В чем измеряется кислород


В то время как воздух на 21% состоит из кислорода, содержание кислорода в воде только 0,001%! Растворенный кислород измеряется или в миллиграммах на литр (мг/л) или в процентах насыщения. Количество кислорода в литре воды определяется как миллиграммы на литр.

Живым организмам в озерах, реках, ручьях и океанах нужен кислород, чтобы выжить. Поэтому с биологической точки зрения уровень кислорода является гораздо более важным показателем качества воды, чем бактерии кишечной группы. Кроме того, кислород влияет на огромное количество других показателей воды, не только биохимических, но и органолептических, таких как запах, прозрачность и привкус. Таким образом, кислород, пожалуй, один из основных показателей качества воды.

Адекватное количество растворенного кислорода необходимо для хорошего качества воды. 

Кислород является необходимым элементом для всех форм жизни. Когда доля растворенного кислорода в объеме воды ниже 5,0 мг/л, жизнь организмов,  обитающих в воде, ставится под угрозу. Уровень кислорода, не превышающий значение           1-2 мг/л, в течение нескольких часов может привести к смерти крупной рыбы.


Количество растворенного кислорода в воде может зависеть от температуры (больше кислорода в холодной воде), давления (больше кислорода растворится в воде при большем давлении) и солености (больше кислорода в воде низкой солености). Распад органического материала в воде, вызванный или химическими процессами, или действием микробов в неочищенных сточных водах, или мертвой растительностью может серьезно снизить концентрацию растворенного кислорода. «Отработанная» вода, сбрасываемая в открытые источники после охлаждения оборудования на производствах или электростанциях, повышает температуру воды и снижает содержание кислорода.

Количество кислорода растворенного воде в вашем водоснабжении, будет зависеть от нескольких факторов:

  • Аэрация воды — под высоким давлением сравнительно большее количество кислорода растворяется в воде.

  • Минеральный состав воды — количество минералов в воде влияет на его способность растворять кислород. Дистиллированная вода поглощает больше кислорода, чем вода с высоким содержанием минеральных солей.

  • Избыточные питательные вещества приводят к проблеме, известной как «цветение». Это приводит к чрезмерному разрастанию водорослей, что ограничивает поступление солнечного света. Растения умирают без солнечного света, что увеличивает процесс разложения и уменьшает количество растворенного кислорода  в воде.

  • Вода из подземных источников обычно содержит меньше растворенного кислорода, чем вода из поверхностных источников.


К сожалению, именно жизнедеятельность человека сильно влияет на снижение количества растворенного кислорода. Строительство плотин замедляет поток воды, уменьшая аэрацию, и увеличивая температуру. Отходы деятельности человека несут в себе большое количество поглощающих кислород бактерий. Удобрения, попадающие в воду, приводят к цветению.

Есть как положительные, так и отрицательные моменты, содержания растворенного кислорода в питьевой воде. 

  • Растворенный кислород предотвращает химическую реакцию и выщелачивание железа и марганца из осадков в источнике воды, которые, в противном случае, оставляют следы на сантехнике и вызывают вкусовые проблемы. 

  • Кислород облегчает биохимическое окисление аммиака в нитраты, снижает  потребность  в хлорировании воды и повышает эффективность дезинфекции. Кроме того, высокий уровень растворенного кислорода в целом считается более приемлемым для воды, поскольку кислород добавляет вкус воде, по этой причине небольшое присутствие растворенного кислорода желательно в питьевой воде.

  • Несмотря на эту желательную особенность, растворенный кислород может быть источником серьезных неприятностей в хозяйственно-питьевом водоснабжении. Дело в том, что кислород вызывает коррозию, особенно в горячей воде и старых чугунных системах водоснабжения.


Наличие естественного уровня растворенного кислорода в воде особенно нежелательно для промышленных предприятий по следующим причинам:

  • Кислород повышает коррозию в металлических трубах и соответствующего оборудования, в частности, в системах отопления и системах охлаждения. Эти коррозионные эффекты существенно активизируются при низком значении рН.

  • Кислород способствует размножению различных организмов и образованию слизи.

  • Кислород препятствует ряду химических реакций и может привести в браку в некоторых отраслях производства, например, целлюлозно-бумажной.

Ряд химических веществ используются в промышленности для удаления кислорода из водоснабжения. Сульфит натрия наиболее широко используется для этой цели. Он вступает в реакцию с кислородом при высоких температурах с образованием сульфата натрия, таким образом, уменьшая количество кислорода. Для бытовых целей чаще  используют полифосфаты, чтобы создать пленку на внутренностях водовода для защиты металла от контакта с кислородом.

Количество растворенного в воде кислорода показывает содержание газообразного кислорода (O2) в водном растворе. Растворенный кислород измеряют или с помощью метода Винклера, или с помощью измерителя и зонда. При определении количества растворенного кислорода существует ряд требований к  месту и процессу взятия проб. Специфичность также заключается в том, что анализ лучше всего проводить сразу же после забора образцов, поэтому этот анализ чаще выполняют на месте.


Источник: filteropt.ru

Определение уровня кислорода в крови широко используется, для того чтобы понять нужно ли пациенту давать кислород, определить тяжесть его состояния и решить нужна ли ему ИВЛ. Для этого используется простой прибор — пульсоксиметр. Внешне он похож на прищепку и выглядит вот так:
Нет описания фото.

Что такое пульсоксиметр и стоит ли его иметь дома во время коронавирусной инфекции?

По новому приказу Департамента Здравоохранения Москвы, при положительном тесте на коронавирус одним из параметров определяющих необходимость госпитализации будут показатели пульсоксиметрии ниже 93%.


Пульсоксиметр — это прибор, который определяет насыщение артериальной крови кислородом и частоту пульса. Часть приборов могут также показывать пульсовую волну, позволяющую косвенно судить о кровоснабжении органов. Пульсоксиметр – это самый часто используемый прибор для контроля за состоянием пациента в отделениях реанимации. Многие врачи используют его на приеме для оценки состояния больного. Некоторым пациентам с заболеваниями сердца и легких врачи рекомендуют иметь пульсоксиметр дома для определения необходимости в дыхании кислородом и контроле за собственным состоянием

Что такое насыщение крови кислородом?

Основной параметр, который определяет пульсоксиметр – это насыщение (или сатурация) крови кислородом. Помните школьный курс биологии? Кровь переносит кислород.
На самом деле, его переносит гемоглобин, белок, находящийся в эритроцитах (красных кровяных клетках). Количество гемоглобина, насыщенного кислородом, в венах и артериях разное, именно из-за этого артериальная кровь более яркая, а венозная более темная.
Пульсоксиметр, упрощенно, определяет именно яркость крови и позволяет судить сколько гемоглобина в артериальной крови связано с кислородом. Эта цифра выражается в процентах и именно она и называется насыщением крови (а точнее гемоглобина) кислородом. Если пульсоксиметр показывает цифру 96%, эти значит, что 96% гемоглобина связано с кислородом, а 4% не связано.


Нормальные показатели насыщения крови кислородом и о чем они говорят?

Как таковой очень четкой нормы нет. Но у большинства здоровых людей уровень насыщения колеблется от 94 до 98 %
В большинстве случаев это говорит о том, что ткани организма не страдают от нехватки кислорода и наши лёгкие достаточно эффективно «передают» кислород в кровь.
Всегда ли это справедливо? В большинстве случаев, но не всегда. Например, если у человека анемия, низкий уровень гемоглобина, он может быть насыщен кислородом на 98%, но общее количество переносимого кислорода будет недостаточным. Несмотря на это и некоторые другие исключения пульсоксиметр позволяет судить о «кислородной» работе легких и отсутствии опасности «кислородного голодания».

Какие бывают и как использовать пульсоксиметры?

Большинство пульсоксиметров являются медицинскими приборами. Однако уже появилось несколько разновидностей спортивных часов, в которые встроен пульсоксиметр. Такие часы используют спортсмены (например, альпинисты).
Прелесть пульскоксиметра в том, что он очень прост в использовании — датчик похож на прищепку, которая одевается на палец и через 10-20 секунд показывает уровень кислорода и пульс. Рекомендуется определять насыщение в спокойном состоянии, сидя, в течение 3-4 минут (самые ранние показатели бывают неустойчивыми), обычно определяется примерное среднее значение насыщения за это время.

Что может влиять на правильность показателей пульсоксиметра?


Холодный палец. Не всегда с помощью пульсоксиметра можно определить пульсовую волну и насыщение в случае плохого кровоснабжения пальца, что, собственно, и случается на холоде. Что делать? Согреть палец под теплой водой
Лак, особенно темный/черный лак на ногте или накладные ногти. Что делать подождать немного, иногда лак просто замедляет и чуть занижает показатели. Ну или снять лак.
Батарейки. Садящиеся батарейки, иногда, занижают показатели сатурации. Сомневаемся, меняем.

Зачем определять насыщение кислорода при коронавирусной инфекции?

Коронавирус поражает легкие, эпителий легочных альвеол. При развитии тяжелой пневмонии нарушается «легочное» дыхание — переход кислорода из воздуха в кровь, которое происходит в легких. Уровень насыщения кислорода является одним из основных показателей, по которому судят нужно ли дать пациенту кислород через маску и нужна ли ему искусственная вентиляция легких. Именно поэтому уровень насыщения крови кислородом является одним из важных параметров, чтобы определиться нужна ли больному госпитализации в соответствии с приказом департамента здравоохранения Москвы.
Обычно мы даем кислород пациенту, у которого насыщения кислорода ниже 90%. Уровень насыщения выше 93% говорит о том, что в момент измерения тяжелого пневмонического повреждения легких у больного нет.

Всегда ли насыщение ниже 90-92% это страшно?


Нет. Во-первых, сначала стоит убедиться, что пульсоксиметр исправен и палец не холодный. Во-вторых, если вы чувствуете себя хорошо, то скорее всего все у вас хорошо, несмотря ни на какие показания прибора. Также у людей с хроническими заболеваниями легких, у курильщиков бывают низкие цифры насыщения, к которым пациент адаптирован, он не нуждается в кислороде и относительно низкие цифры сатурации 87-89% не ограничивают его физической активности.

Что рекомендуют врачи? Стоит ли иметь пульсоксиметр дома?

Здесь мнение моих коллег разделились.
Иметь пульсоксиметр дома обычно рекомендуют пациентам с сердечной недостаточностью и хроническими заболеваниями легких, находящихся на домашней кислородотерапии.
Нужен ли он на время коронавирусной эпидемии вопрос дискутабельный. В следующей карточке изложу свое мнение.

Зачем может пригодиться пульсоксиметр при короне. Мое личное мнение.

Для самостоятельной более детальной оценки своего состояния. Ощущение «заложенности» в грудной клетке и одышки совсем не обязательно связаны с тяжелым поражением легких. В ряде случаев температура, кашель, волнение могут приводить к тем же ощущениям. Если показатели пульсоксиметрии 94-96%, можно не волноваться, скорее всего срочной госпитализации вам не требуется. Подчеркну, что несомненно должно оцениваться общее состояние комплексно, а не только показания прибора.
r /> Контроль динамики своего состояния. Предположим, вы все-таки заболели и все протекает, как обычное ОРВИ, в этом случае контроль насыщения может помочь достаточно рано отметить ухудшение состояния и сообщить об этом врачу. Также подчеркну здесь идет об устойчивом снижении сатурации ниже 92-93% в бодрствующем состоянии (во сне она может быть ниже)
Коммуникация с врачом: если вы сообщите доктору свои жалобы, температуру, пульс и насыщение крови кислородом, ему легче будет определить дальнейшую тактику лечения, даже при дистанционной консультации.
Источник

Источник: echo.msk.ru

Общая характеристика элемента

Кислород – самый распространенный элемент на Земле, на его долю приходится чуть меньше половины, 49 % от общей массы земной коры. Природный кислород состоит из 3 стабильных изотопов 16О, 17О и 18О (преобладает 16О). Кислород входит в состав атмосферы (20,9 % по объему, 23,2 по массе), в состав воды и более 1400 минералов: кремнезема, силикатов и алюмосиликатов, мраморов, базальтов, гематита и других минералов и горных пород. Кислород составляет 50-85% массы тканей растений и животных, т.к содержится в белках, жирах и углеводах, из которых состоят живые организмы. Общеизвестна роль кислорода для дыхания, для процессов окисления.

Кислород сравнительно мало растворим в воде – 5 объемов в 100 объемах воды. Однако, если бы весь растворенный в воде кислород перешел в атмосферу, то он занял бы огромный объем – 10 млн км3 ( н.у). Это равно примерно 1% всего кислорода в атмосфере. Образование на земле кислородной атмосферы обусловлено процессами фотосинтеза.


Открыт шведом К. Шееле ( 1771 – 1772 г.г) и англичанином Дж. Пристли ( 1774г.). Первый использовал нагревание селитры, второй – оксида ртути (+2). Название дал А.Лавуазье («оксигениум» — «рождающий кислоты»).

В свободном виде существует в двух аллотропных модификациях – «обыкновенного» кислорода О2 и озона О3.

2 = 2О3 – 285 кДж
Озон в стратосфере образует тонкий слой, который поглощает большую часть биологически вредного ультрафиолетового излучения.
При хранении озон самопроизвольно превращается в кислород. Химически кислород О2 менее активен, чем озон. Электроотрицательность кислорода 3,5.

Физические свойства кислорода

O2 – газ без цвета, запаха и вкуса, т.пл. –218,7 °С, т.кип. –182,96 °С, парамагнитен.

Жидкий O2 голубого, твердый – синего цвета. O2 растворим в воде (лучше, чем азот и водород).

Получение кислорода

1.      Промышленный способ — перегонка жидкого воздуха и электролиз воды:

2О → 2Н2 + О2кислород получение

2.  В лаборатории кислород получают:
1.Электролизом щелочных водных растворов или водных растворов кислородосодержащих солей (Na2SO4 и др.)

2. Термическим разложением перманганата калия KMnO4:
2KMnO4 = K2MnO4 + MnO2 + O2↑,

Бертолетовой соли  KClO3:
2KClO3 = 2KCl + 3O2↑      (катализатор MnO2)

Оксида марганца (+4) MnO2:
4MnO2 = 2Mn2O3 + O2↑      (700 oC),

3MnO2 = 2Mn3O4 + O2↑      (1000 oC),

Пероксид бария BaO2 :
2BaO2 = 2BaO + O2

3. Разложением пероксида водорода:
2H2O2 = H2O + O2↑           (катализатор MnO2)

4. Разложение нитратов:
2KNO3 → 2KNO2 + O2

На космических кораблях и подводных лодках кислород получают из смеси K2O2 и K2O4:
2K2O4 + 2H2O = 4KOH +3O2
4KOH + 2CO2 = 2K2CO3 + 2H2O

Суммарно:
2K2O4 + 2CO2 = 2K2CO3 + 3О2

Когда используют K2O2, то суммарная реакция выглядит так:
2K2O2 + 2CO2 = 2K2CO3 + O2

Если смешать K2O2 и K2O4 в равномолярных (т.е. эквимолярных) количествах, то на 1 моль поглощенного  СО2  выделится один моль О2.

Химические свойства кислорода

кислород горениеКислород поддерживает горение.  Горение — быстрый процесс окисления вещества, сопровождающийся выделением большого количества теплоты и света. Чтобы доказать, что в склянке находится кислород, а не какой-то другой газ, надо в склянку опустить тлеющую лучинку. В кислороде тлеющая лучинка ярко вспыхивает. Горение различных веществ на воздухе – это окислительно-восстановительный процесс, в котором окислителем является кислород. Окислители – это вещества, «отбирающие» электроны у веществ-восстановителей. Хорошие окислительные свойства кислорода можно легко объяснить строением его внешней электронной оболочки.

Валентная оболочка кислорода расположена на 2-м уровне – относительно близко к ядру. Поэтому ядро сильно притягивает к себе электроны. На валентной оболочке кислорода 2s2 2p4  находится 6 электронов. Следовательно, до октета недостает двух электронов, которые кислород стремится принять с электронных оболочек других элементов, вступая с ними в реакции в качестве окислителя.

кислород степени окисленияКислород имеет вторую (после фтора) электроотрицательность в шкале Полинга. Поэтому в подавляющем большинстве своих соединений с другими элементами кислород имеет отрицательную степень окисления. Более сильным окислителем, чем кислород, является только его сосед по периоду – фтор. Поэтому соединения кислорода с фтором – единственные, где кислород имеет положительную степень окисления.

Итак, кислород – второй по силе окислитель среди всех элементов Периодической системы. С этим связано большинство его важнейших химических свойств.
С кислородом реагируют все элементы, кроме Au, Pt, He, Ne и Ar, во всех реакциях (кроме взаимодействия со фтором) кислород — окислитель.

кислород химические свойстваКислород легко реагирует с щелочными и щелочноземельными металлами:

4Li + O2 → 2Li2O,

2K + O2 → K2O2,

2Ca + O2 → 2CaO,

2Na + O2 → Na2O2,

2K + 2O2 → K2O4

Мелкий порошок железа ( так называемого пирофорного железа) самовоспламеняется на воздухе, образуя Fe2O3, а стальная проволока горит в кислороде, если ее заранее раскалить:

3 Fe + 2O2 → Fe3O4

2Mg + O2 → 2MgO

2Cu + O2  → 2CuO

С неметаллами (серой, графитом, водородом, фосфором и др.) кислород реагирует при нагревании:

S + O2 → SO2,

C + O2 → CO2,

2H2 + O2 → H2O,

4P + 5O2 → 2P2O5,

Si + O2 → SiO2, и т.д

Почти все реакции с участием кислорода O2 экзотермичны, за редким исключением, например:

N2 + O2  2NO – Q

Эта реакция протекает при температуре выше 1200 oC или в электрическом разряде.

Кислород способен окислить сложные вещества, например:

2H2S + 3O2 → 2SO2 + 2H2O   (избыток кислорода),

2H2S + O2 → 2S + 2H2O   (недостаток кислорода),

4NH3 + 3O2 → 2N2 + 6H2O   (без катализатора),

4NH3 + 5O2 → 4NO + 6H2O   (в присутствии катализатора Pt ),

CH4 (метан) + 2O2 → CO2 + 2H2O,

4FeS2 (пирит) + 11O2 → 2Fe2O3 + 8SO2.

Известны соединения, содержащие катион диоксигенила O2+, например, O2+ [PtF6] (успешный синтез этого соединения  побудил Н. Бартлетта попытаться получить соединения инертных газов).

кислород свойства

Озон химически более активен, чем кислород O2. Так, озон окисляет иодид — ионы I  в растворе  Kl:

O3 + 2Kl + H2O = I2 + O2 + 2KOH

Озон сильно ядовит, его ядовитые свойства сильнее, чем, например, у сероводорода. Однако в природе озон, содержащийся в высоких слоях атмосферы, выполняет роль защитника всего живого на Земле от губительного ультрафиолетового излучения солнца. Тонкий озоновый слой поглощает это излучение, и оно не достигает поверхности Земли. Наблюдаются значительные колебания в толщине и протяженности этого слоя с течением времени (так называемые озоновые дыры) причины таких колебаний пока не выяснены.

Применение кислорода O2: для интенсификации процессов получения чугуна и стали, при выплавке цветных металлов, как окислитель в различных химических производствах, для жизнеобеспечения на подводных кораблях, как окислитель ракетного топлива (жидкий кислород), в медицине, при сварке и резке металлов.

Применение озона О3: для обеззараживания питьевой воды, сточных вод, воздуха, для отбеливания тканей.кислород в земной коре теле

Источник: himege.ru

История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

 2HgO →ot  2Hg + O2

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожжённых элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygene), предложенного А. Лавуазье (от др.-греч. ὀξύς — «кислый» и γεννάω — «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его — «кислота», ранее подразумевавшим вещества, именуемые по современной международной номенклатуре оксидами.

Нахождение в природе

Кислород — самый распространённый в земной коре элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 85,82 % (по массе). Более 1500 соединений земной коры в своём составе содержат кислород.

В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе (около 1015 тонн). Однако до появления первых фотосинтезирующих микробов в архее 3,5 млрд лет назад, в атмосфере его практически не было. Свободный кислород в больших количествах начал появляться в палеопротерозое (3—2,3 млрд лет назад) в результате глобального изменения состава атмосферы (кислородной катастрофы). Первый миллиард лет практически весь кислород поглощался растворённым в океанах железом и формировал залежи джеспилита. 3—2,7 млрд лет назад он начал выделяться в атмосферу и 1,7 млрд лет назад достиг 10 % от нынешнего уровня.

Наличие большого количества растворённого и свободного кислорода в океанах и атмосфере привело к вымиранию большинства анаэробных организмов. Тем не менее, клеточное дыхание с помощью кислорода позволило аэробным организмам производить гораздо больше АТФ, чем анаэробным, сделав их доминирующими.

С начала кембрия 540 млн лет назад содержание кислорода колебалось от 15 % до 30 % по объёму. К концу каменноугольного периода (около 300 миллионов лет назад) его уровень достиг максимума в 35 % по объёму, который, возможно, способствовал большому размеру насекомых и земноводных в это время.

Основная часть кислорода на Земле выделяется фитопланктоном Мирового океана. Около 60 % кислорода от используемого живыми существами расходуется на процессы гниения и разложения, 80 % кислорода, производимого лесами, уходит на гниение и разложение растительности лесов.

Деятельность человека очень мало влияет на количество свободного кислорода в атмосфере. При нынешних темпах фотосинтеза понадобится около 2000 лет, чтобы восстановить весь кислород в атмосфере.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле — около 65 %.

В 2016 году датские учёные доказали, что свободный кислород входил в состав атмосферы уже 3,8 млрд лет назад.

Получение

Перегонка жидкого воздуха

В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Разложение кислородсодержащих веществ

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

 2KMnO4 → K2MnO4 + MnO2 + O2

Используют также реакцию каталитического разложения пероксида водорода H2O2 в присутствии оксида марганца (IV):

 2H2O2MnO2   2H2O + O2

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:

 2KClO3 → 2KCl + 3O2

Разложение оксида ртути (II) (при t = 100 °C) было первым методом синтеза кислорода:

 2HgO →100oC   2Hg + O2

Электролиз водных растворов

К лабораторным способам получения кислорода относится метод электролиза разбавленных водных растворов щелочей, кислот и некоторых солей (сульфатов, нитратов щелочных металлов):

 2H2O →e− 2H2 + O2

Реакция перекисных соединений с углекислым газом

На подводных лодках и орбитальных станциях обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

 2Na2O2 + 2CO2 → 2Na2CO3 + O2

Для соблюдения баланса объёмов поглощённого углекислого газа и выделившегося кислорода, к нему добавляют надпероксид калия. В космических кораблях для уменьшения веса иногда используется пероксид лития.

Физические свойства

При нормальных условиях кислород — это газ без цвета, вкуса и запаха.

1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C, 2,09 мл/100 г при +50 °C) и спирте (2,78 мл/100 г при +25 °C). Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при +961 °C). Хорошо растворяется в перфторированных углеводородах (20-40 об/об %).

Межатомное расстояние — 0,12074 нм. Является парамагнетиком. В жидком виде притягивается магнитом.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при +2000 °C — 0,03 %, при +2600 °C — 1 %, +4000 °C — 59 %, +6000 °C — 99,5 %.

Жидкий кислород (температура кипения −182,98 °C) — это бледно-голубая жидкость.

Твёрдый кислород (температура плавления −218,35 °C) — синие кристаллы. Известны 6 кристаллических фаз, из которых три существуют при давлении в 1 атм.:

  • α-O2 — существует при температуре ниже 23,65 K; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейки a=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53°.
  • β-O2 — существует в интервале температур от 23,65 до 43,65 K; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å, α=46,25°.
  • γ-O2 — существует при температурах от 43,65 до 54,21 K; бледно-синие кристаллы имеют кубическую симметрию, период решётки a=6,83 Å.

Ещё три фазы образуются при высоких давлениях:

  • δ-O2 — интервал температур 20—240 K и давление 6—8 ГПа, оранжевые кристаллы;
  • ε-фаза, содержит молекулы O4 или O8, существует при давлении от 10 и до 96 ГПа, цвет кристаллов от тёмно-красного до чёрного, моноклинная сингония;
  • ζ-On — давление более 96 ГПа, металлическое состояние с характерным металлическим блеском, при низких температурах переходит в сверхпроводящее состояние.

Химические свойства

Сильный окислитель, самый активный неметалл после фтора, образует бинарные соединения (оксиды) со всеми элементами, кроме гелия, неона, аргона. Наиболее распространённая степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

 4Li + O2 → 2Li2O
 2Sr + O2 → 2SrO

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

 2NO + O2 → 2NO2

Окисляет большинство органических соединений в реакциях горения:

 2C6H6 + 15O2 → 12CO2 + 6H2O
 CH3CH2OH + 3O2 → 2CO2 + 3H2O

При определённых условиях можно провести мягкое окисление органического соединения:

 CH3CH2OH + O2 → CH3COOH + H2O

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором (см. ниже #Фториды кислорода).

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

  • Например, пероксиды получаются при сгорании щелочных металлов в кислороде:
 2Na + O2 → Na2O2
  • Некоторые оксиды поглощают кислород:
 2BaO + O2 → 2BaO2
  • По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется пероксид водорода:
 H2 + O2 → H2O2
  • В надпероксидах кислород формально имеет степень окисления −½, то есть один электрон на два атома кислорода (ион O−
     2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:
 Na2O2 + O2 → 2NaO2
  • Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:
 K + O2 → KO2
  • Неорганические озониды содержат ион O−
     3 со степенью окисления кислорода, формально равной −1/3. Получают действием озона на гидроксиды щелочных металлов:
 3KOH + 3O3 → 2KO3 + KOH ∗ H2O + 2O2
  • В ионе диоксигенила O2+ кислород имеет формально степень окисления +½. Получают по реакции:
 PtF6 + O2 → O2PtF6

В этой реакции, кислород проявляет восстановительные свойства.

Фториды кислорода

  • Дифторид кислорода, OF2 степень окисления кислорода +2, получают пропусканием фтора через разбавленный раствор щёлочи:
 2F2 + 2NaOH → 2NaF + H2O + OF2
  • Монофторид кислорода (Диоксидифторид), O2F2, нестабилен, степень окисления кислорода +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре −196 °C:
 F2 + O2 → O2F2
  • Пропуская тлеющий разряд через смесь фтора с кислородом при определённых давлении и температуре, получают смеси высших фторидов кислорода O3F2, O4F2, O5F2 и O6F2.
  • Квантовомеханические расчёты предсказывают устойчивое существование иона трифторгидроксония OF3+. Если этот ион действительно существует, то степень окисления кислорода в нём будет равна +4.

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях: O2 и O3 (озон). Как установили в 1899 году Пьер Кюри и Мария Склодовская-Кюри, под воздействием ионизирующего излучения O2 переходит в O3.

Применение]

Широкое промышленное применение кислорода началось в середине XX века, после изобретения турбодетандеров — устройств для сжижения и разделения жидкого воздуха.

В металлургии

Конвертерный способ производства стали или переработки штейнов связан с применением кислорода. Во многих металлургических агрегатах для более эффективного сжигания топлива вместо воздуха в горелках используют кислородно-воздушную смесь.

Сварка и резка металлов

Кислород в баллонах голубого цвета широко используется для газопламенной резки и сварки металлов.

Источник: chem.ru

Общая характеристика элемента

Кислород – самый распространенный элемент на Земле, на его долю приходится чуть меньше половины, 49 % от общей массы земной коры. Природный кислород состоит из 3 стабильных изотопов 16О, 17О и 18О (преобладает 16О). Кислород входит в состав атмосферы (20,9 % по объему, 23,2 по массе), в состав воды и более 1400 минералов: кремнезема, силикатов и алюмосиликатов, мраморов, базальтов, гематита и других минералов и горных пород. Кислород составляет 50-85% массы тканей растений и животных, т.к содержится в белках, жирах и углеводах, из которых состоят живые организмы. Общеизвестна роль кислорода для дыхания, для процессов окисления.

Кислород сравнительно мало растворим в воде – 5 объемов в 100 объемах воды. Однако, если бы весь растворенный в воде кислород перешел в атмосферу, то он занял бы огромный объем – 10 млн км3 ( н.у). Это равно примерно 1% всего кислорода в атмосфере. Образование на земле кислородной атмосферы обусловлено процессами фотосинтеза.

Открыт шведом К. Шееле ( 1771 – 1772 г.г) и англичанином Дж. Пристли ( 1774г.). Первый использовал нагревание селитры, второй – оксида ртути (+2). Название дал А.Лавуазье («оксигениум» — «рождающий кислоты»).

В свободном виде существует в двух аллотропных модификациях – «обыкновенного» кислорода О2 и озона О3.

2 = 2О3 – 285 кДж
Озон в стратосфере образует тонкий слой, который поглощает большую часть биологически вредного ультрафиолетового излучения.
При хранении озон самопроизвольно превращается в кислород. Химически кислород О2 менее активен, чем озон. Электроотрицательность кислорода 3,5.

Физические свойства кислорода

O2 – газ без цвета, запаха и вкуса, т.пл. –218,7 °С, т.кип. –182,96 °С, парамагнитен.

Жидкий O2 голубого, твердый – синего цвета. O2 растворим в воде (лучше, чем азот и водород).

Получение кислорода

1.      Промышленный способ — перегонка жидкого воздуха и электролиз воды:

2О → 2Н2 + О2кислород получение

2.  В лаборатории кислород получают:
1.Электролизом щелочных водных растворов или водных растворов кислородосодержащих солей (Na2SO4 и др.)

2. Термическим разложением перманганата калия KMnO4:
2KMnO4 = K2MnO4 + MnO2 + O2↑,

Бертолетовой соли  KClO3:
2KClO3 = 2KCl + 3O2↑      (катализатор MnO2)

Оксида марганца (+4) MnO2:
4MnO2 = 2Mn2O3 + O2↑      (700 oC),

3MnO2 = 2Mn3O4 + O2↑      (1000 oC),

Пероксид бария BaO2 :
2BaO2 = 2BaO + O2

3. Разложением пероксида водорода:
2H2O2 = H2O + O2↑           (катализатор MnO2)

4. Разложение нитратов:
2KNO3 → 2KNO2 + O2

На космических кораблях и подводных лодках кислород получают из смеси K2O2 и K2O4:
2K2O4 + 2H2O = 4KOH +3O2
4KOH + 2CO2 = 2K2CO3 + 2H2O

Суммарно:
2K2O4 + 2CO2 = 2K2CO3 + 3О2

Когда используют K2O2, то суммарная реакция выглядит так:
2K2O2 + 2CO2 = 2K2CO3 + O2

Если смешать K2O2 и K2O4 в равномолярных (т.е. эквимолярных) количествах, то на 1 моль поглощенного  СО2  выделится один моль О2.

Химические свойства кислорода

кислород горениеКислород поддерживает горение.  Горение — быстрый процесс окисления вещества, сопровождающийся выделением большого количества теплоты и света. Чтобы доказать, что в склянке находится кислород, а не какой-то другой газ, надо в склянку опустить тлеющую лучинку. В кислороде тлеющая лучинка ярко вспыхивает. Горение различных веществ на воздухе – это окислительно-восстановительный процесс, в котором окислителем является кислород. Окислители – это вещества, «отбирающие» электроны у веществ-восстановителей. Хорошие окислительные свойства кислорода можно легко объяснить строением его внешней электронной оболочки.

Валентная оболочка кислорода расположена на 2-м уровне – относительно близко к ядру. Поэтому ядро сильно притягивает к себе электроны. На валентной оболочке кислорода 2s2 2p4  находится 6 электронов. Следовательно, до октета недостает двух электронов, которые кислород стремится принять с электронных оболочек других элементов, вступая с ними в реакции в качестве окислителя.

кислород степени окисленияКислород имеет вторую (после фтора) электроотрицательность в шкале Полинга. Поэтому в подавляющем большинстве своих соединений с другими элементами кислород имеет отрицательную степень окисления. Более сильным окислителем, чем кислород, является только его сосед по периоду – фтор. Поэтому соединения кислорода с фтором – единственные, где кислород имеет положительную степень окисления.

Итак, кислород – второй по силе окислитель среди всех элементов Периодической системы. С этим связано большинство его важнейших химических свойств.
С кислородом реагируют все элементы, кроме Au, Pt, He, Ne и Ar, во всех реакциях (кроме взаимодействия со фтором) кислород — окислитель.

кислород химические свойстваКислород легко реагирует с щелочными и щелочноземельными металлами:

4Li + O2 → 2Li2O,

2K + O2 → K2O2,

2Ca + O2 → 2CaO,

2Na + O2 → Na2O2,

2K + 2O2 → K2O4

Мелкий порошок железа ( так называемого пирофорного железа) самовоспламеняется на воздухе, образуя Fe2O3, а стальная проволока горит в кислороде, если ее заранее раскалить:

3 Fe + 2O2 → Fe3O4

2Mg + O2 → 2MgO

2Cu + O2  → 2CuO

С неметаллами (серой, графитом, водородом, фосфором и др.) кислород реагирует при нагревании:

S + O2 → SO2,

C + O2 → CO2,

2H2 + O2 → H2O,

4P + 5O2 → 2P2O5,

Si + O2 → SiO2, и т.д

Почти все реакции с участием кислорода O2 экзотермичны, за редким исключением, например:

N2 + O2  2NO – Q

Эта реакция протекает при температуре выше 1200 oC или в электрическом разряде.

Кислород способен окислить сложные вещества, например:

2H2S + 3O2 → 2SO2 + 2H2O   (избыток кислорода),

2H2S + O2 → 2S + 2H2O   (недостаток кислорода),

4NH3 + 3O2 → 2N2 + 6H2O   (без катализатора),

4NH3 + 5O2 → 4NO + 6H2O   (в присутствии катализатора Pt ),

CH4 (метан) + 2O2 → CO2 + 2H2O,

4FeS2 (пирит) + 11O2 → 2Fe2O3 + 8SO2.

Известны соединения, содержащие катион диоксигенила O2+, например, O2+ [PtF6] (успешный синтез этого соединения  побудил Н. Бартлетта попытаться получить соединения инертных газов).

кислород свойства

Озон химически более активен, чем кислород O2. Так, озон окисляет иодид — ионы I  в растворе  Kl:

O3 + 2Kl + H2O = I2 + O2 + 2KOH

Озон сильно ядовит, его ядовитые свойства сильнее, чем, например, у сероводорода. Однако в природе озон, содержащийся в высоких слоях атмосферы, выполняет роль защитника всего живого на Земле от губительного ультрафиолетового излучения солнца. Тонкий озоновый слой поглощает это излучение, и оно не достигает поверхности Земли. Наблюдаются значительные колебания в толщине и протяженности этого слоя с течением времени (так называемые озоновые дыры) причины таких колебаний пока не выяснены.

Применение кислорода O2: для интенсификации процессов получения чугуна и стали, при выплавке цветных металлов, как окислитель в различных химических производствах, для жизнеобеспечения на подводных кораблях, как окислитель ракетного топлива (жидкий кислород), в медицине, при сварке и резке металлов.

Применение озона О3: для обеззараживания питьевой воды, сточных вод, воздуха, для отбеливания тканей.кислород в земной коре теле

Источник: himege.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.