должен указать стратегию лечения.

Ишемические изменения на ЭКГ

Ишемическая болезнь вызывается нарушением кровообращения в коронарных сосудах сердца и может вести к таким тяжелым последствиям, как инфаркт миокарда. Поэтому выявление ишемических признаков на ЭКГ – очень важная задача. Ишемия на ранней стадии может диагностироваться по изменениям зубца T (подъему или опусканию). При более поздней стадии наблюдаются изменения сегмента ST, а при острой – изменения зубца Q.

Расшифровка ЭКГ у детей

В большинстве случаев расшифровка кардиограммы у детей несложна. Но параметры нормы и характер нарушений может отличаться по сравнению с аналогичными показателями у взрослых. Так, у детей в норме гораздо более частое сердцебиение. Кроме того, несколько отличаются размеры зубцов, интервалов и сегментов.

Пример ЭКГ с расшифровкой

PQ(R) – 0,14 c (норма 0,12-0,2 с)
P – 0,08 c (норма 1/2 PQ)
QRS – 0,08 c (норма 0,06-0,1 с)
Ритм синусовый
ЧСС – 75

Заключение:

Синусовая нормосистолия. Нарушение процессов реполяризации в переднее-перегородочной области левого желудочка. Задне-нижний полублок. Электрическая ось сердца отклонена вправо.

Источник: med.vesti.ru

ПОРЯДОК ДЕЙСТВИЙ ПРИ ОПРЕДЕЛЕНИИ ЭЛЕКТРИЧЕСКОЙ ОСИ СЕРДЦА

1. Измеряем величину зубцов q (если есть) R и S в I отведении и проводим нехитрое вычисление: R — (q+S) = величина (длина) первого вектора (а)

2. Измеряем величину зубцов q (если есть) R и S в aVF отведении и проводим нехитрое вычисление: R — (q+S) = величина (длина) воторого вектора (b)

3. Находим на оси координат ось подписанную «I» и откладываем на ней величину первого вектора — a (красный цвет)

4. Находим на оси координат ось подписанную «aVF» и откладываем на ней величину второго вектора — b (синий цвет)

5. Опускаем перпендикуляры с осей, так чтобы получился прямоугольник (в данном случае) или параллелограмм.

6. Проводим результирующий вектор (зеленый цвет) от точки пересечения всех осей до пересечения перпендикуляров

7. Измеряем угол образованный между нулевой осью и результирующим (зеленым) вектором, это и будет угол альфа или электрическая ость сердца.


Если посмотреть на картинку то все становится понятным, гораздо сложнее все это описывать в тексте, но есть один момент которые важно соблюдать:

Если после вычисления длины вектора получилось отрицательное число, то откладывать вектор нужно соответственно на отрицательную часть оси (обозначена на оси координат пунктиром), то есть в другую сторону от места переселения всех осей!

varianti

Посмотрите на первый «круг», если при вычислении R(aVF)-S(aVF) вы получаете отрицательное число, к примеру (-6,5 мм), то откладывать это вектор нужно в другом направлении. Будьте также внимательны с осями aVL и aVR, обратите внимание где у них находится положительная и отрицательная часть.

На втором «круге» представлен вариант когда вы хотите взять другие отведения для определения оси. Здесь после опущения перпендикуляров образуется параллелограмм, но суть от этого не меняется.

Теперь давайте разберемся какие варианты электрической оси бывают.

Нормальная

От 30° до + 69°.

Горизонтальная

От +0° до +29°.

Вертикальная

От +70° до + 90°.

Отклонена влево

От 0° до — 90°

Отклонена вправо

От +91° до 180°

Ну что, теперь давайте рассмотрим 5 примеров ЭКГ с различными осями.

В отведении I в желудочковом комплексе нет никаких других зубцов кроме R, величина которого равна 9 мм., в отведении aVF похожая картина, поэтому измеряет опять только зубец R, который тут равен 3,5 мм. Вот так мы получили величину двух векторов.

Смотрим на нашу ось координат (расположена в правом верхнем углу). Находим ось I и откладываем на её положительной части вектор равный 9 мм., на положительной части оси aVF откладываем веткор равный 3,5 мм (для удобства здесь масштаб 2:1). Опускаем перпендикуляры (выделены серым цветом). Теперь проводим результирующий вектор через «0» и точку пересечений перпендикуляров (отмечено зеленым). Смотрим куда указывает вектор (это и есть угол альфа). Здесь он где-то около 22-25, что соответствует горизонтальной оси.

alfa-25-goriz

В отведении I в желудочковом комплексе нет никаких других зубцов кроме R, величина которого равна 3,5 мм., — это первый вектор. В отведении aVF кроме зубца R имеется небольшой зубе s глубиной до 1мм, следовательно чтобы вычислить второй вектор нужно от амплитуды (высоты) R вычесть амплитуду (глубину) зубца s, выходит, что второй вектор равен 10 мм. Вот так мы получили величину двух векторов.

Смотрим на нашу ось координат (расположена в правом верхнем углу). Находим ось I и откладываем на её положительной части вектор равный 3,5 мм., на положительной части оси aVF откладываем веткор равный 10 мм (для удобства здесь масштаб 2:1). Опускаем перпендикуляры (выделены серым цветом). Теперь проводим результирующий вектор через «0» и точку пересечений перпендикуляров (отмечено зеленым). Смотрим куда указывает вектор (это и есть угол альфа). Здесь он где-то около 65-68 градусов, что соответствует нормальному положению электрической оси.

alfa-65-norma

В отведении I в желудочковом комплексе есть положительный зубец R и отрицательный s их разность и будет величиной первого вектора и будет равняться 2 мм. В отведении aVF кроме зубца R имеется небольшой зубец q равный 0,5 мм (может и меньше) и зубец s глубиной до 1 мм следовательно чтобы вычислить второй вектор нужно от амплитуды (высоты) R вычесть амплитуду (глубину) зубца q+s, выходит, что второй вектор равен 8 мм. Вот так мы получили величину двух векторов.

Смотрим на нашу ось координат (расположена в правом верхнем углу). Находим ось I и откладываем на её положительной части вектор равный 2 мм., на положительной части оси aVF откладываем веткор равный 8 мм (для удобства здесь масштаб 2:1). Опускаем перпендикуляры (выделены серым цветом). Теперь проводим результирующий вектор через «0» и точку пересечений перпендикуляров (отмечено зеленым). Смотрим куда указывает вектор (это и есть угол альфа). Здесь он почти 75 градусов, что соответствует вертикальному положению электрической оси.

alfa-75-80-vert

В отведении I в желудочковом комплексе есть положительный зубец R и отрицательный s их разность и будет величиной первого вектора. Обратите внимание, что 2-4 = -2, то есть вектор имеет другую направленность. В отведении aVF кроме зубца R имеется небольшой зубец q равный 0,5 мм (может и меньше) следовательно чтобы вычислить второй вектор нужно от амплитуды (высоты) R вычесть амплитуду (глубину) зубца q, выходит, что второй вектор равен 4,5 мм. Вот так мы получили величину двух векторов.

Смотрим на нашу ось координат (расположена в правом верхнем углу). Находим ось I и тут внимание!!! откладываем на её отрицательной части вектор равный 2 мм. Если раньше вектор был направлен вправо, теперь влево. На положительной части оси aVF откладываем веткор равный 4,5 мм тут все как и раньше. Опускаем перпендикуляры (выделены серым цветом). Теперь проводим результирующий вектор через «0» и точку пересечений перпендикуляров (отмечено зеленым). Смотрим куда указывает вектор (это и есть угол альфа). Здесь он около 112-115 градусов, что соответствует отклонению электрической оси вправо

alfa-115-vpravo

В отведении I в желудочковом комплексе есть положительный зубец R и отрицательный s и q, разность R — (s+q). В отведении aVF кроме зубца R имеется глубокий зубец S превышающий амплитуду R, даже на проводя вычислений становиться понятным, что это вектор будет отрицательным. После вычисления получаем число «-7» Вот так мы получили величину двух векторов.

Смотрим на нашу ось координат (расположена в правом верхнем углу). Находим ось I откладываем на её положительной части вектор равный 6 мм. А второй вектор откладываем на отрицательной части оси aVF. Опускаем перпендикуляры (выделены серым цветом). Теперь проводим результирующий вектор через «0» и точку пересечений перпендикуляров (отмечено зеленым). Смотрим куда указывает вектор (это и есть угол альфа). Здесь он около -55 градусов, что соответствует отклонению электрической оси влево

alfa_min-55-levo

Но есть ситуации, когда ось сердца не принято определять вообще, речь идет редких случаях когда сердце повернуто верхушкой внутрь, это бывает например у людей с эмфиземой или после операции АКШ и в ряде других случаев в том числе гипертрофии правых отделов сердца. Речь идет о так называемом S типе ЭКГ, когда во всех отделениях от конечностей имеется выраженный зубец S. Ниже представлен пример такой ЭКГ.

Источник: e-cardio.ru

Мысленно поместим результирующий вектор возбуждения желудочков внутрь треугольника Эйнтховена. Угол, образованный направлением результирующего вектора и осью I стандартного отведения, и есть искомый угол альфа.

Определение электрической оси сердца на экг таблица

Величину угла альфа находят по специальным таблицам или схемам, предварительно определив на электрокардиограмме алгебраическую сумму зубцов желудочкового комплекса (Q + R + S) в I и III стандартных отведениях. Найти алгебраическую сумму зубцов желудочкового комплекса достаточно просто: измеряют в миллиметрах величину каждого зубца одного желудочкового комплекса QRS, учитывая при этом, что зубцы Q и S имеют знак минус (—), поскольку находятся ниже изоэлектрической линии, а зубец К — знак плюс (+). Если какой-либо зубец на электрокардиограмме отсутствует, то его значение приравнивается к нулю (0).

Определение электрической оси сердца на экг таблица

Далее, сопоставляя найденную алгебраическую сумму зубцов для I и III стандартных отведений, по таблице определяют значение угла альфа. В нашем случае он равен минус 70°. Таблица определения положения электрической оси сердца (по Дьеду)

Определение электрической оси сердца на экг таблица

Таблица определения угла альфа

Если угол альфа находится в пределах 50—70°, говорят о нормальном положении электрической оси сердца (электрическая ось сердца не отклонена), или нормограмме. При отклонении электрической оси сердца вправо угол альфа будет определяться в пределах 70—90°. В обиходе такое положение электрической оси сердца называют правограммой.

Если угол альфа будет больше 90° (например, 97°), считают, что на данной ЭКГ имеет место блокада задней ветви левой ножки пучка Гиса. Определяя угол альфа в пределах 50—0° говорят об отклонении электрической оси сердца влево, или о левограмме. Изменение угла альфа в пределах 0 — минус 30° свидетельствует о резком отклонении электрической оси сердца влево или, иными словами, о резкой левограмме. И наконец, если значение у г л а альфа будет меньше минус 30° (например, минус 45°) — говорят о блокаде передней ветви левой ножки пучка Гиса.

Определение электрической оси сердца на экг таблица

Пределы отклонения электрической оси сердца

Определение электрической оси сердца на экг таблица

Сопоставление зубцов К и 3 комплекса QRS

Если на электрокардиограмме в I стандартном отведении желудочковый комплекс представлен R-типом, а комплекс QRS в III стандартном отведении имеет форму S-типа, то в данном случае электрическая ось сердца отклонена влево (левограмма).

Схематично это условие записывается как RI-SIII.

Определение электрической оси сердца на экг таблица

Визуальное определение электрической оси сердца

. Левограмма Напротив, если в I стандартном отведении мы имеем S-тип желудочкового комплекса, а в III отведении R-тип комплекса QRS, то электрическая ось сердца отклонена вправо (правограмма). Упрощенно это условие записывается как SI-RIII.

Определение электрической оси сердца на экг таблица

Визуальное определение электрической оси сердца

. Правограмма Результирующий вектор возбуждения желудочков расположен в норме во фронтальной плоскости так, что его направление совпадает с направлением оси II стандартного отведения.

Определение электрической оси сердца на экг таблица

Нормальное положение электрической оси сердца

(нормограмма) На рисунке видно, что амплитуда зубца R во II стандартном отведении наибольшая. В свою очередь зубец К в I стандартном отведении превосходит зубец RIII. При таком условии соотношения зубцов R в различных стандартных отведениях мы имеем нормальное положение электрической оси сердца (электрическая ось сердца не отклонена). Краткая запись этого условия — RII>RI>RIII.

ЭОС — это суммарное направление электрической волны, которая проходит по желудочкам в момент сокращения. Следует понимать, что электрическая ось сердца не является его анатомической осью. Более того, очень часто при гипертрофии левого или правого желудочков ЭОС в соответствующую сторону отклоняться не будет.

Еще раз коротко: ЭОС — это про направление движения электричества по сердечной мышце.

ЭОС формируется волной деполяризации миокарда желудочков. Если волна прошла сверху вниз — это вертикальная ЭОС. Если справа налево — горизонтальная. Если справа-снизу влево-вверх — отклонение ЭОС влево и т.д. То есть, нас интересует куда движется электричество. Схема отведений, которая видна ниже, показывает какому углу ЭОС соответствует какое ЭКГ-отведение.

В момент сокращения разные ЭКГ-отведения запишут разной формы комплекс, но те электроды, в сторону которых прошла волна, запишут самый высокий положительный зубец R, а те электроды, от которых эта волна удалялась, — самый глубокий S. Электроды, к которым волна сначала приближалась, а затем отдалялась, запишут сначала положительную а затем отрицательную фазу QRS. Запомните эти факты — они нам позже понадобится для определения электрической оси.

В постсоветстких странах система отведений несколько отличается от международно принятой: существуют т.н. «горизонтальная» и «вертикальная» ЭОС, которые в других странах отдельно не выделяются и входят в понятие нормы.

Наглядно разница видна на этих двух схемах:

Определение электрической оси сердца на экг таблица Определение электрической оси сердца на экг таблица

Как видно, сейчас выделяют четыре положения ЭОС:

  • Нормальная (от -30 о до 90 о )
  • Отклонение влево (от -30 о до -90 о )
  • Отклонение вправо (от 90 о до 180 о )
  • Экстремальная правая ЭОС (от -90 о до 180 о )

Как определить положение ЭОС

Мы рассмотрим несколько упрещенный, «студенческий» способ определения ЭОС, который позволит узнать ее направленность с точностью до 10-15 градусов. Этого вам с избытком хватит для ежедневной работы с пациентами. Метод, который даст угол α с точностью до градуса, будет рассмотрен отдельно.

Итак, для того,чтобы определить ЭОС, нужно посмотреть на 6 отведений от конечностей (I, II, III, aVR, aVL, aVF), найти самый «положительный» и «отрицательный» комплекс, а также (по возможности) изоэлектрическое отведение (отведение, в котором положительная и отрицательная части комплекса QRS равны).

Определение электрической оси сердца на экг таблица

  • Мы видим, что самый высокий зубец R в отведении II . Это значит, что волна в основном шла в его сторону.
  • Самый глубокий S в отведении aVR — значит, волна шла ОТ него.
  • В отведении aVL комплекс QRS состоит из одинакового положительного R и отрицательного S — это значит, что волна сначала приближалась кэтому электроду, а потом от него удалялась (прошла мимо).
  • Электрическая ось данного пациента совпадает со II отведением. Глядя на диаграмму выше делаем вывод, что ось — нормальная, угол α = 60°

Определение электрической оси сердца на экг таблица

  • Самый высокий зубец R в отведении I (к нему шла волна деполяризации)
  • Самый глубокий S в отведениях III и aVR — значит, волна шла от них.
  • Изоэлектрический комплекс QRS виден в отведении aVF — значит волна деполяризации прошла поперек этого отведения.
  • Подведем итог: электрическая волна прошла от правых отведений (III, aVR) к I отведению, пройдя поперек отведения aVF. Смотрим на диаграмму чуть выше и определяем ось, как горизонтальную (по-новому: нормальную), угол α = 0 °

Определение электрической оси сердца на экг таблица

  • Самый высокий зубец R в отведении III
  • Самый глубокий S в отведении aVL
  • Почти изоэлектрический комплекс QRS виден в отведении I.
  • Ответ: электрическая волна прошла слева (aVL) направо (III отведение), пройдя почти поперек горизонтального отведения I. Исходя из диаграммы определяем ось, как отклоненную вправо, угол α = 120 °

Определение электрической оси сердца на экг таблица

  • Самый высокий зубец R в отведении aVL
  • Самый глубокий S в отведении III
  • Изоэлектрического отведения нет.
  • Ответ: электрическая волна прошла справа (III отведение) налево (aVL), значит ось у данного больного отклонена влев , угол α ° (скорее всего, около -60 °).

Ещё статьи на тему определения ЭОС

При определении средней электрической оси комплекса QRS необходимо ответить на вопрос: в каком направлении (к оси какого отведения) преимущественно направлен комплекс QRS?

Например, на рис. 5-3 видны высокие зубцы R в отведениях II, III, aVF, что рассматривают как признак вертикального положения ЭОС (вертикальная средняя электрическая ось QRS).

Определение электрической оси сердца на экг таблица

Кроме того, высота зубцов R одинакова в отведениях II и III. На рис. 5-3 высота зубцов R в трёх отведениях (II, III и aVF) одинакова; в этом случае ЭОС направлена к среднему отведению aVF (+90°). Поэтому при простой оценке электрокардиограммы можно предположить, что средняя электрическая ось комплекса QRS направлена между положительными полюсами отведений II и III к положительному полюсу aVF (+90°).

Как правило, средняя электрическая ось комплекса QRS соответствует срединному положению между любыми двумя отведениями, с зубцами R равной высоты.

Поскольку I отведение в шестиосевой диаграмме соответствует 0°, электрическая ось лежит под прямым углом к 0° (угол QRS может составлять -90° или +90°). Если бы угол оси составлял -90°, деполяризация была бы направлена от положительного полюса отведения aVF и комплекс QRS в нём был бы отрицательным. На рис. 5-3 в отведении aVF расположен положительный комплекс QRS (высокий зубец R), поэтому ось должна иметь угол +90°.

Определение электрической оси сердца на экг таблица

Другой пример – на рис. 5-4. При беглом взгляде средняя электрическая ось комплекса QRS горизонтальная, поскольку в отведениях I и aVL комплексы положительные, а в отведениях aVF, III и aVR – преимущественно отрицательные. Точно электрическую ось сердца можно определить по II отведению с двухфазным комплексом RS. Следовательно, ось должна быть направлена под прямым углом ко II отведению. Оно в системе шести осей расположено под углом +60° см. рис. 5-2 , поэтому угол оси может составлять -30° или +150°. Если бы он составлял +150°, в отведениях II, III, aVF комплексы QRS были бы положительными. Итак, угол оси равен -30°.

Следующий пример – на рис. 5-5. Комплекс QRS положительный в отведениях II, III и aVF, поэтому ЭОС относительно вертикальная. Зубцы R имеют равную высоту в I и III отведениях – следовательно, средняя электрическая ось комплекса QRS должна быть расположена между этими двумя отведениями под углом +60°.

Определение электрической оси сердца на экг таблица

По рис. 5-5 среднюю электрическую ось комплекса QRS можно рассчитать иначе, учитывая двухфазный комплекс RS-типа в отведении aVL. Ось должна быть расположена перпендикулярно отведению aVL (-30°), т.е. под углом -120° или +60°. Очевидно, что угол оси составляет +60°. ЭОС должна быть направлена ко II отведению с высоким зубцом R.

Существует общее правило. Средняя электрическая ось комплекса QRS расположена под прямым углом к любому отведению, имеющему двухфазный комплекс. При этом ось направлена к отведениям с высокими зубцами R.

Рассмотрите пример на рис. 5-6.

Определение электрической оси сердца на экг таблица

ЭОС направлена от отведений II, III, aVF к отведениям aVR и aVL, где комплексы QRS положительные. Поскольку зубцы R имеют равную высоту в отведениях aVR и aVL, ось должна быть расположена точно между этими отведениями под углом -90°. Кроме того, в I отведении – двухфазный комплекс RS. В этом случае ось должна быть расположена перпендикулярно I отведению (0°), т.е. угол оси может быть -90° или +90°. Поскольку ось направлена от положительного полюса отведения aVF к его отрицательному полюсу, угол оси должен быть -90°.

Посмотрите на рис. 5-7.

Определение электрической оси сердца на экг таблица

Поскольку в отведении aVR – двухфазный комплекс RS-типа, ЭОС должна быть расположена перпендикулярно оси этого отведения. Угол оси отведения aVR составляет -150°, поэтому средняя электрическая ось комплекса QRS в этом случае должна быть -60° или +120°. Понятно, что угол оси равен -60°, так как в отведении aVL комплекс положительный, а в III – отрицательный. На рис. 5-7 среднюю электрическую ось комплекса QRS можно также рассчитать по I отведению, где амплитуда зубца R равна амплитуде зубца S II отведения. Ось должна быть расположена между положительным полюсом I отведения (0°) и отрицательным полюсом II отведения (-120°); угол оси составляет -60°.

Эти примеры показывают основные правила определения средней электрической оси комплекса QRS. Однако такое определение может быть приблизительным. Ошибка 10-15° не имеет существенного клинического значения. Таким образом, можно определить электрическую ось сердца по отведению, где комплекс QRS близок к двухфазному, или по двум отведениям, где амплитуды зубцов R (или S) приблизительно равны.

Например, если амплитуды зубцов R или S в двух отведениях равны лишь приблизительно, средняя электрическая ось комплекса QRS не лежит точно между этими отведениями. Ось отклонена к отведению с большей амплитудой. Точно так же, если в отведении двухфазный комплекс (RS или QR) с зубцами R и S (или зубцы Q и R) разной амплитуды, ось не точно перпендикулярна этому отведению. Если зубец R больше, чем зубец S (или зубец Q), точки оси удалены от отведения менее чем на 90°. Если зубец R меньше, чем зубец S или Q, точки оси удалены от этого отведения более чем на 90°.

Правила определения средней электрической оси комплекса QRS:

  1. Средняя электрическая ось комплекса QRS располагается посредине между осями двух отведений от конечностей с высокими зубцами R равной амплитуды.
  2. Средняя электрическая ось комплекса QRS направлена под углом 90° к любому отведению от конечностей с двухфазным комплексом (QR или RS) и к отведению, имеющему относительно высокие зубцы R.

Источник: serdce-moe.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.