Мочевина и мочевая кислота в чем разница


Интерпретация результата

Альбумин:

Повышенный уровень альбумина в крови может наблюдаться при обезвоживании.

Причины пониженного уровня альбумина: нарушение синтеза альбумина (при заболеваниях печени или наследственных патологиях), при повышенном расходе белка (при ожогах, сахарном диабете, потере крови, заболеваниях почек), повышенная скорость обмена веществ (при тиреотоксикозе, инфекционных и ревматических заболеваниях, опухолях), задержка жидкости в сосудистом русле (при приеме эстрогенсодержащих препаратов, патологиях сердца), дефицит поступления альбумина с пищей (при голодании или заболеваниях пищеварительного тракта).

Креатинин:

Повышение уровня при: активной физической нагрузке, употреблении мясной пищи, акромегалии, гипотиреозе, гигантизме, инфекционных процессах и сахарном диабете.

Понижение уровня при: гипертиреозе, употреблении вегетарианской пищи, анемии, лейкозе, параличе, мышечных дистрофиях, заболеваниях с уменьшением мышечной массы, развернутой стадии патологии почек, воспалительных и метаболических заболеваниях.


Калий, Натрий, Хлориды:

Повышение калия (гиперкалиемия): повреждение клеток (гемолиз — разрушение клеток крови, тяжелое голодание, судороги, тяжелые травмы), обезвоживание, острая почечная недостаточность (нарушение выведения почками), надпочечниковая недостаточность.

Снижение калия (гипокалиемия): хроническое голодание (непоступление с пищей), продолжительная рвота, понос (потеря с кишечным соком), нарушение функции почек, избыток гормонов коры надпочечников (в т.ч. прием лекарственных форм кортизона), муковисцидоз.

Повышение натрия (гипернатриемия): избыточное потребление соли, потеря внеклеточной жидкости (профузный пот, тяжелая рвота и диарея, повышенное мочеотделение (несахарный диабет), избыточная задержка (повышенная функция коры надпочечников), нарушение центральной регуляции водно-солевого обмена (патология гипоталамуса, кома).

Снижение натрия (гипонатриемия): потеря (злоупотребление мочегонными, патология почек, надпочечниковая недостаточность), снижение концентрации за счет повышения объема жидкости (сахарный диабет, хроническая сердечная недостаточность, цирроз печени, нефротический синдром, отеки).

Повышение хлоридов: обезвоживание, острая почечная недостаточность, несахарный диабет, отравление салицилатами, повышенная функция коры надпочечников.


Снижение хлоридов: избыточное потоотделение, рвота, промывание желудка, увеличение объема жидкости.

Холестерин общий:

Повышение: генетические особенности (семейные гиперлипопротеинемии), заболевания печени, игипотиреоз (недостаточность функции щитовидной железы),алкоголизм,ишемическая болезнь сердца (атеросклероз), беременность
прием синтетических препаратов половых гормонов (контрацептивы).

Снижение: гипертиреоз (избыток функции щитовидной железы),нарушение усвоения жиров.

Глюкоза:

Повышение (гипергликемия): сахарный диабет (недостаточность инсулина),физическая или эмоцио-нальная нагрузка (выброс адреналина),тиреотоксикоз (повышение функции щитовидной железы),акромегалия, гигантизм (повышение уровня гормона роста),синдром Кушинга (повышение уровня гормона надпочечников — кортизола),заболевания поджелудочной железы (панкреатит, опухоль, муковисцидоз),хронические заболевания печени, почек.

Снижение (гипогликемия): голодание ,передозировка инсулина,заболевания поджелудочной железы (опухоль из клеток, синтезирующих инсулин),недостаточность функции эндокринных желез (надпо-чечников, щитовидной, тяжелые отравления с поражением печени (алкоголем, мышьяком, соединениями хлора, фосфора, салицилатами, антигистаминами), состояние после гастр-эктомии, заболевания желудка и кишечника (нарушение всасывания).

Гликированный гемоглобин:

Повышение показателя: нарушение толератности к глюкозе,сахарный диабет.


Снижение: гипогликимия.

Фосфатаза щелочная:

Повышение при: беременности, заболеваниях печени, заболевания костной системы, инфекционный мононуклеоз, первичный цирроз печени.

Понижение при: гипотериозе, недостатке  магния  и цинка, анемии тяжелой формы.

Триглицириды:

Повышение: заболевания печени, ожирение, нарушение толерантности к глюкозе, алкоголизм, ИБС, избыточное употребление животных жиров, наследственная предрасположенность.

Понижение: гипертиреоз, интенсивная физическая нагрузка ,прием  препаратов группы статины, метформин.

Мочевина:

Повышение уровня мочевины характерно: при диете с избыточным содержанием белка, усиленном катаболизме белков, прием глюкокортикоидов, андрогенов, лихорадочные состояния, усиленной физической нагрузке, при ослаблении выделительной функции почек (гломерулонефрит, амилоидоз почек, пиелонефрит, туберкулез почек, приеме нефротоксичных препаратов (тетрациклина), сердечной недостаточности, сильных кровотечениях, шоке, кишечной непроходимости, ожогах, нарушение оттока мочи (опухоль мочевого пузыря, аденома простаты, камни в мочевом пузыре), дегидратации.

Понижение уровня мочевины при: нарушение функций печени (гепатиты, цирроз), отравление фосфором, вегетарианской низкобелковой диете, голодании, беременности, при синдроме нарушенного кишечного всасывания (мальабсорбция), гипергидратации, состоянии после диализа.


Мочевая кислота:

Повышение показателя наблюдается при подагре, почечной недостаточности, токсикозе беременных, при тяжелой физической нагрузке.

Понижение показателя: болезнь Вильсона-Коновалова, синдром Фанкони, диета бедная нуклеиновыми кислотами.

Амилаза:

Повышение показателя: заболевания поджелудочной железы и пищеварительного тракта, инфекционное поражение слюнных желез (эндемический паротит), хирургическую патологию.

Понижение при: недостаточности функций поджелудочной железы, инфекционном поражение клеток печени, развитием осложнений во время беременности, муковисцидозе.

Аланинаминотрансфераза (АЛТ):

Повышение при: заболеваниях печени, при приеме токсических лекарственных препаратов, непроходимости желчных путей, цитолизе.

Понижение: в норме активность низкая.

Аспартатаминотрансфераза (АСТ):

Повышение: заболевания печени, при приеме токсических лекарственных препаратов, непроходимости  желчных путей, цитолизе, травмах, сильных физических нагрузках, опухолях, повреждении мышц.

Понижение: в норме активность низкая.

Билирубин общий:

Повышение: желчнокаменная болезнь, анемия, желтуха новорожденных, генетические нарушения обмена билирубина (например, синдром Жильбера), воспаление желчного пузыря и желчевыводящих путей, гепатиты, цирроз печени, приём токсических лекарственных препаратов.


Понижение: в норме активность низкая.

Лактатдегидрогеназа общая (ЛДГ):

Повышение: тромбоэмболии, патология мышц, анемии, злокачественные новообразования, заболевания печени, сердечная недостаточность, переломы, инфекционный мононуклеоз, эклампсия, гипотиреоз, ожоговая болезнь.

Понижение: приём лекарственных препаратов.

Гамма ГТ:

Повышение: заболевание печени и желчевыводящих путей (воспалительные процессы, цирроз, механическая желтуха, образования, алкоголизм), панкреатит, ожирение, приём токсических лекарственных препаратов, системная красная волчанка, злокачественные опухоли, сердечная недостаточность, гипертиреоз.

Понижение: гипотиреоз

Сывороточное железо:

Повышение: наследственный гемохроматоз, талассемия, прием препаратов железа, употребление продуктов, содержащих железо, B12-дефицитная анемия.

Понижение: железодефицитная анемия, нарушение всасывания железа (гастрит, резекция желудка), диета, беременность, онкологические заболевания, хронические аутоиммунные заболевания.

Общий белок:

Повышение: потеря жидкости, острая и хроническая инфекция, аутоиммунные заболевания, дыхательная недостаточность.

Понижение: голодание, воспалительные процессы в кишечнике, заболевания печени, травмы, длительная лихорадка, злокачественные новообразования, сахарный диабет, заболевания почек.


Источник: gemotest.ru

!!!Нормальным уровнем мочевой кислоты является:


У детей до 14 лет 120-320 мкмольл=0.12-0.32 ммольл

У женщин 145-360 мкмольл=0.14-0.36ммольл

У мужчин 210-420 мкмольл=0.21-0.420 ммольл

У больных подагрой любого пола верхняя граница 360 мкмольл.

Что же делать, если Вы обнаружили у себя значимое повышение мочевой кислоты? (отклонение более, чем на 20мкмоль/л).

Если у Вас никогда не было эпизодов похожих на подагрический артрит, описанный выше, нет тофусов и серьезных заболеваний почек, то достаточно начать придерживаться диеты N6.

Диета №6
Диета №6

Нужно ограничить употребления мяса молодых животных (курица – живет 38 дней и телятина), внутренностей животных (печень, сердце, паштеты и т.д.), супов на куриных, мясных, рыбных бульонах, икры рыб, мясных полуфабрикатов (сосиски, колбасы, покупные пельмени и котлеты), пить больше жидкости, лучше воды (если нет отеков), уменьшить употребление алкоголя.


Можно есть любые молочные продукты, яйца, говядину, свинину, индейку, кролика (всё мясо в умеренных количествах не более 100-200г в сутки), любые овощи и фрукты, овощные и молочные супы.

Часто, уже само по себе соблюдение диеты-способствует нормализации мочевой кислоты. Контрольный анализ следует провести через 1 месяц соблюдения диеты и желательно повторять каждые 2 месяца до достижения устойчивого нормального уровня мочевой кислоты.

Если одной диеты для нормализации уровня мочевой кислоты оказалось недостаточно, следует обратиться к терапевту для выяснения возможных причин и подбора лечения.

Если у Вас хотя бы раз в жизни был приступ сильных болей в суставе с припуханием и покраснением или есть изменения кожи похожие на тофусы — необходимо обратиться к ревматологу для комплексного обследования и лечения.

Снижение мочевой кислоты чаще является следствием недостаточного употребления продуктов богатых пуринами. Соответственно, стоит увеличить количество мясных продуктов или бобовых в своем рационе.

Будьте здоровы, следите за мочевой кислотой!

Анализ крови на мочевую кислоту Вы можете сдать в центре «Путь к здоровью» поселок Ульяновка,  анализы  принимаются каждый день с 8.00 до 11.00, в субботу с 9.00 до 11.00 и в воскресенье по предварительной записи.

 


 

 

 

Источник: xn--b1adciorkaejfrcn3b5gh0b.xn--p1ai

Рассматривая обмен веществ в условиях нормального функционирования организма, следует остановиться на безусловно взаимосвязанных, но в то же время достаточно специфичных составляющих метаболизма, а именно на углеводном, белковом, липидном и водно-электролитном обмене.

Очевидно, что основная роль углеводов в метаболизме определяется их энергетической функцией. Именно глюкоза крови вследствие наличия простого и быстрого пути гликолитической диссимиляции и последующего окисления в цикле трикарбоновых кислот, а также возможности максимально быстрого извлечения ее из депо гликогена, обеспечивающей экстренную мобилизацию энергетических ресурсов, является наиболее востребованным источником энергии в организме. Использование циркулирующей в плазме глюкозы разными органами неодинаково: мозг задерживает 12% глюкозы, кишечник— 9%, мышцы — 7%, почки — 5%. При этом уровень глюкозы плазмы крови является одной из важнейших гомеостатических констант организма, составляя 3, 3—5, 5 ммоль/л. Как известно снижение уровня глюкозы ниже допустимого передела имеет своим незамедлительным следствием дискоординацию деятельности ЦНС, проявляющуюся соответствующей клинической симптоматикой: головной мозг содержит небольшие резервы углеводов и нуждается в постоянном поступлении глюкозы, поскольку энергетические расходы мозга покрываются исключительно за счет углеводов. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту.


Единственной формой углеводов, которая может всасываться в кишечнике, являются моносахара. Они всасываются главным образом в тонкой кишке, током крови переносятся в печень и к тканям. Основная часть поступающей с пищей глюкозы (около 70%) окисляется в тканях до воды и углекислого газа, около 25—28% пищевой глюкозы превращается в жир и только 2—5% ее синтезируется в гликоген. Гликоген печени представляет собой основной резерв углеводов в организме, достигая по своей массе у взрослого человека 150—200 г. Синтез гликогена происходит достаточно быстро, что, наряду с быстрой мобилизацией гликогена и поступлением глюкозы в кровь в процессе гликогенолиза, является одним из механизмов поддержания гликемии в константных пределах. Помимо печени в качестве депо гликогена выступают также мышцы. Однако запас гликогена в мышечной массе по отношению к всему гликогену организма составляет всего 1 — 2%. В мышцах под влиянием фермента фосфорилазы, которая активируется в начале мышечного сокращения, происходит усиленное расщепление гликогена, являющегося одним из источников энергии мышечного сокращения. При распаде мышечного гликогена процесс идет до образования пировиноградной и молочной кислот. Этот процесс называют гликолизом. В фазе отдыха из молочной кислоты в мышечной ткани происходит ресинтез гликогена.


При полном отсутствии углеводов в пище они образуются в организме из продуктов трансформации жиров и белков. В печени возможно новообразование углеводов как из собственных продуктов их распада (пировиноградной или молочной кислоты), так и из продуктов диссимиляции жиров и белков (кетокислот и аминокислот), что обозначается как глюконеогенез. В результате трансформации аминокислот образуется пировиноградная кислота, при окислении жирных кислот — ацетилкоэнзим А, который может превращаться в пировиноградную кислоту — предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов. Между двумя основными источниками энергии — углеводами и жирами — существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. Поступление в кровь свободных жирных кислот уменьшается. В случае возникновения гипогликемии процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты. Гликогенез, гликогенолиз и глюконеогенез являются тесно взаимосвязанными процессами, обеспечивающими оптимальный уровень глюкозы крови сообразно степени функционального напряжения организма.

Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы. Единственным гормоном, снижающим уровень гликемии, является инсулин — гормон, вырабатываемый β-клетками островков Ланхгерганса. Снижение гликемии происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый α-клетками островков Ланхгерганса, адреналин — гормон мозгового слоя надпочечников, глюкокортикоиды — гормоны коркового слоя надпочечников, соматотропный гормон гипофиза, тироксин и трийодтиронин — гормоны щитовидной железы. Данные гормоны в связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина часто объединяют понятием «контринсулярные гормоны».

Таким образом биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией. Обладая энергетической ценностью в 16, 7 кДж (4, 0 ккал) на 1 грамм вещества, углеводы являются основным источником энергии для всех клеток организма, при этом выполняя еще пластическую и опорную функции. Суточная потребность взрослого человека в углеводах составляет около 500 г.

Характерной особенностью белкового обмена является его чрезвычайная разветвленность. Достаточно указать, что в обмене 20 аминокислот, входящих в состав белковых молекул, в организме животных участвуют сотни промежуточных метаболитов, тесно связанных с обменом углеводов и липидов. Число ферментов, катализирующих химические реакции азотистого обмена, также исчисляется сотнями. Собственно белки (протеины и протеиды), высокомолекулярные соединения, построенные из мономеров — аминокислот, занимают ведущее место среди органических элементов организма, составляя более 50 % сухой массы клетки. Как известно, белки в организме выполняют ряд важнейших биологических функций, а именно:

— пластическая (структурная) функция заключается в том, что белки являются главной составной частью всех клеточных и межклеточных структур тканей;

— ферментная (каталитическая, энзимная) функция состоит в обеспечении всех химических реакций, протекающих в ходе обмена веществ в организме (дыхание, пищеварение, выделение), деятельностью ферментов, являющихся по своей структуре белками;

— транспортная функция белков заключается в их способности к соединению с целым рядом метаболитов и переносе последних в связанном состоянии в межтканевой жидкости и плазме крови к области их утилизации;

— защитная функция белков проявляется реализацией иммунного ответа образованием иммуноглобулинов (антител) и системы комплемента при поступлении в организм чужеродного белка, а также способностью к непосредственному связыванию экзогенных токсинов; белки системы гемостаза обеспечивают свертывание крови и остановку кровотечения при повреждении кровеносных сосудов;

регуляторная функция, направленная на сохранение гомеостаза с поддержанием биологических констатнт организма, реализуется буферными свойствами молекулы протеинов, белковой структурой клеточных рецепторов, активируемых в свою очередь регуляторными полипептидами и гормонами, также имеющими белковую структуру;

— двигательная функция, обеспечивается взаимодействием сократительных белков мышечной ткани актина и миозина;

энергетическая роль белков состоит в обеспечении организма энергией, образующейся при диссимиляции белковых молекул; при окислении 1 г белка в среднем освобождается энергия, равная 16, 7 кДж (4, 0 ккал).

В организме постоянно происходит распад и синтез белков. Единственным источником синтеза нового белка являются белки пищи. В пищеварительном тракте белки ферментативно расщепляются ферментами до аминокислот и абсорбируются в тонкой кишке. Транспорт их осуществляется двумя путями: через воротную систему печени, ведущую прямо в печень, и по лимфатическим сосудам, сообщающимся с кровью через грудной лимфатический проток. Максимальная концентрация аминокислот в крови достигается через 30 — 50 мин после приёма белковой пищи (углеводы и жиры замедляют всасывание аминокислот). Всасывание L-аминокислот (но не D-изомеров) — активный процесс, требующий затраты энергии. Аминокислоты переносятся через кишечную стенку от слизистой её поверхности в кровь. Перенос через щеточную кайму осуществляется целым рядом переносчиков, многие из которых действуют при участии Na+-зависимых механизмов симпорта, подобно переносу глюкозы.

Из аминокислот и простейших пептидов клетки тканей синтезируют собственный белок, который характерен только для данного организма. Белки не могут быть заменены другими пищевыми веществами, так как их синтез в организме возможен только из аминокислот. Вместе с тем белок может замещать собой жиры и углеводы, то есть использоваться для синтеза этих соединений. В тканях постоянно протекают процессы распада белка с последующим выделением из организма неиспользованных продуктов белкового обмена и параллельно с этим — синтез белков. Катаболизм большинства аминокислот начинается с отщепления α-аминогруппы результате реакций трансаминирования и дезаминирования. Чаще всего в реакциях трансаминирования участвуют аминокислоты, содержание которых в тканях значительно выше остальных — глутамат, аланин, аспартат и соответствующие им кетокислоты — αкетоглутарат, пируват и оксалоацетат. Основным донором аминогруппы служит глутамат. Реакции трансаминирования играют большую роль в обмене аминокислот. Поскольку этот процесс обратим, ферменты аминотрансферазы функционируют как в процессах катаболизма, так и биосинтеза аминокислот. Трансаминирование — заключительный этап синтеза заменимых аминокислот из соответствующих α-кетокислот, если они в данный момент необходимы клеткам. В результате происходит перераспределение аминного азота в тканях организма. Трансаминирование — первая стадия дезаминирования большинства аминокислот, то есть начальный этап их катаболизма. Образующиеся при этом кетокислоты окисляются в ЦТК или используются для синтеза глюкозы и кетоновых тел. При трансаминировании общее количество аминокислот в клетке не меняется. В свою очередь дезаминирование аминокислотреакция отщепления α-аминогруппы от аминокислоты, в результате чего образуется соответствующая α-кетокислота (безазотистый остаток) и выделяется молекула аммиака. Аммиак токсичен для ЦНС, поэтому в организме человека и млекопитающих он превращается в нетоксичное хорошо растворимое соединение — мочевину. В виде мочевины, а также в виде солей аммония аммиак выводится из организма. Безазотистый остаток используется для образования аминокислот в реакциях трансаминирования.

При катаболизме почти все природные аминокислоты сначала передают аминогруппу на а-кетоглутарат в реакции трансаминирования с образованием глутамата и соответствующей кетокислоты. Затем глутамат подвергается прямому окислительному дезаминированию под действием глутаматдегидрогеназы, в результате чего получаются а-кетоглутарат и аммиак. При необходимости синтеза аминокислот и наличии необходимых а-кетокислот обе стадии непрямого дезаминирования протекают в обратном направлении. В результате восстановительного аминирования а-кетоглутарата образуется глутамат, который вступает в трансаминирование с соответствующей а-кетокислотой, что приводит к синтезу новой аминокислоты. В случае использования белков в качестве источника энергии большинство аминокислот окисляются в конечном счёте через цикл лимонной кислоты до углекислого газа и воды. Прежде, чем эти вещества вовлекаются в заключительный этап катаболизма, их углеродный скелет превращается в двухуглеродный фрагмент в форме ацетил-КоА. Именно в этой форме большая часть молекул аминокислот включается в цикл лимонной кислоты.

Белки организма находятся в динамическом состоянии: из-за непрерывного процесса их разрушения и образования происходит обновление белков, скорость которого неодинакова для различных тканей. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, а также других внутренних органов и плазмы крови. Медленнее обновляются белки, входящие в состав клеток мозга, сердца, половых желез и еще медленнее — белки мышц, кожи и особенно опорных тканей (сухожилий, костей и хрящей). Важнейшими азотистыми продуктами распада белков, которые выделяются с мочой и потом, являются мочевина, мочевая кислота и аммиак. Преобладание в организме в данный момент времени синтеза или распада белка отражается понятием азотистого баланса — разностью между количеством азота, содержащегося в пище человека, и его уровнем в выделениях. Азотистым равновесием называют состояние, при котором количество выведенного азота равно количеству поступившего в организм. Азотистое равновесие наблюдается у здорового взрослого человека, если минимальное количество белков в пище соответствует 30-50 г/сут. Оптимальное количество поступления белка с пищей при средней физической нагрузке составляет около 100-120 г/сут. При положительном азотистом балансе количество азота в выделениях организма значительно меньше, чем содержание его в пище, то есть наблюдается задержка азота в организме. Положительный азотистый баланс отмечается у детей в связи с усиленным ростом, у женщин во время беременности, при усиленной спортивной тренировке, приводящей к увеличению мышечной массы, при заживлении обширных ран и при разрешении патологического процесса, связанного с выраженными системными нарушениями. Отрицательный азотистый баланс отмечается тогда, когда количество выделяющегося азота больше содержания его в пище, поступающей в организм. Отрицательный азотистый баланс наблюдается при белковом голодании, лихорадочных состояниях, нарушениях нейроэндокринной регуляции белкового обмена.

Некоторые аминокислоты не могут синтезироваться в организме человека и должны обязательно поступать с пищей в готовом виде. Эти аминокислоты принято называть незаменимыми, или эссенциальными. Экспериментально установлено, что из 20 входящих в состав белков аминокислот 12 синтезируются в организме (заменимые аминокислоты), а 8 не синтезируются (незаменимые аминокислоты) . К незаменимым аминоксилотам относятся: валин, метионин, треонин, лейцин, изолейцин, фенилаланин, триптофан и лизин. Две аминокислоты — аргинин и гистидин — у взрослых образуются в достаточных количествах, однако детям для нормального роста организма необходимо дополнительное поступление этих аминокислот с пищей. Поэтому их называют частично заменимыми. Две другие аминокислоты — тирозин и цистеин — условно заменимые, так как для их синтеза необходимы незаменимые аминокислоты. Тирозин синтезируется из фенилаланина, а для образования цистеина необходим атом серы метионина. Белки, содержащие весь необходимый набор аминокислот, называют биологически полноценными (табл. 1. 1. ). Наиболее высока биологическая ценность белков молока, яиц, рыбы, мяса. Биологически неполноценными называют белки, в составе которых отсутствует хотя бы одна аминокислота, которая не может быть синтезирована в организме. Неполноценными белками являются белки кукурузы, пшеницы, ячменя.

Таблица 1. 1. Аминокислоты, входящие в состав белков человека.

1. Незаменимые

Валин

Лейцин

Изолейцин

Треонин

Метионин

Фенилаланин

Триптофан

Лизин

2. Частично заменимые

Гистидин

Аргинин

3. Условно заменимые

Цистеин

Тирозин

4. Заменимые

Аланин

Аспарагиновая кислота

Аспарагин

Глутаминовая кислота

Глутамин

Пролин

Глицин

Серин

Жиры (липиды) по своей химической структуре представляют собой триглицериды — сложные эфиры глицерина и жирных кислот (табл. 1. 2). Изначально эти соединения были объединены в одну химическую группу по общему признаку растворимости: они не растворяются в воде, но растворяются в органических растворителях (эфир, спирт, бензол). Жиры делят на простые липиды (нейтральные жиры, воски), сложные липиды (фосфолипиды, гликолипиды, сульфолипиды) и стероиды (холестерин). Основная масса липидов представлена в организме человека нейтральными жирами — триглицеридами олеиновой, пальмитиновой, стеариновой, линолевой и линоленовой жирных кислот.

Таблица 1. 2. Классификация липидов организма человека.

1. Гликолипиды.

Содержат углеводный компонент.

2. Жиры.

Эфиры глицерина и высших жирных кислот. Химическое название — ацилглицерины. Преобладают триацилглицерины.

3. Минорные липиды.

Свободные жирные кислоты, жирорастворимые витамины, биологически активные вещества липидной природы — простагландины и др.

4. Стероиды.

В основе строения — полициклическая структура циклопентанпергидрофенантрен-стеран.

А. Стерины (спирты).

Наиболее важен холестерин.

В. Стериды.

Эфиры стеринов и высших жирных кислот. Наиболее распространены эфиры холестерина.

5. Фосфолипипы.

Отличительная особенность — остаток фосфорной кислоты в составе молекулы.

Жиры растительного и животного происхождения имеют различный состав жирных кислот, определяющий их физические свойства и физиолого-биохимические эффекты. Жирные кислоты подразделяются на два основных класса — насыщенные и ненасыщенные. Насыщенность жира определяется количеством атомов водорода, которое содержит каждая жирная кислота (или, иначе, количеством двойных связей С=С). Жирные кислоты со средней длиной цепи (С8-С14) способны усваиваться в пищеварительном тракте без участия желчных кислот и панкреатической липазы, не депонируются в печени и подвергаются β-окислению. Животные жиры могут содержать насыщенные жирные кислоты с длиной цепи до двадцати и более атомов углерода, они имеют твердую консистенцию и высокую температуру плавления. Как известно высокое потребление насыщенных жирных кислот является важнейшим фактором риска развития диабета, ожирения, атеросклероза. К мононенасыщенным жирным кислотам относятся миристолеиновая и пальмитолеиновая кислоты (жиры рыб и морских млекопитающих), олеиновая (оливковое, сафлоровое, кунжутное, рапсовое масла). Мононенасыщенные жирные кислоты помимо их поступления с пищей в организме синтезируются из насыщенных жирных кислот и частично из углеводов. Жирные кислоты с двумя и более двойными связями между углеродными атомами называются полиненасыщенными – ПНЖК. Особое значение для организма человека имеют такие ПНЖК как линолевая, линоленовая, являющиеся структурными элементами клеточных мембран и обеспечивающие нормальное развитие и адаптацию организма человека к неблагоприятным факторам окружающей среды. ПНЖК являются предшественниками образующихся из них биорегуляторов – эйкозаноидов. Двумя основными группами ПНЖК являются кислоты семейств ω-6 и ω-3. Жирные кислоты ω-6 содержатся практически во всех растительных маслах и орехах. ω-3 жирные кислоты также содержатся в ряде масел (льняном, из семян крестоцветных, соевом). Основным пищевым источником ω-3 жирных кислот являются жирные сорта рыб и некоторые морепродукты. Из ПНЖК ω — 6 особое место занимает линолевая кислота, которая является предшественником наиболее физиологически активной кислоты этого семейства — арахидоновой. Арахидоновая кислота является преобладающим представителем ПНЖК в организме человека и служит субстратом для синтеза простагландинов и лейкотриенов.

Источниками жира в организме являются экзогенный жир, поступающий с пищей, и эндогенный жир, синтезируемый в печени из углеводов. Жир, всасывающийся из кишечника, поступает преимущественно в лимфу и в меньшем количестве — непосредственно в кровь. Большая часть жиров в организме находится в жировой ткани, меньшая часть входит в состав клеточных структур. В жировой ткани жир, находящийся в клетке в виде включений, легко выявляется при микроскопическом и гистохимическом исследованиях. Жировые вакуоли в клетках — это резервный жир, используемый для обеспечения прежде всего энергетических потребностей клетки. Больше всего запасного жира содержится в жировой ткани, а также в некоторых органах, например в печени и мышцах. Количество запасного жира зависит от характера питания, количества пищи, конституциональных особенностей, а также от величины расхода энергии при мышечной деятельности; количество же протоплазматического жира является устойчивым и постоянным. В жировой ткани нейтральный жир депонируется виде триглицеридов. Сложные липиды — фосфолипиды и гликолипиды — входят в состав всех клеток, но в большей степени в состав клеток нервной ткани. Общее количество жира в организме человека колеблется в широких пределах и в среднем составляет 10—20% от массы тела, а в случае патологического ожирения может достигать 50%. Суточная потребность взрослого человека в нейтральном жире составляет 70—80 г. У человека состав и свойства жира относительно постоянны. При употреблении пищи, содержащей даже небольшое количество жира, в теле человека жир все же откладывается в депо. При этом эндогенный жир имеет некоторые видовые особенности, однако видовая специфичность жиров выражена несравнимо меньше, чем видовая специфичность белков.

Основная биологическая роль жиров — обеспечение пластического и энергетического обмена в организме. Пластическая роль липидов состоит в том, что они входят в состав клеточных мембран, в значительной мере определяя их свойства. Фосфатиды и стерины входят в состав клеточных структур, в частности клеточных мембран, а также ядерного вещества и цитоплазмы. Исключительно важное физиологическое значение имеют стерины, в частности холестерин. Это вещество входит в состав клеточных мембран, является источником образования желчных кислот, а также гормонов коры надпочечников и половых желез, витамина D. Печень является практически единственным органом, поддерживающим уровень фосфолипидов в крови и местом синтеза эндогенного холестерина. В плазме крови холестерин находится в составе липопротеидных комплексов, с помощью которых и осуществляется его транспорт. У взрослых людей 67—70% холестерина плазмы крови находится в составе липопротеидов низкой плотности (ЛПНП), 9—10% — в составе липопротеидов очень низкой плотности (ЛПОНП) и 20—24% — в составе липопротеидов высокой плотности (ЛПВП). Давно доказано, что именно липопротеиды определяют уровень холестерина и динамику его обмена.

Энергетическая роль жиров определяется их максимальной среди всех биологических молекул энергоемкостью, более чем в два раза превышающую таковую углеводов или белков. При окислении 1 г жира выделяется 37, 7 кДж (9, 0 ккал) энергии. В отличие от углеводов жиры составляют энергетический резерв организма. Преимущество жира в качестве энергетического резерва заключается в том, что жиры являются более восстановленными веществами по сравнению с углеводами (в молекулах углеводов при каждом углеродном атоме есть кислород — группы -CHOH-; у жира имеются длинные углеводородные радикалы, в которых преобладают группы -CH2- — в них нет кислорода). От жира можно отнять больше водорода, который затем проходит по цепи митохондриального окисления с образованием АТФ. Еще одним преимуществом жира как энергетического резерва, в отличие от углеводов, является гидрофобность — он не связан с водой. Это обеспечивает компактность жировых запасов — они хранятся в безводной форме, занимая малый объем. В среднем, у человека запас чистых триацилглицеринов составляет примерно 13 кг. Этих запасов могло бы хватить на 40 дней голодания в условиях умеренной физической нагрузки. Для сравнения: общие запасы гликогена в организме — примерно 400 г; при голодании этого количества не хватает даже на одни сутки.

Катаболизм жира включает в себя три этапа: 1) гидролиз жира до глицерина и жирных кислот (липолиз) ; 2) трансформация глицерина с последующим вступлением продуктов в гексозобифосфатный путь, а также окисление жирных кислот до ацетил-КоА; 3) вступление вышеуказанных продуктов в цикл трикарбоновых кислот. Кроме указанных этапов к катаболизму жиров относят также окисление кетоновых тел и перекисное окисление липидов. Обмен полученного в результате липолиза глицерина может осуществляться несколькими путями. Значительная часть образовавшегося при гидролизе липидов глицерина используется для ресинтеза триглицеридов. Второй путь обмена глицерина — включение продукта его окисления в гликолиз или в глюконеогенез. Окисление жирных кислот осуществляется различными путями, наиболее значимым из них является β-окисление. В ходе β-окисления последовательно происходит активация жирной кислоты на мембране митохондрии и ее связывание с молекулой карнитина, прохождение комплекса нв внутреннюю поверхность мембраны митохондрии, внутримитохондриальное окисление жирной кислоты с образованием ацетил-КоА и АТФ.

Одним из продуктов катаболизма жиров, имеющем важное значения для метаболизма в целом являются кетоновые тела. Кетоновые тела — группа органических соединений, являющихся промежуточными продуктами жирового, углеводного и белкового обменов. К кетоновым телам относят β-оксимасляную и ацетоуксусную кислоты и ацетон, имеющие сходное строение и способные к взаимопревращениям. Главным путем синтеза кетоновых тел, происходящего в основном в печени, считается реакция конденсации между двумя молекулами ацетил-КоА, образовавшегося при β-окислении жирных кислот или при окислительном декарбоксилировании пирувата (пировиноградной кислоты) в процессе обмена глюкозы и ряда аминокислот. Данный путь синтеза кетоновых тел более других зависит от характера питания и в большей степени страдает при патологических нарушениях обмена веществ. Из печени кетоновые тела поступают в кровь и с нею во все остальные органы и ткани, где они включаются в универсальный энергообразующий цикл — цикл трикарбоновых кислот, в котором окисляются до углекислоты и воды. Кетоновые тела используются также для синтеза холестерина, высших жирных кислот, фосфолипидов и заменимых аминокислот. При голодании, однообразном безуглеводистом питании и при недостаточной секреции инсулина использование ацетил-КоА в цикле трикарбоновых кислот подавляется, так как все метаболически доступные ресурсы организма превращаются в глюкозу крови. В этих условиях увеличивается синтез кетоновых тел. Следует подчеркнуть важную роль кетоновых тел в поддержании энергетического баланса. Кетоновые тела – поставщики «топлива» для мышц, почек и действуют, возможно, как часть регуляторного механизма с обратной связью, предотвращая чрезвычайную мобилизацию жирных кислот из жировых депо. Печень в этом смысле является исключением, она не использует кетоновые тела в качестве энергетического материала.

Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами, а также тканевыми механизмами и тесно связаны с углеводным обменом. Так, повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Понижение концентрации глюкозы в крови, наоборот, тормозит синтез триглицеридов и усиливает их расщепление. Таким образом, взаимосвязь жирового и углеводного обменов направлена на обеспечение энергетических потребностей организма. При избытке углеводов в пище триглицериды депонируются в жировой ткани, при нехватке углеводов происходит расщепление триглицеридов с образованием неэтерифицнрованных жирных кислот, служащих источником энергии. В обмене жиров одна из важнейших ролей принадлежит печени. Печень — основной орган, в котором происходит образование кетоновых тел (бета-оксимасляная, ацетоуксусная кислоты, ацетон), используемых как альтернативный глюкозе источник энергии.

При обильном углеводном питании и отсутствии жиров в пище синтез жира в организме может происходить из углеводов. Источником углерода для синтеза жирных кислот служит ацетил-КоА, образующийся при распаде глюкозы в абсорбтивном периоде. В норме у человека 25—30% углеводов пищи превращается в жиры. Превращение белка в жирные кислоты происходит, вероятнее всего, также через образование углеводов. С другой стороны и нейтральные жиры в энергетическом отношении могут быть заменены углеводами. Тем не менее жиры необходимы для нормальной жизнедеятельности. Известно, что длительное исключение жиров из пищевого рациона может явиться причиной возникновения целого ряда тяжелых метаболических нарушений. Отчасти это связано с отсутствием поступления в организм жирорастворимых витаминов (A, D, E, K). Но основная причина метаболических нарушений кроется в возникновении в организме дефицита незаменимых жирных кислот. Некоторые ненасыщенные жирные кислоты (с числом двойных связей более 1), например линолевая, линоленовая и арахидоновая, в организме человека и некоторых животных не образуются из других жирных кислот и поэтому являются незаменимыми. Особенно остро реагирует организм на дефицит незаменимой линолевой кислоты СН3- (СН2) 4 — СН = СН — СН2 — СН = СН — (СН2) 7 — СООН. Возможно это связано с тем, что эта ненасыщенная жирная кислота в организме человека служит предшественником арахидоновой кислоты, которая в свою очередь необходима для синтеза универсальных биорегуляторов — простагландинов. Основными пищевыми источниками полиненасыщенных жирных кислот, в том числе линолевой, являются растительные масла.

Как указывалось выше метаболизм жиров контролируется нервной и эндокринной системами. Мобилизация жиров из депо происходит под влиянием гормонов мозгового слоя надпочечников — адреналина и норадреналина. Соматотропный гормон гипофиза также обладает жиромобилизирующим действием. Аналогично действует тироксин — гормон щитовидной железы. Тормозят мобилизацию жира глюкокортикоиды — гормоны коркового слоя надпочечника, вероятно, вследствие того, что они несколько повышают уровень глюкозы в крови. Действие инсулина связано с повышением активности внутриклеточной фосфодиэстеразы, что приводит к снижению концентрации цАМФ и угнетению липолиза. Таким образом, инсулин усиливает синтез жира и уменьшает скорость его мобилизации. Имеются данные, свидетельствующие о возможности прямых нервных влияний на обмен жиров. Симпатические влияния тормозят синтез триглицеридов и усиливают их распад. Парасимпатические влияния, напротив, способствуют отложению жира в депо.

Источник: volynka.ru

МОЧЕВАЯ КИСЛОТА — 2,6,8-триоксипурин; у человека является конечным продуктом пуринового обмена. Нарушение обмена М. к. является причиной или сопровождает такие заболевания, как подагра, артриты, спондилез, уратные и мочекислые нефропатии, мочекаменная болезнь, ожирение, сахарный диабет, гипертоническая болезнь и др. Значительные количества солей М. к. — уратов (см.) выделяются при заболеваниях, связанных с повышенным распадом клеток и тканей, напр, при лейкозах. Отложения мочекислых соединений (прежде всего мононатриевого урата) в тканях могут вызывать в них локальные воспалительные и дистрофические изменения (см. Подагра). Нарушения обмена М. к. бывают наследственными (первичными) и приобретенными (вторичными). Недостаточность гипоксантин — фосфорибозилтрансферазы (КФ 2.4.2.8) и ряда других ферментов в сочетании с повышенной активностью глутатионредуктазы (КФ 1.6.4.2) является причиной врожденной идиопатической семейной гиперурикемии, обусловленной повышенным синтезом М. к. Наследственная недостаточность фермента гипоксантин: гуанин-фосфорибозилтрансферазы является причиной тяжелого неврол, синдрома у детей (синдром Леша — Найхана), развитие к-рого также связано с гиперурикемией вследствие повышенного образования мочевой кислоты.

М. к. может быть представлена в двух формах: лактамной, характерной для свободной к-ты, и лактимной, являющейся результатом енолизации, происходящей при образовании солей:

М. к. была открыта Шееле (G. W. Scheele) в 1776 г. в составе мочи. В большом количестве М. к. содержится в экскрементах птиц, змей и в составе мочевых камней. Она является постоянной составной частью мочи млекопитающих животных и человека, у к-рых в небольших количествах содержится также в органах, тканях и крови.

Синтетически М. к. была получена путем нагревания мочевины (см.) с амидом трихлормолочной к-ты. Структурная формула М. к. была окончательно установлена разнообразными синтезами, из к-рых следует отметить конденсацию изодиалуровой к-ты с мочевиной и реакцию 5-нитроурацила в щелочном р-ре с дитионитом натрия. Образующаяся при этом сульфаминовая к-та сплавляется при 190—200° с мочевиной.

Чистая М. к. представляет собой легкий белый порошок, кристаллизующийся в виде микроскопических табличек ромбической формы. В холодной воде одна часть М. к. растворяется в 39 480 частях воды, в кипящей — одна часть М. к. в 1600 частях воды; М. к. легко растворяется в едких щелочах, образуя с ними как двухосновная к-та средние соли; в спирте и эфире М. к. нерастворима. Средние соли М. к. и щелочных металлов хорошо растворимы в воде, кислые соли растворимы в воде значительно хуже. Для получения М. к. из мочи к последней прибавляют соляную к-ту. При стоянии М. к. выпадает в виде кристаллического осадка, окрашенного в темно-бурый цвет. Для осаждения М. к. из р-ров применяются пикриновая к-та, фосфовольфрамовая к-та, соли серебра, закиси меди и другие осадителя. При нагревании М. к. обугливается, не плавясь; продуктами разложения ее при этом являются синильная к-та, циануровая к-та, мочевина и аммиак.

Наиболее распространенная качественная проба на М. к. основана на ее окислении азотной к-той, это так наз. мурексидная проба. При смачивании нашатырным спиртом остатка, получаемого при нагревании М. к. с азотной к-той, развивается пурпурное окрашивание, к-рое зависит от образования аммиачной соли пурпурной к-ты. Характерной реакцией на М. к. является также окисление ее окисью меди, к-рая при этом восстанавливается в закись меди. Для количественного определения М. к. ее выделяют в виде аммиачной соли и титруют перманганатом калия. Широко применяются колориметрические методы определения М. к. В противоположность продуктам ее расщепления М. к. характеризуется интенсивным поглощением в УФ-части спектра с максимумом при 293 нм. Это свойство М. к. также используется для количественного ее определения.

Источниками выводимой из организма М. к. являются как пищевые, так и эндогенные амино- и оксипурины. У человека М. к. образуется гл. обр. в печени в результате распада нуклеотидов, дезаминирования аминопуринов и окисления образовавшихся оксипуринов — гипоксантина (см.) и ксантина (см.) при участии фермента ксантиноксидазы (см.). У большинства млекопитающих под влиянием фермента уриказы (КФ 1.7.З.З.), к-рого нет в тканях человека и антропоидов, М. к. окисляется в аллантоин.

При нарушении обмена М. к., выражающемся в ее повышенном образовании в организме или в значительном поступлении М. к. в организм извне, сама к-та и ее соли образуют кристаллические осадки. Выпадению этих соединений в осадок способствуют их повышенная по сравнению с нормой концентрация в тканевых жидкостях, а также уменьшение величины pH по сравнению с физиол, нормой, температурные сдвиги, нарушение кровоснабжения и т. п.

Количество М. к. в суточной моче человека в норме равно 0,4—1 г и не превышает 2 г; обычно оно составляет ок. 1,8% общего азота мочи. Содержание М. к. в сыворотке крови здоровых людей колеблется от 2 до 5 — 6 мг/100 мл.

В клинико-биохим. лабораториях содержание М. к. в сыворотке крови и моче определяют обычно микро-методом, основанным на колориметрическом определении интенсивности синей окраски, развившейся при добавлении реактива Фол ин а (см. Лаури метод) к безбелковому фильтрату сыворотки крови или мочи.

Изменение содержания М. к. в биол, жидкостях детского организма может быть показателем особенностей становления обмена веществ при физиол, условиях и его нарушения при патологии. На обмен М. к. большое влияние оказывают возрастные особенности детского организма.

У новорожденных содержание М. к. в крови сразу после рождения составляет в среднем 5,4 мг/100 мл, достигая к концу первых суток жизни 5,8 мг/100 мл и понижаясь к третьим суткам до 4,3 мг/100 мл. Высокая концентрация М. к. в крови новорожденных в первые сутки жизни объясняется физиол, гемолизом эритроцитов, резким снижением числа лейкоцитов, а также катаболическими процессами, характерными в норме для этого возрастного периода. Начиная со 2-го года жизни и до 7 лет концентрация М. к. в крови детей равна 2,0—2,8 мг/100 мл, что объясняется интенсивностью анаболических процессов, протекающих в детском организме. По мере созревания и совершенствования систем и органов организма ребенка содержание М. к. приходит к величинам, характерным для взрослых: у девушек — 5,5 мг/100 мл, у юношей — 6 мг/100 мл.

У здоровых новорожденных усиленный катаболизм нуклеопротеидов (в результате родового стресса) и ограниченные способности канальцевого аппарата почек создают условия для возникновения в ночках так наз. мочекислого инфаркта (см.) почек — острого поражения ткани почек кристаллами М. к. и уратов, гл. обр. мочекислого аммония и мочекислого натрия. Поражение ткани почек кристаллами М. к. и уратов наблюдают иногда и у детей старшего возраста, леченных лекарственными средствами, обладающими цитостатическим действием. Выведение М. к. с мочой (см. Уратурия) у детей, особенно грудных, превышает количество М. к., выводимой с мочой у взрослых, концентрация М. к. в детской моче достигает 1 мг на 1 мл мочи.

У детей старшего возраста, так же как и у взрослых, клин, синдромы, обусловленные повышенным образованием и содержанием М. к. в крови (гиперурикемия) и в моче (гиперуратурия), объединены под общим названием урикопатии (см. Мочекислый диатез). У ратные нефропатии у детей раннего возраста клинически проявляются лейкоцитурией, затем появляется гематурия, а у детей старше 10 лет, длительное время страдающих уратной нефропатией, нарастает протеинурия, и заболевание начинает напоминать по течению хрон, нефрит.

Наследственная идиопатическая семейная гиперурикемия и синдром Леша — Найхана обусловлены повышенным синтезом М. к. в результате врожденной недостаточности фермента гипоксантин: гуанин-фосфорибозилтрансферазы. В крови при этом обнаруживается повышенное количество глутамина, глицина и аспарагиновой к-ты не только у больного ребенка, но и у родственников, по линии к-рых он унаследовал данную патологию.

Вторичная гиперурикемия чаще всего обусловлена повышенным образованием нуклеиновых к-т при заболеваниях крови, после рентгенотерапии, при снижении функции почек.

Диагностика нарушений обмена М. к. включает в себя определение в крови и моче концентрации М. к., пуриновых оснований (см.), аминокислот, углеводов, липидов и активности ксантиноксидазы.

См. также Пуриновый обмен.

Библиография: ЗбарекиЙ Б. И., Иванов И. И. и Mардашев С. Р. Биологическая химия, с. 419 и др., Л., 1972; П и х л а к Э. Г. Подагра, М., 1970; G e г t 1 e г М. М., Garn S. М. a. Levine S. А. Serum uric acid in relation to age and physique in health and in coronary heart disease, Ann. intern. Med., v. 34, p. 1421, 1951; G r e i 1 i n g H. u. a. Bioche-mische Untersuchungen iiber die Ursache der Harnsaureablagerung im Bindegewebe der Gicht, Z. Rheumaforsch., Bd 21, p. 50, 1962; Me Murray W. C. Essentials of human metabolism, p. 248 a. o., N.Y. a.o., 1977; Rapoport S. M. Medizinische Biochemie, S. 97 u. a., B., 1977.

Источник: xn--90aw5c.xn--c1avg


Leave a Comment

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.