Дать расшифровку понятиям электролит


Цели и задачи урока:

  • На основе экспериментальных опытов закрепить знания учащихся о свойствах кислот, оснований, солей в свете теории электролитической диссоциации
  • Продолжить развитие речевых навыков, наблюдательности и умения делать выводы на основе экспериментальных опытов и полученных знаний
  • Создать условия для воспитания желания активно учиться, с интересом, без принуждения и перегрузок

Методы и методические приемы:

Индивидуальная работа учащихся с карточками заданий, работы в малых группах, лабораторный химический эксперимент, использование информационно-коммуникационных технологий, сообщения учащихся.

Оборудование:

  • Демонстрационный эксперимент:
  • NaHCO3, лимонная кислота, ступка, пестик, ложечка, стакан с водой;
  • Лабораторный эксперимент:
  • HCl, NaOH, NaCl, индикаторы бумажные, штатив с пробирками.

Ход урока

Тема нашего урока сегодня очень тесно связана с именем этого ученого… (слайд с фотографией С. Аррениуса)

«Он родился в 1859 году в старинном шведском городе Упсале. Уже в 3 года он научился читать, а вскоре поразил близких необычайной страстью к счету. В школе он был среди лучших учеников благодаря способностям к физике и математике. В возрасте 17 лет он был принят в Упсальский университет. И уже через 2 года сдал экзамен на степень кандидата философии. Физик по образованию, он прославился своими химическими исследованиями и стал одним из основателей новой науки — физической химии. Больше всего он занимался изучением поведения веществ в растворах, а также исследованием скорости химических реакций. За разработку теории… ему в 1903 году была присуждена Нобелевская премия. Кто был этот ученый?»

Ответ: Речь идет о Сванте Августе Аррениусе (1859 — 1927), основателе теории электролитической диссоциации.

Что же такое электролитическая диссоциация? Перечислите основные положения теории электролитической диссоциации.

(слайды электролизер, механизм электролитической диссоциации)

Вопрос классу:

Когда в 1887 году появились первые работы С. Аррениуса по диссоциации, его оппоненты (научные противники) приводили «убийственные» доводы против диссоциации. Например, такой: «При растворении NaCl мы получаем соленую воду, которая не только не причиняет вреда организму человека, но, напротив, полезна ему. Если принять точку зрения Аррениуса, то образовавшийся при диссоциации натрий тут же вступит в реакцию с водой». Аррениус быстро нашел ошибку в рассуждениях оппонентов. А вы сможете это сделать?

Ответ: При диссоциации образуется не атом, а ион Na+

NaCl
Дать расшифровку понятиям электролитNa++Cl

Na0 +11/2/8/1 1s22s22p63s1 энергетически невыгодно

Na+ +1 l/2/8 1s22s22p6 энергетически выгодно

Na° — 1 еДать расшифровку понятиям электролитNa+, таким образом атом Na0 химически очень активен, так как имеет незавершенный внешний энергетический уровень.

Расшифруйте понятия электролиты и неэлектролиты. Что такое степень электролитической диссоциации? Дать понятия сильным и слабым электролитам.

Химический диктант:

Какие из перечисленных веществ являются сильными электролитами, а какие слабыми? Впишите формулы веществ в соответствующие колонки таблицы: NaOH, H2SO4, NaCl, Н2СО3, Cu(OH)2, H2S, Na2CO3, Fe(OH)3.


Ответ:

Минеральная вода одного из источников содержит ионы: Na+, K+, Mg2+, I, Сl, SO42-. Какие соли можно взять, чтобы при их растворении в дистиллированной воде получить раствор такого же количественного состава? Запишите формулы солей.

Ответ: NaCl, KCl, MgCl2, NaI, KI, MgI2, Na2SO4, K2SO4, MgSO4

«Мозговая атака»

Вопросы классу:

Заведомо ложное умозаключение, построенное на неправильных положениях, называется софизмом. Попробуйте опровергнуть предложенные софизмы.

1. Все металлы проводят электрический ток, следовательно, все металлы — электролиты.

Ответ: Металлы в воде не растворяются, а электрический ток проводят, потому что в кристаллической решетке металлов есть свободные электроны — «свободный электронный газ». Электролиты проводят электрический ток, потому что в растворах или расплавах распадаются на ионы.

2. Если встать в лужу, в которой лежит оголенный провод, находящийся под напряжением, можно получить смертельный удар током. Следовательно, вода проводит электрический ток.

Ответ: Электрический ток проводит не вода, а соли, растворенные в воде. Дистиллированная вода электрический ток не проводит.


3. В дистиллированной воде приготовили настой лечебных плодов (шиповника, черники, калины). Настой стал проводить электрический ток. Почему?

Ответ: В плодах содержатся кислоты и соли, которые при растворении в воде диссоциируют на ионы, за счет которых настой проводит электрический ток.

4. При рентгеноскопии желудка пациенту дают выпить взвесь BaSO4. Объясните, почему чистый BaSO4 не вызывает отравлений, в то время как зафиксированы случаи со смертельным исходом при применении BaSO4 с примесями Ва Сl 2..

Ответ: Чистый BaSO4 не вызывает отравлений, так как это вещество, не растворимое в воде, а ВаСl2 хорошо растворим в воде и при диссоциации

ВаСl2Дать расшифровку понятиям электролитВа2++2Сl образует ионы Ва2+, которые являются ядом для организма человека.

Ребята, а сейчас вам предстоит выполнить лабораторный эксперимент, но прежде чем мы приступим к эксперименту, давайте вспомним правила по ТБ при работе с кислотами и щелочами.

Задание: В химическую лабораторию поступили 3 склянки с растворами без этикеток. Из накладной лаборанты узнали, что получены растворы НСl, NaOH, NaCl. Как определить каждое вещество и правильно наклеить этикетки? Проведите необходимое исследование.


Пока учащиеся проводят исследования, все слушают сообщения об индикаторах.

Доклад.

Исторический экскурс к опыту "Влияние среды на окраску индикатора".

История открытия вещества, о котором пойдет речь, началась в XVII в. в лаборатории известного английского физика и химика Роберта Бойля (1627-1691). В лаборатории, как обычно, кипела напряженная работа: горели свечи, в ретортах нагревались разнообразные вещества. В кабинет к Бойлю вошел садовник и поставил корзинку с великолепными темно-фиолетовыми фиалками. В это время Бойль собирался проводить опыт по получению серной кислоты. Восхищенный красотой и ароматом фиалок, ученый, захватив с собой букетик, направился в лабораторию. Его лаборант Уильям сообщил Бойлю, что вчера доставили две бутылки соляной кислоты из Амстердама. Бойлю захотелось взглянуть на эту кислоту, и, чтобы помочь Уильяму налить кислоту, он положил фиалки на стол. Затем он взял со стола букетик и отправился в кабинет. Здесь Бойль заметил, что фиалки слегка дымятся от попавших на них брызг кислоты. Чтобы промыть цветы, Бойль опустил их в стакан с водой. Через некоторое время он бросил взгляд на стакан с фиалками, и случилось чудо: темно-фиолетовые фиалки стали красными. Естественно, Бойль, как истинный ученый, не мог пройти мимо такого случая и начал исследования.

Он обнаружил, что и другие кислоты окрашивают лепестки фиалок в красный цвет.
еный подумал, что если приготовить из лепестков настой и добавить немного к исследуемому раствору, то можно будет узнать, кислый он или нет. Бойль начал готовить настой из целебных трав, древесной коры, корней растений. Однако самым интересным оказался фиолетовый настой, полученный из лакмусового лишайника. Кислоты изменяли его цвет на красный, а щелочи — на синий. Бойль распорядился пропитать этим настоем бумагу и затем высушить ее. Так была создана первая лакмусовая бумажка, которая теперь имеется в любой химической лаборатории. Клочок такой бумажки, погруженной в испытуемый раствор, изменяет свой цвет и показывает, кислый это раствор или щелочной. Таким образом, было открыто одно из первых веществ, которые Бойль уже тогда назвал индикаторами. Слово индикатор в переводе с латыни означает «указатель».

Ответ: с помощью индикаторов определили растворы:

НСlДать расшифровку понятиям электролитН++Сl синий лакмусДать расшифровку понятиям электролиткрасный, метиловый оранжевыйДать расшифровку понятиям электролитрозовый, универсальныйДать расшифровку понятиям электролиткрасный, рН< 7

NaOH
Дать расшифровку понятиям электролитNa++OH красный лакмусДать расшифровку понятиям электролитсиний, метиловый оранжевыйДать расшифровку понятиям электролитжелтый,

универсальныйДать расшифровку понятиям электролитоттенки синего, рН>7

NaCl на индикаторы не действует.

Дать определения кислот, оснований, солей с позиции ТЭД.

«У кислот и оснований — сто веков войны
Им о мире разговоры вовсе не нужны.
Только победителей не будет в споре никогда:
В результате всех реакций — соль лишь и вода».

О какой реакции идет речь? Проведите эту реакцию и запишите уравнение в молекулярном и ионном виде.

Ответ: NaOH+HClДать расшифровку понятиям электролитNaCl+H2O

Na++OH+H++ClДать расшифровку понятиям электролитNa++Cl+H2O

H++ OH
Дать расшифровку понятиям электролитH2O

Это реакция нейтрализации.

Давайте проведем такой опыт (демонстрационный эксперимент): если измельчить в ступке соду (NaHCO3) и лимонную кислоту, то между этими веществами реакции не наблюдается. Что нужно сделать, чтобы реакция произошла?

Ответ: высыпать эту смесь в стакан с водой. Реакция протекает бурно.

Алхимики утверждали, что «вещества не реагируют, если они не растворены!»

Какие реакции относятся к реакциям ионного обмена? В каких случаях реакции ионного обмена идут до конца?

«Мысленный эксперимент»

В кабинете химии учитель заранее написал на доске уравнения реакций в молекулярном и ионном виде. Но кто-то пробрался в кабинет и специально стер почти все записи. Вот что осталось на доске:

Аl3++ЗОНДать расшифровку понятиям электролитАl(ОН)3Дать расшифровку понятиям электролит

SO32-+2H+Дать расшифровку понятиям электролитH2O+SO2Дать расшифровку понятиям электролит

H++ OH
Дать расшифровку понятиям электролитH2O

Восстановите запись учителя.

Ответ: AlCl3+3NaOHДать расшифровку понятиям электролитAl(OH)3Дать расшифровку понятиям электролит+3NaCl

Al3++3Cl+3Na++3OHДать расшифровку понятиям электролитAl(OH)3Дать расшифровку понятиям электролит+3Na++3Cl

Аl3++ЗОНДать расшифровку понятиям электролитАl(ОН)3Дать расшифровку понятиям электролит

K2SO3 + 2HClДать расшифровку понятиям электролит2KCl + H2O + SO2Дать расшифровку понятиям электролит

2K++SO32-+2H++2Cl
Дать расшифровку понятиям электролитH2O + SO2Дать расшифровку понятиям электролит+2K++2Cl

SO32-+2H+Дать расшифровку понятиям электролит H2O+SO2Дать расшифровку понятиям электролит

H2SO4 + 2NaOHДать расшифровку понятиям электролитNa2SO4 + 2H2O

2H+ + SO32- + 2Na+ + 2OHДать расшифровку понятиям электролит2Na+ + SO32- + 2H2O

H++ OHДать расшифровку понятиям электролитH2O

А теперь решим расчетную задачу:

Определите, сколько граммов каждого из веществ нужно взять фармацевту для

приготовления 500г 5% спиртового раствора I2? Для смягчения действия этот раствор также содержит 1% глицерина.

m(I2)=500г*5%/100% = 25г

m(глицерина)=500г* 1%/100% = 5г

m(Н2О)=500г — 25г — 5г = 470г

А теперь выполним творческое задание (слайды).

Я прочитаю вам стихотворение, вы посмотрите ход эксперимента в компьютерном варианте и выполните цепочку превращений.

Пусть эти превращения
Дадут вам уравнения.
Красный фосфор я сжигаю,
К дымку воду приливаю.
Проверяю лакмусом,
Станет сразу красным он!
Добавим натрия гидроксид —
Цвет фиолетовый в колбе возник,
Потом получаю фосфат серебра,
Цветом — лимонная кожура.
Растворяю осадок желтый
Добавлением кислоты азотной.
И на доске превращения эти
Вы запишите, милые дети!

PДать расшифровку понятиям электролитP2O5Дать расшифровку понятиям электролитH3PO4Дать расшифровку понятиям электролитNa3PO4Дать расшифровку понятиям электролитAg3PO4Дать расшифровку понятиям электролит H3PO4

1. 4Р+5О2Дать расшифровку понятиям электролит2О5

2. Р2О5 + ЗН2ОДать расшифровку понятиям электролит3РО4

3. H3PO4+3NaOHДать расшифровку понятиям электролит ЗН2О + Na3PO4

H++ OHДать расшифровку понятиям электролитH2O

4. Na3PO4+3AgNO3Дать расшифровку понятиям электролитAg3PO4Дать расшифровку понятиям электролит+3HNO3

PO43-+3Ag+Дать расшифровку понятиям электролит Ag3PO4Дать расшифровку понятиям электролит

5. Ag3PO4+3HNO3Дать расшифровку понятиям электролит3AgNO3+ H3PO4

Напоследок давайте разберёмся ещё с одной историей.

Федя снял аккумулятор с «Жигуля»:
Напряжение упало до нуля,
Феде посоветовал Андрей:
Ты электролит туда залей!
Фёдор взял на кухне соли:
Он учил когда-то в школе,
Что любой электролит,
Если он водой залит,
Распадётся на ионы.
Этих ионов — миллионы!..
Соль — всегда электролит.
Вот готов раствора литр.
Фёдор взял аккумулятор:
Догадайтесь-ка, ребята,
Что сказал ему отец.
Тут истории конец.

Ответ: Конечно, ничего хорошего отец сказать не мог: ведь Федя спутал химическое понятие «электролит» с сернокислотным электролитом для автомобильного аккумулятора: Хорошо ещё, что он не успел залить раствор поваренной соли внутрь аккумулятора, иначе пришлось бы покупать новый.

А теперь подведем итог нашего урока.

Теория электролитической диссоциации широко и плодотворно применялась и применяется для объяснения многообразных химических и физических явлений в растворах, установления между ними тесной связи. Она, по словам Аррениуса, «оказалась применимой и полезной во всех областях современной науки». Академик Н. Н. Семенов писал: «Главное, что внес в науку С. Аррениус, — это теория электролитической диссоциации и представления об энергии активации в химических реакциях. Эти его открытия относятся к числу таких, которые составляют базу современной химии».

И как напоминания о нашем уроке, я предлагаю вам домашнее задание «химический лабиринт», которое могут выполнить все желающие.

К уроку прилагается презентация (приложение 1).

Литература:

  1. Л. Ю. Аликберова «Занимательная химия» Москва «АСТ-пресс» 1999
  2. Е. Я. Аршанская «Методика обучения химии в классах гуманитарного профиля» Москва «Вентана -Граф» 2002
  3. А. Д. Шукайло «Тематические игры по химии» Москва «Творческий центр» 2004

Источник: urok.1sept.ru

Тщательно очищенная от посторонних примесей вода обладает определённой, хотя и незначительной, электрической проводимостью, заметно возрастающей с повышением температуры. Наличие электрической проводимости может быть объяснено только тем, что молекулы воды, частично распадаются на ионы, т.е. H2O является слабым электролитом. Процесс диссоциации воды может быть записан

H2O + H2O ↔ H3O+ + OH¯. Этот процесс называется самоионизацией. Реакцию воды часто записывают в более простом виде:H2O ↔ H+ + OH¯. Константа диссоциации воды может быть вычислена по уравнению

Кд = (aH aOH)/aH2O (1). Учитывая, что при комнатной температуре на ионы распадается лишь одна из примерно 108 молекул воды, активности ионов в уравнении могут быть заменены их концентрациями , а концентрацию нераспавшихся молекул воды можно считать равной общей концентрации молекул воды. Концентрацию молекул можно рассчитать, разделив массу 1 л воды на массу её моля: 1000/18 = 55,5 моль/л. Считая эту величину постоянной, можно уравнение (1) записать в виде: [H+] [OH¯] = Кд 55,5 = Кв, где Кв – ионное произведение воды. При расчётах связанных с водными растворами электролитов, используют не концентрации, активности ионов: aH·aOH = Кв.

Водородным показателем, или pH, называется взятый с обратным знаком десятичный логарифм активности ионов водорода в растворе: pH = — lg aH. Водородный показатель определяет характер реакции раствора. При pH<7 реакция раствора кислая, при pH>7 – щелочная, при pH=7 – реакция нейтральная. Водородный показатель имеет важное значение для понимания большинства процессов, протекающих в жидкой фазе, так как ионы H+ и OH¯ непосредственно участвуют во многих из этих процессов. Кроме того, эти ионы являются гомогенными катализаторами многих реакций. Величина pH может служить критерием силы кислоты или основания. Водородный показатель играет важную роль в жизнедеятельности организма, так в норме pH сыворотки крови равен 7,40 ± 0,05, слёз – 7,4 ± 0,1. отклонение pH от нормальных значений приводит к расстройству деятельности организма. Существенно влияние на урожайность оказывает pH почвы, на экологию водоёма – pH воды.

Индикаторы (позднелат. indicator — указатель), химические вещества, изменяющие окраску, люминесценцию или образующие осадок при изменении концентрации какого-либо компонента в растворе. Указывают на определенное состояние системы или на момент достижения этого состояния.

Различают индикаторы обратимые и необратимые. Изменение окраски первых при изменении состояния системы может быть повторено многократно. Необратимые индикаторы подвергаются необратимым химическим превращениям, например, азосоединения при окислении ионами BrO3 разрушаются. Индикаторы. которые вводят в исследуемый раствор, называют внутренними, в отличие от внешних, реакцию с которыми проводят вне анализируемой смеси. В последнем случае одну или несколько капель анализируемого раствора помещают на бумажку, пропитанную индикатором, или смешивают их на белой фарфоровой пластинке с каплей индикатора.

Индикаторы применяют чаще всего для установления конца какой-либо химической реакции, главным образом конечной точки титрования (к. т. т.). В соответствии с титриметрическими методами различают кислотно-основные, адсорбционные, окислительно-восстановительные и комплексонометрические индикаторы.

Кислотно-основные индикаторы представляют собой растворимые органические соединения, которые меняют свой цвет или люминесценцию в зависимости от концентрации ионов Н+ (рН среды).

Адсорбционные индикаторы — вещества, способные адсорбироваться на поверхности осадка и менять при этом окраску или интенсивность люминесценции. Эти индикаторы, как правило, обратимы и используются в осадительном титровании

Окислительно-восстановительные индикаторы — вещества, способные изменять окраску в зависимости от окислительно-восстановительного потенциала раствора.

Комплексонометрические индикаторы — вещества, образующие с ионами металлов (М) окрашенные комплексы, по цвету отличающиеся от самих индикаторов.

Иногда в качестве комплексонометрических индикаторов применяют комплексонат какого-либо иона (например, [CuY]2-, где Y — анион этилендиаминтетрауксусной кислоты) в смеси с металлохромным индикаторы, например ПАН. При введении определяемого иона М2+ происходит реакция: М2+ + [CuY]2- + ПАН D [MY]2- + [СuПАН]+. При титровании каким-либо комплексоном в к. т. т. окраска раствора меняется от фиолетовой к желто-оранжевой, т.е. очень контрастно. При комплексонометрическом определении Сu используют в качестве индикатора ее комплекс с ПАН, адсорбированный на поверхности осажденного AgI. В этом случае можно определять Ag и Сu при совместном присутствии: в кислой среде раствором KI оттитровывают сначала ионы Ag, а затем комплексоном — ионы Сu.

Применяются также так называемые неокрашенные комплексонометрические индикаторы, избирательно взаимодействующие с ионами определяемого металла с образованием слабо окрашенных (el 103) комплексов, например,сульфосалициловая кислота при титровании Fe (III). Флуоресцентные комплексонометрические индикаторы(или металлофлуоресцентные индикаторы) взаимодействуют с катионами металлов с образованием интенсивно флуоресцирующих хелатов.

21. Типы химических реакций, их характеристика

Источник: studopedia.ru

Диссоциация электролитов

К электролитам относятся вещества с ионной или сильнополярной ковалентной связью. Первые в виде ионов существуют еще до перевода их в растворенное или расплавленное состояние. К электролитам относятся соли, основания, кислоты.

Таблица отличие электролитов от неэлектролитов

Рис. 1. Таблица отличие электролитов от неэлектролитов.

Различают сильные и слабые электролиты. Сильные электролиты при растворении в воде полностью диссоциируют на ионы. К ним относятся: почти все растворимые соли, многие неорганические кислоты (например, H2SO4, HNO3, HCl), гидроксиды щелочных и щелочноземельных металлов. Слабые электролиты при растворении в воде незначительно диссоциируют на ионы. К ним относятся почти все органические кислоты, некоторые неорганические кислоты (например, H2CO3), многие гидроксиды (кроме гидроксидов щелочных и щелочноземельных металлов).

Дать расшифровку понятиям электролит

Рис. 2. Таблица сильные и слабые электролиты.

Как и другие химические реакции, электролитическую диссоциацию в растворах записывают в виде уравнений диссоциации. При этом для сильных электролитов рассматривают процесс как идущий необратимо, а для электролитов средней силы и слабых – как обратимый процесс.

Кислоты – это электролиты, диссоциация которых в водных растворах протекает с образованием ионов водорода в качестве катионов. Многоосновные кислоты диссоциируют ступенчато. Каждая следующая ступень идет все с большим и большим трудом, так как образующиеся ионы кислотных остатков являются более слабыми электролитами.

Основания – электролиты, диссоциирующие в водном растворе с образованием гидроксид-иона ОН- в качестве аниона. Образование гидроксид-иона является общим признаком оснований и обуславливает общие свойства сильных оснований: щелочной характер, горький вкус, мылкость на ощупь, реакцию на индикатор, нейтрализацию кислот и т. д.

Щелочи, даже малорастворимые (например, гидроксид бария Ba(OH)2) диссоциируют нацело, пример:

Соли – это электролиты, диссоциирующие в водном растворе с образованием катиона металла и кислотного остатка. Соли диссоциируют не ступенчато, а нацело:

Теория электролитической диссоциации

Электролиты – вещества, подвергающиеся в растворах или расплавах электролитической диссоциации и проводящие электрический ток за счет движения ионов.

Теория электролитической диссоциации (С. Аррениус, 1887) в современном понимании включает следующие положения:

  • электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные (катионы) и отрицательные (анионы). Ионизация происходит легче всего для соединений с ионной связью (солей, щелочей), которые при растворении (эндотермический процесс разрушения кристаллической решетки) образуют гидратированные ионы.

Дать расшифровку понятиям электролит

Рис. 3. Схема электролитической диссоциации соли.

Гидратация ионов – экзотермический процесс. Соотношение затраты и выигрыша энергии определяет возможность ионизации в растворе. При растворении вещества с полярной ковалентной связью (например, хлороводород HCl) диполи воды ориентируются у соответствующих полюсов растворяемой молекулы, поляризую связь и превращая ее в ионную с последующей гидратацией ионов. Этот процесс является обратимым и может идти как полностью, так и частично.

  • гидратированные ионы устойчивы, беспорядочно передвигаются в растворе. Под действием электрического тока движение приобретает направленный характер: катионы движутся к отрицательному поясу (катоду), а анионы – к положительному (аноду).
  • диссоциация (ионизация) – обратимый процесс. Полнота ионизации зависит от природы электролита (соли щелочи диссоциируют практически нацело), его концентрации (с увеличением концентрации ионизация идет труднее), температуры (повышение температуры способствует диссоциации), природы растворителя (ионизация происходит только в полярном растворителе, в частности, в воде).

Источник: obrazovaka.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.