Повышенная агрегация тромбоцитов причины


Повышение агрегации – маркер гиперагреационного синдрома и тромбофилий. Наиболее часто используются турбидиметрический метод Борна, основанный на регистрации изменений светопропускания обогащенной тромбоцитами плазмы и метод исследования агрегации тромбоцитов, основанный на анализе флуктуаций светопропускания, вызванных случайным изменением числа частиц в оптическом канале.

Материал для исследования. Цитратная богатая тромбоцитами плазма

Метод исследования определяется порядком работы на том или ином типе агрегометра.

В качестве индукторов наиболее часто используют растворы АДФ, ристоцетина, коллагена, адреналина, арахидоновой кислоты. Также могут использоваться растворы тромбина, серотонина и др.

Агрегация тромбоцитов с АДФ

Воздействие малых доз АДФ (обычно 1*10-7 моль) приводит к формированию двойной волны агрегации. Первая фаза (первичная волна) зависит от добавленного экзогенного АДФ, а вторая фаза (вторичная волна агрегации) возникает за счет реакции высвобождения собственных агонистов, содержащихся в гранулах тромбоцитов. Большие дозы АДФ (обычно 1*10-5 моль) приводят к слиянию первой и второй волн агрегации.


При анализе агрегатограмм обращают внимание на общий характер агрегации (одноволновая, двухволновая; полная, неполная; обратимая, необратимая) и скорость агрегации. Появление двухволновой агрегации при стимуляции АДФ в концентрациях, вызывающих в норме обратимую агрегацию (обычно 1-5 мкмоль), указывает на повышение чувствительности тромбоцитов, а развитие одноволновой неполной (а часто и обратимой) агрегации при стимуляции АДФ в концентрациях 10 мкмоль и больше – на нарушение реакции высвобождения тромбоцитов.

Агрегация тромбоцитов с ристоцетином

Определение агрегации тромбоцитов с ристоцетином в плазме применяют для количественной оценки фактора Виллебранда. В основе метода лежит способность ристоцетина стимулировать in vitro взаимодействие фактора Виллебранда с тромбоцитарным гликопротеидом Ib. В большинстве случаев болезни Виллебранда отмечается нарушение ристоцетин-агрегации при нормальном ответе на воздействие АДФ, коллагена и адреналина. Нарушение ристоцетин-агрегации выявляют и при болезни Бернара-Сулье. Для дифференциации применяют тест с добавлением нормальной плазмы: при болезни Виллебранда после добавления нормальной плазмы ристоцетин-агрегация нормализуется, в то время как при синдроме Бернара-Сулье этого не происходит. Индуцированная ристоцетином агглютинация тромбоцитов снижена при большинстве случаев болезни Виллебранда, кроме типа IIВ.

Агрегация тромбоцитов с коллагеном


Агрегация тромбоцитов с коллагеном имеет достаточно выраженную латентную фазу, во время которой происходит активация фосфолипазы С. В зависимости от концентрации используемого реагента продолжительность этой фазы может составлять 5-7 минут. После завершения этого периода в тромбоцитах происходят процессы, приводящие к образованию вторичных посредников, вследствие чего развивается секреция тромбоцитарных гранул и синтез тромбоксана А2, что сопровождается резким усилением межтромбоцитарного взаимодействия.

В лабораторно-клинической практике коллаген чаще всего используют в конечной концентрации 50 мкг/мл, однако коллагены разных фирм могут обладать различной активностью, что необходимо учитывать при их применении.

Агрегация тромбоцитов с адреналином

Адреналин при контакте с тромбоцитами взаимодействует с α2-адренорецепторами, что вызывает ингибирование аденилатциклазы. Не исключено, что механизм, лежащий в основе реализации эффекта адреналина и развития первой волны агрегации, не зависит от образования тромбоксана А2, реакции высвобождения или синтеза фактора агрегации тромбоцитов, а связан со способностью адреналина прямо изменять проницаемость клеточной мембраны для ионов кальция. Вторая волна агрегация возникает как результат реакции высвобождения и продукции тромбоксана А2.

Агрегация тромбоцитов с арахидоновой кислотой


Арахидоновая кислота – природный агонист агрегации, причем ее действие опосредовано эффектами простагландинов G2 и H2, тромбоксана А2, и включает активацию как фосфолипазы C с последующим образованием вторичных посредников, мобилизацией внутриклеточного кальция и расширением процесса активации клеток, так и фосфолипазы А2, что непосредственно приводит к освобождению эндогенной арахидоновой кислоты. Агрегация тромбоцитов с арахидоновой кислотой происходит достаточно быстро, поэтому кривая, характеризующая этот процесс, чаще носит одноволновый характер.

Для индукции агрегации кровяных пластинок арахидоновую кислоту используют в концентрациях 10-3-10-4моль. При работе с арахидоновой кислотой следует учитывать, что на воздухе это вещество очень быстро окисляется.

Пробу на агрегацию с арахидоновой кислотой рекомендуют проводить в случаях использования лекарственных средств, влияющих на реакцию агрегации (например, ацетилсалициловая кислота, пенициллин, индометацин, делагил, диуретики), что нужно учитывать при оценке результатов исследований.

Источник: www.cmd-online.ru

Алена Якименко, Анастасия Свешникова, Елена Артеменко, Михаил Пантелеев
«Природа» №2, 2014


Важнейшую роль тромбоцитов в живом организме открыл итальянский врач и патолог Джулио Биццоцеро, который в 1882 г. провел ряд блестящих экспериментов, имея в своем распоряжении лишь световой микроскоп. Сегодня у нас куда больше измерительных приборов и вычислительных машин, выполняющих сложнейшие математические расчеты, однако множество вопросов остаются открытыми. Известно, что тромбоциты играют ключевую роль в остановке кровотечения из раны (гемостазе*) и опасном перекрывании здорового сосуда (тромбозе). Однако до сих пор неясно, как именно функционирует система гемостаза. Какие причины приводят к ее переключению с защиты организма на развитие угрожающих жизни патологий? Какова роль тромбоцитов в регуляции процессов гемостаза и тромбоза? Не знаем мы, и зачем тромбоциты устроены так сложно, и не представляем всю последовательность событий, обеспечивающих формирование тромба в месте повреждения, а экспериментальные данные приносят с собой новые загадки.

Строение

Тромбоциты (от греч. θρομβοζ — ‘сгусток’ и κυτοζ — ‘клетка’) — специализированные безъядерные клетки крови, имеющие форму диска диаметром около 3 мкм и толщиной около 0,5 мкм (рис. 1). Образуются они при фрагментации больших клеток костного мозга — мегакариоцитов и циркулируют в кровотоке в концентрации 200–400 тыс. клеток в 1 мкл крови. Живут тромбоциты в кровотоке в среднем 5–9 дней, а затем разрушаются в селезенке и печени.


Устроен тромбоцит довольно сложно. Снаружи он ограничен билипидным слоем мембраны, многочисленные впячивания которой (открытая канальцевая система) дают запас поверхности для изменения формы (рис. 2). Поддерживает ее и одновременно позволяет сильно менять цитоскелет (каркас) клетки. Внутри находятся эндоплазматический ретикулум (хранилище ионов кальция, необходимых для сигнализации и выполнения тромбоцитом своих функций) и митохондрии (органеллы, обеспечивающие дыхание). В цитозоле присутствуют гранулы, содержащие вещества, выплескивающиеся при активации клетки (переходе в новое состояние) во внеклеточное пространство. В плотных гранулах содержатся нуклеотиды (АТФ, АДФ, ГТФ, ГДФ), серотонин, ионы кальция в высокой концентрации, в α-гранулах — различные белки (в том числе факторы свертывания крови), а в лизосомах — некоторые ферменты (коллагеназа, эластаза и др.).

После активации тромбоцита на внешней поверхности его мембраны появляется отрицательно заряженный липид — фосфатидилсерин. С ним с помощью ионов кальция связываются некоторые факторы свертывания, формируя специальные комплексы. Они во много раз ускоряют реакции, приводящие к желированию плазмы крови у места повреждения (этот процесс называется плазменным гемостазом). Иными словами, фосфатидилсерин обеспечивает прокоагулянтную, способствующую плазменному гемостазу, функцию тромбоцитов.


Почему же век этих клеток крови столь недолог (эритроциты, например, живут три-четыре месяца), ведь в норме, в отсутствие серьезных повреждений сосудов, они практически не работают? Почему они имеют вид дисков? Зачем тромбоциту митохондрии, если его энергетические расходы крайне скромны? Зачем природе понадобилось ускорять реакции плазменного свертывания на клеточных мембранах? Для чего α-гранулы содержат белки свертывания, которые есть и в плазме крови? Это только некоторые из вопросов, не имеющих пока четких ответов.

Активация

Для выполнения своей основной функции — заделывания повреждения в стенке сосуда — тромбоциты должны перейти в активное состояние. Как и у большинства клеток нашего организма, этот процесс протекает по следующей схеме: сигнал — рецептор — внутриклеточный сигнал — усилитель — регулятор — ответ (рис. 3). Сигналом к активации служит появление в кровотоке агониста — специальной сигнальной молекулы, которая должна появляться только при необходимости и связываться со специфической молекулой, пронизывающей мембрану тромбоцита (рецептором). Агонист взаимодействует с одним «хвостом» рецептора, выступающим снаружи, и это приводит к изменению другого, со стороны цитозоля, где появляется следующая сигнальная молекула — вторичный мессенджер.
 запускает синтез еще нескольких мессенджеров, те, в свою очередь, — еще нескольких, и так сигнал распространяется в цитозоле и усиливается с помощью каскада внутриклеточных реакций, что в конечном итоге приводит к комплексному ответу тромбоцита. Важно, что в тромбоците существуют специальные регуляторные системы, модулирующие концентрации внутриклеточных мессенджеров на разных этапах активации, чтобы, например, не было реакции на следовые количества агониста.

Как же эта схема реализуется в нашем организме? В сосудах тромбоциты выталкиваются эритроцитами из основного потока и движутся вдоль стенок, проводя своего рода мониторинг их состояния. Одним из первых сигналов к активации тромбоцитов становится коллаген — основной белок соединительной ткани, обнажающийся при повреждении сосуда. Обнаружив коллаген, они связываются с ним через специальные рецепторы, одновременно активируясь и прочно прикрепляясь к месту повреждения. Взаимодействие тромбоцита с коллагеном и ведет к запуску упомянутого внутриклеточного сигнального каскада и появлению в цитозоле вторичного мессенджера — инозитолтрифосфата (ИФ3).
а маленькая водорастворимая молекула способна быстро передвигаться в цитозоле и служит сигналом к выходу ионов кальция из внутриклеточных хранилищ. А повышение его внутриклеточной концентрации может приводить к разнообразным ответам тромбоцита: выплескиванию содержимого гранул (секреции), изменению формы, прикреплению к стенке сосуда (адгезии), скреплению с другими тромбоцитами (агрегации), появлению прокоагулянтной активности (рис. 4). После того, как кровеносная система уже распознала повреждение сосуда, в крови появляются еще три природных активатора тромбоцита — тромбин, АДФ и тромбоксан A2. Белок тромбин образуется из предшественника, протромбина, в плазме крови, но массово — уже на мембранах активированных тромбоцитов. При секреции их плотных гранул выбрасывается большое количество АДФ (маленькая молекула, выполняющая в клетках в основном энергетические функции), и гораздо меньше АДФ высвобождается из поврежденных клеток эндотелия, выстилающего внутреннюю поверхность сосудов. Из арахидоновой кислоты, находящейся в мембранах активированных тромбоцитов, синтезируется тромбоксан А2. Связывание этих трех активаторов со своими рецепторами на мембране тромбоцита приводит, как и в случае с коллагеном, к появлению ИФ3 в цитозоле и повышению в нем концентрации кальция (рис. 4). Таким образом, все три растворимых активатора и коллаген действуют по одному пути, однако вызывают разные тромбоцитарные ответы.
пример, тромбоксан А2 провоцирует выброс плотных гранул, а АДФ — нет. Активация отдельно коллагеном или тромбином вызывает все перечисленные ответы одновременно, а совместно — приводит к появлению группы прокоагулянтных тромбоцитов и синтезу тромбина на их мембранах. Видимо, существуют еще недостаточно изученные различия в сигнализации, запускаемой разными агонистами. Чтобы случайная активация не превращала тромбоцит в настоящую «бомбу», несущуюся в кровотоке и запускающую всю систему свертывания, в организме неповрежденные клетки эндотелия постоянно выделяют простациклин и оксид азота, которые блокируют активацию клеток, препятствуя повышению в них концентрации кальция.

Сигнализация — один из самых сложных и плохо изученных разделов в исследовании тромбоцитов. По устройству каждого рецептора и сигнального пути существует множество вопросов, и самый простой из них: зачем вообще столько активаторов?

Цитоскелет и изменение формы

Цитозоль тромбоцита пронизан трехмерной сетью из водонерастворимых белковых нитей (филаментов), которая формирует цитоскелет. Филаменты состоят из полимеризованного белка актина и обеспечивают изменение формы тромбоцита при активации. Кроме того, непосредственно под плазматической мембраной находится мембранный скелет, связанный с цитоплазматическими «хвостами» некоторых рецепторов.
стоит он из коротких актиновых филаментов, соединенных друг с другом с помощью специальных белков. Мембранный скелет не только поддерживает плазматическую мембрану, регулируя контуры клетки, и стабилизирует ее, предотвращая фрагментацию, но и регулирует распределение в плоскости мембраны рецепторов, прикрепленных к нему. Также предполагают, что он играет важную роль в регуляции различных внутриклеточных событий, которые запускаются при активации.

Интересно, что цитоскелет — структура динамичная, благодаря которой тромбоцит может не только менять форму, но и отращивать «щупальца» (филоподии). С их помощью он распластывается по поверхности поврежденного сосуда (рис. 5) и легче прилепляется к другим тромбоцитам (рис. 6). Относительно недавно было обнаружено, что при сильной активации (одним тромбином или вместе с коллагеном) тромбоциты разделяются на две группы (субпопуляции), сильно отличающиеся по свойствам и даже форме, что предполагает принципиально разную организацию в них цитоскелета. Одни из них («обычные» активированные) имеют вид амеб — комков с филоподиями, другие (прокоагулянтные, так как на внешней поверхности их мембраны много фосфатидилсерина) — шариков без «щупалец». Полученные в нашей лаборатории данные свидетельствуют о том, что некоторые мембранные рецепторы, отвечающие за связывание клеток с поверхностью и друг с другом, у тромбоцитов из двух субпопуляций неодинаково прикреплены к цитоскелету. А это значит, что они могут по-разному взаимодействовать с поврежденной сосудистой стенкой и друг с другом в формирующемся тромбе.

Последовательность процессов при перестройке цитоскелета тромбоцита вообще изучена пока достаточно мало, а тут уже новый вопрос: зачем одним клеткам при активации становиться «амебами», а другим — «шариками»?

Адгезия и агрегация

Чтобы залатать неисправный сосуд и предотвратить кровопотерю, тромбоцитам нужно прикрепиться к месту «аварии» (адгезия) и друг к другу (агрегация). Первые обнаружившие повреждение клетки прикрепляются к нему и формируют нижний слой тромба. К ним прилепляются новые тромбоциты из потока, и постепенно образуется тромбоцитарный агрегат (рис. 6). Но между клетками в нем остаются промежутки, через которые может просачиваться плазма крови, поэтому она желируется вблизи места повреждения в результате реакций между факторами свертывания. Образующийся гель заполняет промежутки между тромбоцитами и полностью останавливает вытекание крови из раны. Адгезия и агрегация в норме ведут к перекрыванию места «аварии» и предотвращению кровопотери, а при патологических условиях, плохо пока изученных, вызывают формирование тромбов, мешающих нормальному кровотоку в здоровых сосудах. Их тромбирование является причиной многих сердечно-сосудистых заболеваний, в том числе инфарктов и инсультов.

Адгезия происходит за счет связывания специальных рецепторов, гликопротеинов (ГП) VI и Ib и интегрина αIIbβ3 (или ГП IIbIIIa), на мембране тромбоцита с определенными белками на поверхности поврежденного сосуда. Агрегация же происходит за счет ГП Ib и IIbIIIa и представляет собой образование связи между двумя рецепторами посредством растворенного в плазме крови лиганда (от лат. ligare — ‘связывать’; вещество, специфически соединяющееся с рецептором). Гликопротеинам Ib и VI для связывания лигандов не требуется дополнительных условий, в отличие от ГП IIbIIIa, который приобретает такую способность только благодаря своим конформационным изменениям, происходящим после активации тромбоцита. Фибриноген и фактор Виллебранда, основные лиганды интегрина αIIbβ3, обладают симметричной структурой и поэтому взаимодействуют одновременно с двумя рецепторами на соседних активированных тромбоцитах, формируя между ними скрепляющие «мостики» (рис. 4).

Рассмотрим приближенную последовательность событий, происходящих с тромбоцитами при нарушении целостности сосуда. Повреждение эндотелия приводит к выставлению в кровоток коллагена, на который из плазмы крови тут же садятся молекулы фактора Виллебранда. Тромбоциты, приносимые к месту травмы, связываются с ними, а затем с коллагеном через рецепторы ГП Ib и ГП VI соответственно. Это запускает сигнальные процессы, приводящие к активации интегринов αIIbβ3 и к началу формирования тромба. По мере того как клетки склеиваются друг с другом за счет интегринов αIIbβ3, они секретируют тромбоксан А2 и АДФ, которые активируют интегрины αIIbβ3 на проносящихся в потоке тромбоцитах, вовлекая их в растущий тромб.

В нашем организме размеры сосудов и скорости кровотока меняются от аорты с диаметром 2,5 см и средней скоростью потока 48 см/с до мельчайших капилляров диаметром 0,0008 см и скоростью течения крови 0,1 см/с. Тромбоциты обладают уникальной способностью формировать стабильные контакты друг с другом в этом широком диапазоне условий. А удается им это благодаря тому, что при разных условиях вклад различных рецепторов, осуществляющих прикрепление тромбоцитов к стенке сосуда или друг к другу, сильно меняется. И когда работа одного рецептора оказывается неэффективной, инициативу подхватывает другой, лучше приспособленный к данным условиям.

Напомним, что традиционной схемой скрепления двух тромбоцитов является образование связей «рецептор на одной клетке — лиганд в плазме — рецептор на другой». Однако недавно нам удалось показать, что существует еще одна схема — «рецептор на одной клетке — лиганд на другой» [5]. На внешней поверхности мембраны прокоагулянтных тромбоцитов непонятным пока образом удерживается большое количество белков α-гранулярного происхождения, в частности фибриноген и фактор Виллебранда. Из-за этой белковой «шубы» такие тромбоциты некоторое время назывались в литературе «укутанными», при этом интегрины αIIbβ3, основные рецепторы агрегации, на них парадоксальным образом неактивны и не могут связывать свои лиганды. В связи с этим долгое время считалось, что прокоагулянтные тромбоциты вообще не могут агрегировать, однако, как мы выяснили, способны слепляться с «обычными» активированными тромбоцитами (но не друг с другом). И происходит это за счет связывания активных интегринов αIIbβ3 на поверхности «обычных» активированных тромбоцитов и лигандов этого рецептора, удерживаемых на поверхности прокоагулянтных тромбоцитов в составе их белковой «шубы».

Сегодня уже достаточно хорошо известно, как запускается и происходит рост тромба, но неясно, как этот процесс останавливается. Почему в норме рост тромба со временем прекращается, не приводя к закупорке сосуда? Вероятно, ответ на этот вопрос кроется в сложном одновременном действии множества факторов, оказывающих влияние на рост тромба, включая локальные условия кровотока и концентрации растворимых агонистов — таких как АДФ, тромбоксан А2 и тромбин.

Итак, прокоагулянтные тромбоциты по сравнению с «обычными» активированными обладают лучшей способностью ускорять плазменный гемостаз и особым механизмом агрегации — могут скрепляться с «обычными» активированными тромбоцитами, но не с себе подобными. Формирование субпопуляций, обладающих уникальными комбинациями свойств, — один из самых интересных и сложных феноменов в науке о тромбоцитах. Экспериментальных данных, накопленных в результате более 15 лет продолжающихся исследований, достаточно, чтобы предполагать, что субпопуляции этих клеток играют разные роли в регуляции роста тромба. Сейчас в нашей и нескольких зарубежных лабораториях ведется активная работа по выявлению (пато)физиологической роли тромбоцитарных субпопуляций и исследование их пространственного распределения в растущих тромбах. Эти знания позволят разработать новые лекарства, избирательно влияющие на клетки разных субпопуляций. Так мы сможем вмешиваться в регуляцию роста тромба и предотвращать развитие патологических процессов (тромбоза), а там, где это требуется, наоборот, стимулировать нормальный гемостаз.

***

Тромбоциты обеспечивают остановку кровотечения и одновременно играют главную роль в тромбозе. Постепенно все больше вопросов, связанных с этими клетками, находят ответы, но тромбоциты таят в себе еще очень много секретов. Достаточно добавить, что в последние 20 лет было обнаружено их участие в иммунном ответе, воспалении, регенерации тканей, ангиогенезе (образовании новых кровеносных сосудов) и даже развитии опухолей. Дальнейшее изучение тромбоцитов поможет лучше понять протекание многих жизненно важных процессов нашего организма, но в первую очередь станет решающим шагом в победе над тромбозом — основной причиной смертности в развитых странах.

Работа выполнена при поддержке Программы фундаментальных исследований Президиума РАН «Молекулярная и клеточная биология» и Российского фонда фундаментальных исследований (проекты № 12-04-31401, 12-04-31788, 12-04-31873, 12-04-32246, 12-04-33055, 13-04-00401, 14-04-00670).

Литература
1. Ohlmann P., Eckly A., Freund M. et al. ADP induces partial platelet aggregation without shape change and potentiates collagen-induced aggregation in the absence of Galphaq // Blood. 2000. V. 96. № 6. P. 2134–2139.
2. White J. G. Electron microscopy methods for studying platelet structure and function // Platelets and megakaryocytes / Eds J. M. Gibbins, M. P. Mahaut-Smith. Totowa; N. J., 2004. P. 47–63.
3. Fatisson J., Mansouri S., Yacoubet D. et al. Determination of surface-induced platelet activation by applying time-dependency dissipation factor versus frequency using quartz crystal microbalance with dissipation // J. R. Soc. Interface. 2011. V. 8. № 60. P. 988–997.
4. Gerrard J. M., White J. G., Rao G. H. et al. Effects of the lonophore A23187 on the blood platelets II. Influence on ultrastructure // Am. J. Pathol. 1974. V. 77. № 2. P. 151–166.
5. Yakimenko A. O., Verholomova F. Y., Kotova Y. N. et al. Identification of different proaggregatory abilities of activated platelet subpopulations // Biophys. J. 2012. V. 102. № 10. P. 2261–2269.

Источник: elementy.ru

Наиболее распространенные способы оценки агрегации тромбоцитов заключаются в исследовании скорости и степени уменьшения оптической плотности (увеличения светопропускающей способности) тромбоцитарной плазмы при перемешивании с индукторами агрегации (при изучении спонтанной агрегации они не добавляются). Образование агрегатов тромбоцитов под действием стимуляторов может быть оценено также визуально, или с помощью микроскопа.

Качественный макроскопический метод

Принцип: Определяется визуально наличие или отсутствие агрегатов тромбоцитов в пробирке, где исследуемая тромбоцитарная плазма перемешивается со стимулятором агрегации.

Реактивы: 1. 3,8 % раствор цитрата натрия. 2. Раствор АДФ в изотоническом растворе натрия хлорида или буфере Михаэлиса рН 7,35 в концентрации 20 мкг/мл. 3. 0,85 % раствор хлорида натрия или буфер Михаэлиса, рН 7,35 (Веронал-ацетатный буфер Михаэлиса (пропись Оврена-Коллера): раствор А-диэтилбарбитуровокислый натрий — 7,35 г, ацетат натрия — 4,86 г, дистиллированная вода — 250 мл; буфер: раствор А — 250 мл, 4,25 % раствор натрия хлорида — 200 мл; 0,1 моль/л раствор НС1 — 217 мл, дистиллированная вода — 683 мл).

Оборудование: 1. Водяная баня на 37 °С. 2. Секундомер.

Материал для исследования: Тромбоцитарная плазма, лучше со стандартным содержанием тромбоцитов (250000 в 1 мкл). За 7-10 дней до обследования лекарственные препараты отменяют, так как многие из них (дипиридамол и его производные, ацетилсалициловая кислота и ее производные, индометацин, гироксихлорохин, фенилбутазон, сульфин-пиразон, низкомолекулярные декстраны, трициклические антидепрессанты и др.) угнетают агрегацию тромбоцитов.

Ход определения: Набирают в пробирку 0,2 мл плазмы и ставят ее в водяную баню при 37 °С. Через 1 мин добавляют 0,1 мл раствора АДФ и немедленно включают секундомер. Покачивая или потряхивая пробирку, отмечают время образования в смеси крупных агрегатов тромбоцитов.

Нормальные величины: 10-60 с.

Клиническое значение: При тромбастении Гланцманна агрегация тромбоцитов не наступает.

Примечание: Исследование агрегации тромбоцитов совместно с некоторыми другими методами позволяет выявить формы нарушений функций тромбоцитов (табл. 1).

Макроскопическим методом может быть исследована также агрегация под действием коллагена (в конечных концентрациях 20-50 мкг/мл), ристоцетина (ристомицина) и бычьего фибриногена (оба в конечных концентрациях 1-1,5 мг/мл). В случае нарушения реакции высвобождения тромбоцитов агрегация не развивается при перемешивании с коллагеном; для болезни Виллебранда характерен дефект ристомицин-агрегации; болезнь Бернара — Сулье распознается по отсутствию одновременно ристомицин- и фибриноген-агрегации.

Таблица 1.
Наиболее частые формы врожденных нарушений функций тромбоцитов

Аггристин-тест

Реактивы и оборудование: 1. растворы аггристина 12 и 15 мг/мл; 2. часовые стекла.

Материал для исследования: богатая тромбоцитами цитратная плазма

Ход определения: К 0,45 мл богатой тромбоцитами плазмы на часовом стекле добавляют 0,05 мл раствора аггристина, и, постоянно премешивая, начинают отсчет времени до появления видимых агрегатов ("симптом снежного вихря"). Для первого исследования достаточно использовать раствор аггристина концентрацией в 12 и 15 мг/мл. В сомнительных случаях целесообразно приготовить полный ряд растворов. Во всех случаях тест следует начинать с исследования контрольной плазмы, богатой тромбоцитами, которая смешана с раствором аггристина наибольшего разведения. Необходимо проводить два параллельных исследования. Для реакции достаточна комнатная температура.

Оценка результатов: У страдающих болезнью Виллебранда агрегаты не возникают или образуются значительно позже. Он меньше, чем агрегаты контрольной плазмы. При разнице в 10 сек результат исследования свидетельствует о патологических изменениях, а при разнице в 5-10 с результат сомнительный. В последнем случае очень важно провести исследование полным рядом разбавленных растворов.

Источник: diseases.medelement.com

Тромбоциты предотвращают потерю крови, соединяясь друг с другом на стенке поврежденного сосуда. Этот процесс – склеивания тромбоцитов – и называется агрегацией. Процесс агрегации тромбоцитов в конгломераты состоит в следующем: при травме сосуда тромбоциты соединяются с фактором Виллебранда и коллагеном субэндотелиального слоя.
В здоровом организме агрегация носит защитный характер: тромбоциты закупоривают рану и кровотечение останавливается.
В некоторых случаях образование тромбов нежелательно, поскольку они перекрывают сосуды в жизненно важных органах и тканях:
1.Повышенная активность тромбоцитов может привести к инсульту, инфаркту.
2.Пониженная выработка тромбоцитов часто приводит к большой потере крови. Частые кровотечения, которые долго не прекращаются, приводят к истощению и анемии (малокровию).
Для того чтобы предупредить заболевание, необходимо контролировать уровень тромбоцитов и их способность к агрегации.

Различают несколько видов агрегации:
1.спонтанная — определяется без вещества-индуктора;
2.индуцированная — исследование проводится с добавлением в плазму индукторов. Как правило, используют четыре вещества: АДФ, коллаген, адреналин и ристомицин. Метод применяется для определения ряда заболеваний крови.
 

Особое значение имеет спонтанная агрегация тромбоцитов, когда избыток агрегатов тромбоцитов циркулирует в системном кровотоке.

По степени выраженности:
1.умеренная — наблюдается при беременности. Вызвана плацентарным кровообращением;
2.низкая — встречается при патологиях кровеносной системы. Снижение уровня тромбоцитов может привести к различным кровотечениям. Наблюдается у женщин в период менструации;
3.повышенная — приводит к увеличенному тромбообразованию. Это проявляется в виде отёков, чувства онемения.

Пониженный уровень агрегации не менее опасен для здоровья и жизни пациента, чем повышеннный. Недостаточное склеивание тромбоцитов (гипоагрегация) вызывает плохую свёртываемость крови (тромбоцитопению). В результате не происходит образование сгустков (тромбов), что приводит к образованию сильных кровотечений.
Различают наследственную и приобретённую гипоагрегацию тромбоцитов.
Низкая агрегационная способность активизируется вирусной или бактериальной инфекцией, физиопроцедурами, приёмом лекарственных препаратов.
Большое значение имеет уровень агрегации во время беременности, т.к. нарушение этого процесса приводит к серьёзным последствиям.
Гиперагрегация тромбоцитов опасна не только для матери, но и для малыша, поскольку может спровоцировать выкидыш или самопроизвольный аборт на ранних сроках.

Основные причины повышенной агрегации тромбоцитов при беременности:
1.обезвоживание организма в результате рвоты, частого стула, недостаточного питьевого режима;
2.заболевания, которые могут спровоцировать вторичное повышение уровня тромбоцитов.

Снижение агрегационной способности не менее опасно для здоровья беременной женщины и плода, чем гиперагрегация. При таком состоянии сосуды становятся хрупкими, возникают синяки на теле, начинают кровоточить дёсны. Это происходит из-за нарушения качественного состава тромбоцитов или их недостаточной продукции. Гипоагрегация может спровоцировать маточное кровотечение во время и после родов.

Снижение уровня тромбоцитов провоцируют следующие факторы:
1.приём лекарственных препаратов — мочегонные, антибактериальные;
2.аутоиммунные и эндокринные заболевания;
3.аллергия;
4.сильный токсикоз;
5.неправильное питание;
6.нехватка витаминов В12 и С.

Исследование на показатель уровня агрегации тромбоцитов является важной диагностической процедурой, которая позволяет выявить серьёзные заболевания, снизить риск развития осложнений и провести своевременную терапию.

Источник: sadkomed.ru

Тромбоцитоз: причины появления, при каких заболеваниях возникает, диагностика и способы лечения.

Определение

Тромбоциты – клетки крови, которые участвуют в процессе ее свертывания. Их основная роль – образование тромба, или сгустка крови, закрывающего рану при кровотечении. Избыточное количество тромбоцитов в крови называют тромбоцитозом — данное состояние часто протекает бессимптомно и может быть опасным для жизни.

Разновидности тромбоцитозов

Под тромбоцитозом в широком смысле понимают увеличение количества тромбоцитов в периферической крови выше 400 тыс./мкл.

Тромбоцитоз.jpg С точки зрения патологического процесса тромбоцитоз подразделяют на первичный и реактивный.

Реактивный тромбоцитоз возникает вследствие патологического процесса без участия гемопоэтических (кроветворных) стволовых клеток, часто это нормальная реакция на кровотечение.

Первичный тромбоцитоз развивается в результате нарушения системы кроветворения и деления стволовых клеток в костном мозге.

Возможные причины тромбоцитоза
В редких случаях тромбоцитоз сохраняется и во взрослом возрасте.

Патологические механизмы, приводящие к развитию тромбоцитоза, многообразны и требуют дифференциального подхода к диагностике.

Реактивное повышение количества тромбоцитов наблюдается в следующих случаях:

  • Инфекционно-воспалительные заболевания — одна из самых частых причин реактивного тромбоцитоза. Количество тромбоцитов в периферической крови увеличивается при пневмонии, сепсисе, остеомиелите, а также после хирургических вмешательств и травм. При системных воспалительных заболеваниях соединительной ткани, например при ревматоидном артрите, повышается уровень цитокинов, которые стимулируют образование тромбоцитов. По мере уменьшения признаков воспаления снижается и количество тромбоцитов.
  • Железодефицитная анемия – распространенное заболевание, которое встречается во всех возрастных группах.
  • Спленэктомия (операция по удалению селезенки) – еще одна причина реактивного тромбоцитоза. Уровень тромбоцитов растет в течение первых 3 недель после оперативного вмешательства. Это происходит за счет того, что до удаления селезенки часть тромбоцитов находилась в тромбоцитарном депо (резервуаре) селезенки и не учитывалась в анализе крови.
  • Нарушение функции селезенки (аспления), приводящее к тромбоцитозу, может происходить в результате травм, опухолевых процессов в селезенке, при серповидно-клеточной анемии и тромбозах сосудов селезенки.
  • Злокачественные новообразования меняют баланс цитокинов (белков, которые вырабатывают клетки иммунной системы при воспалении) с увеличением образования тромбоцитов. Тромбоциты в данном случае участвуют в образовании метастазов, создавая связь между собой и опухолевыми клетками. Наряду с этим механизмом развития тромбоцитоза злокачественные опухоли проходят стадию распада, которая характеризуется кровопотерей и реактивным тромбоцитозом.

Среди первичных тромбоцитозов выделяют семейный тромбоцитоз – редкое состояние, которое возникает вследствие мутации гена тромбопоэтина и генов тромбопоэтиновых рецепторов.

Тромбоцитоз в некоторых случаях ассоциирован с мутациями, характерными для миелопролиферативных заболеваний: истинной полицитемии, идеопатического миелофиброза и эссенциальной полицитемии. В данном случае прослеживается наследственный характер заболевания (у родственников диагностированы миелопролиферативные патологии). В костном мозге активируется деление стволовых клеток вследствие генетического дефекта. Симптомы зависят от основного заболевания и напрямую с ним связаны.

  • Истинная полицитемия характеризуется повышением образования форменных элементов крови и их количества в периферической крови. Среди симптомов наблюдается расширение вен, что вызывает покраснение кожи вплоть до темно-вишневого цвета. Часто заболевание сопровождается зудом и жгучими болями кончиков пальцев рук и ног. Боль возникает при закрытии просвета мелких сосудов тромбами, которые образуются из-за большого количества тромбоцитов в крови. Истинной полицитемии часто сопутствуют язвенная болезнь желудка и боли в суставах.

Полицитемия.jpg

  • Эссенциальный тромбоцитоз характеризуется изолированным повышением количества тромбоцитов без изменения других форменных элементов крови (эритроцитов и лейкоцитов). У больных многократно повышается вероятность патологического тромбообразования с последующим развитием инфарктов и инсультов. К группе риска относятся лица старше 60 лет, в прошлом имевшие в анамнезе кровотечения или тромбозы, а также те, у кого уровень тромбоцитов периферической кровы выше 1000х109/л. Заболевание может протекать бессимптомно или сопровождаться слабостью, периодическими болями в груди, головокружением, онемением кистей рук и стоп, ощущением жжения в пальцах.
  • Хронический миелоидный лейкоз является частой причиной первичного тромбоцитоза. Возникает генетическая аномалия – филадельфийская хромосома (участки 9-й и 22-й хромосомы меняются местами), что способствует ускорению деления клеток и нарушает восстановление поврежденной структуры ДНК. Позднее, при отсутствии адекватного лечения и прогрессировании заболевания, возникают анемия, инфекционные осложнения и изменение количества тромбоцитов как в сторону их увеличения, так и уменьшения.

К каким врачам обращаться при тромбоцитозе

Тромбоцитоз выявляется с помощью лабораторных методов исследования и требует обращения к терапевту или врачу общей практики. В случае необходимости терапевт назначит консультацию гематолога, ревматолога, хирурга, онколога.

Диагностика и обследования при тромбоцитозе

При выявлении тромбоцитоза в клиническом анализе крови врач назначит комплекс лабораторно-инструментальных методов обследования с целью установления причины, вызвавшей данное состояние.

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.