Миоглобин строение


миоглобинМиоглобин это белок, который включает в себе железо (двухвалентное). Миоглобин идентичен гемоглобину по строению, но белковое строение у них различное.

Данный белок не разносит по организму ионы кислорода, а занимается запасом его в организме, образует молекулы оксимиоглобин, и наполняет оксимиоглобином мышечные ткани.

Наполненные кислородом клетки мышечных тканей, способны обеспечить внутреннее их дыхание.

Расход мышечными тканями кислорода полностью зависит от ее функции.

Ткани, которые интенсивно потребляют кислород:

  • Клетки мышцы сердечного органа,
  • Серое вещество, которое находится в головном мозге,
  • Паренхима печеночного органа,
  • Корковое вещество, которое входит в состав почек.

Миоглобин. Что это.

Только клетки одной единственной ткани могут накапливать молекулы кислорода это мышечная ткань, потому что она владеет молекулами миоглобина в своем составе.

Что такое молекулы мышечного гемоглобина?

Миоглобин это белок, который присутствует в мышцах поперечно-полосатых, аналогично расположеных в миокардовой ткани. Миоглобин входит в состав группы хромопротеиновых молекул.

В миоглобине присутствует ген, который взаимосвязан с частью белков организма и входит в простетическую группу. В молекулу миоглобина входят составные части аминокислот.

Белок является мономером, который состоит из единственной цепи.

Существуют структуры молекулы белка:

  • Структура первичная это стадия мономера, состоящая из полипептидной связывающей цепи, в состав которой входит остатки аминокислот,
  • Структура вторичной стадии конфирмация, которая имеет а-спиральную форму и 75,0% молекул имеет данную структуру,
  • Структура третичного типа имеет а-спиральную форму, которая сложена в глобулу компактного типа.

молекулы мышечного типа гемоглобина

Чтобы определить структуру третичного вида, нужен метод анализа при помощи рентгена.

Свойства миоглобина

Миоглобин имеет свойственные только ему способности:

  • Связывание гемоглобина,
  • Создание самостоятельного буфера,
  • 1,0 грамм миоглобина может присоединить к себе 1,34 мл о2,
  • Способность откладывать запасы кислорода до ближайшего времени.

Если в организме происходит ситуация и миокард не получает кислород, тогда данный запас кислорода в миоглобине обеспечивает сердечную мышцу на протяжении 4 секунд.

Когда происходит сбои в кровотоке миокарда, либо же повреждения в систоле, тогда гемопротеин предотвратит окисление организма, и обеспечит нормальные условия для всех процессов в организме.

Работа миоглобина в данном обеспечении краткосрочная.

При нарушении миоцитов мышц скелета, или кардиомиоцитов, выполняется выход миоглобина в кровоток.

При инфаркте миокарда происходит зависимость уровня в крови миоглобина от степени поражения некрозом сердечной мышцы. Чем больше поражена сердечная мышца, тем выше индекс в крови мышечного хромопротеина.


анализ на миоглобин

Когда при инфаркте делается повторный анализ на миоглобин (через 2 3 часа), тогда посредством данного анализа можно определить степень разрушения сердечной мышцы.

Также на инфаркт сердечной мышцы может указывать повышение уровня креатинкиназы (фракции МВ).

В чем отличие данного белка от гемоглобина?

Оба белка в организме гемоглобин и мышечный белок миоглобин, имеет довольно много общих составляющих. Главное их сходство это транспортирование по организму ионы кислорода.

Функция миоглобина, присоединять к себе ионы кислорода и создавать кислородные запасы в тканях. Еще одна функция миоглобина это освобождать из клеток ткани кислород, чтобы подготовить энергию для работы мышц.

Структурные составляющие этих двух белков миоглобина и молекул гемоглобина различные.


Гемоглобин по своей структуре полимер, миоглобин имеет структуру молекулы мономера.

Различия:

Гемоглобин в составе организма отвечает за функцию дыхания клеток и поддерживает постоянный уровень кислотности крови рН. В своем строении содержит 4 молекулярных гема.

Свойства миоглобина это транспортировка ионов кислорода от легких, к артериям периферической сферы организма. Данный белок имеет одну цепь в структуре, поэтому для связывания с молекулами кислорода, он не тратит много сил, хотя отдавать ему данные молекулы тяжелее.

Эти оба белка имеют высокую токсичность, при попадании в организм в свободном чистом состоянии. По норме, из состава организма, молекулы миоглобина выводятся при помощи почек.

Молекулы миоглобина имеют крупный размер, поэтому при нарушениях в сосудах почек они могут закупоривать их, вызывая некроз органа.

Между этими двумя белками происходит конкуренция за кислород, и миоглобин не успевает отдать его клеткам тканей, что может спровоцировать кислородное голодание мышечной ткани.

анализ на миоглобин

В кардиологии анализ на миоглобин это один из ярких маркеров патологии сердечного органа, а именно инфаркта миокарда.

Этот маркер подтверждает положительный результат повреждения сердечной мышцы, или же мышечных тканей организма.


Когда нужно делать анализ на миоглобин?

Биохимия крови на присутствие миоглобина делается в случае предположения на:

  • Инфаркт сердечной мышцы в острой стадии патологии при первичном диагностическом его изучении,
  • Сильное повреждение, или разрушение мышечной ткани скелета,
  • Патология миопатия,
  • Заболевание полимиозит,
  • При контроле лечения инфаркта.

острый инфарктПри остром инфаркте кровь на миоглобин берется сразу при поступлении больного в клинику.  Также для контроля заболевания несколько раз, через временные промежутки в 3 часа.

Показания данного маркера очень важно при повторном заболевании, и назначается в комплексе с другими маркерами это креатинкиназой и тропонином. Данный комплекс биохимии дает в полной мере оценить степень поражения мускулатуры сердечного органа.

Подготовка к анализу


Для исследования биологического материала на миоглобин, подходит: сыворотка крови, плазма, или даже урина. Все биологические материалы должны быть свежо взятыми.

Для того чтобы получить максимально правильный результат показателей на миоглобин, необходимо соблюдать правила до забора материала, и во время его:

  • Кровь рекомендовано сдавать утром,
  • Последний прием еды не менее чем за 8 9 часов до забора венозной крови,
  • нет алкогольНе употреблять алкоголь в последние 48 часов до сдачи материала на анализ,
  • Пить можно только чистую воду перед сдачей,
  • Кофе, соки, чай, и другие напитки употреблять в этот период запрещено чтобы избежать искаженного материала,
  • Минимум за 60 минут до сдачи анализа запрещено курить,
  • За полчаса до процедуры прекратить всякую активность,
  • Перед сдачей, не нервничать и быть в спокойном состоянии,
  • Не проводить процедуру сразу после рентгенографии, а также после узи,
  • Не проводить анализ после физиотерапии.

Анализ на миоглобин это важный этап диагностики, особенно в терапии инфаркта.

Результаты анализа дают возможность отследить эффективность лечения, и если необходимо подкорректировать медикаментозный курс.

Норма индекса миоглобина

Нормативные показатели могут расти в сторону увеличения, и зависеть от методик лабораторного исследования:

  • Диагностический тест – иммуно-нефелометрический,
  • РИА анализ радиоиммунологический,
  • Исследование методикой иммунофлюоресцентного анализа.

Несмотря, на различную чувствительность лабораторных тестов, объем миоглобина не превышает индекс от 65,0 до 80,0 мкг/л.

Нормативный показатель:

  • Для представителей сильного пола от 19,0 до 92,0 мкг/л,
  • Для женского организма от 12,0 до 76,0 мкг/л,
  • Средний нормативный коэффициент 49,0, а также больше, или меньше на 17,0 единиц (для мужского пола),
  • Средний норматив для женщин 35,0, а также больше, или меньше на 14,0,
  • Концентрация молекул миоглобина в урине меньше, чем индекс 20,0 мкг/л, в абсолютно здоровом организме, в урине не должен присутствовать белок миоглобин.

Когда индекс миоглобина в составе крови отличается от нормативных единиц, тогда ставят диагноз миоглобинемия.


присутствие миоглобина в урине

Если обнаружено при прохождении анализа присутствие миоглобина в урине, тогда устанавливают диагноз миоглобинурии.

Индекс повышен

Физиологическое повышение мышечного типа гемоглобина. Причины связаны с нагрузкой на мышечную ткань скелета, особенно при спортивных состязаниях и тренировках, а также при применении физиотерапии электрическими импульсами.

Патологическое повышение индекса происходит при таких заболеваниях:

  • Повреждение сердечной мышцы при инфаркте миокарда (увеличивается гемопротеин, а также происходит увеличение показателя креатинкиназы). Миоглобин повышается спустя 30 минут после появления болевого синдрома, и его присутствие можно определить даже на 3 сутки после приступа,
  • Недостаточность в почках и синдром уремический,
  • Воспаление, которое протекает в тканях мышц,
  • При травматизме,
  • Ожоги тканей термические в глубокой форме,
  • Ожоги химического типа в мышечной ткани,
  • Судороги мышечного характера,
  • После хирургического вмешательства,
  • Дистрофия мышц.

Индекс понижен

Понижается индекс мышечного типа гемоглобина в крови только под воздействием патологии, такой как:

  • Артрит ревматоидного типа,
  • Воспаление ткани мышц полимиозит,
  • Миастения это присутствие в составе крови антител, которые влияют на миоглобин.

полимиозит

Полимиозит

Что влияет на уровень мышечного гемоглобина?

На уровень, как в сторону повышения, так и в сторону его снижения в составе крови миоглобина могут влиять некоторые факторы:

  • Гемолиз,
  • Липемия влияет на показатель данного белка в анализе,
  • Злоупотребление алкогольными напитками провоцирует повышение в крови миоглобина,
  • Употребление в большом количестве амфетаминов повышает уровень данного белка,
  • Почечная недостаточность влияет на содержание миоглобина в крови, так как данное вещество выводится из организма при помощи почек.

Присутствие миоглобина в урине

Содержание миоглобина в моче это показатель в организме патологии, так как у здорового человека, данный белок в урине не просматривается:


  • Инфаркт (повреждение некрозом сердечной мышцы),
  • Патология почекМиоглобинурия, как вторичное заболевание при интоксикации организма,
  • При ожогах большой площадью и глубоких травматических ожогах,
  • Интоксикация алкоголем,
  • Физическая перегрузка мышечной ткани особенно остро стоит при спортивных нагрузках,
  • Токсикоз мышечной ткани при травматизме,
  • Патология почек.

Профилактические мероприятия

Для того чтобы поддерживать нормальный уровень в составе крови мышечного гемоглобина, необходимо обратить внимание на распределение физических нагрузок на организм и адекватно относиться к нормам нагрузок.

Очень важно вести здоровый образ проживания и не злоупотреблять алкогольными напитками. Никотиновая зависимость также влияет на показатель мышечного гемоглобина.

Видео: Интересное о миоглобине.

Источник: KardioBit.ru

Тема: «СТРОЕНИЕ И ФУНКЦИИ СЛОЖНЫХ БЕЛКОВ. СТРУКТУРА И ФУНКЦИИ МИОГЛОБИНА И ГЕМОГЛОБИНА»

1. Определение понятия и основные принципы классификации сложных белков. Примеры.

2. Гликопротеины: особенности строения, примеры, функции. Иммуноглобулины: особенности строения, классы иммуноглобулинов, их роль в организме.

3. Фосфопротеины: представители, связывание простетической группы с апопротеином, роль в организме.

4. Металлопротеины: представители, характер простетической группы, ее связывание с апопротеином, роль металлопротеинов в организме.

5. Строение и функции хромопротеинов (на примере миоглобина и гемоглобина). Аллостерические свойства гемоглобина. Кооперативный эффект. Роль СО2, водородных ионов и 2,3-дифосфоглицерата в регуляции сродства гемоглобина к кислороду.

6. Производные гемоглобина (дезоксигемоглобин, оксигемоглобин, карбгемоглобин, карбоксигемоглобин, метгемоглобин, цианметгемоглобин), их характеристика. Причины и последствия накопления метгемоглобина в крови.

7. Молекулярные формы гемоглобина. Фетальный гемоглобин, особенности структуры, свойства, биологическая роль. Серповидно-клеточный гемоглобин (HbS), особенности структуры, свойства, проявления гемоглобиноза S.

Раздел 3.1

Понятие о простых и сложных белках. Классификация сложных белков.

 

3.1.1. Запомните, что белки можно разделить на простые и сложные. Простые белки — белки, которые состоят только из аминокислотных остатков. Сложные белки (холопротеины) — белки, которые состоят из аминокислотных остатков и компонентов небелковой природы. Белковая часть сложного белка получила название апопротеин, небелковая часть сложного белка — простетическая группа.

3.1.2. Сложные белки классифицируют в зависимости от химического строения их простетических групп. Выучите названия классов сложных белков, их простетических групп и примеры представителей различных классов сложных белков (таблица 3.1) .

 

Таблица 3.1
Классификация сложных белков
Название класса Простетическая группа Представители класса

Хромопротеины

Окрашенные соединения ( гем, производные рибофлавина;

Гемоглобин, миоглобин, цитохромы, каталаза

Нуклеопротеины

Нуклеиновые кислоты

Вирусы, рибосомы, хроматин

Фосфопротеины

Фосфорная кислота

Казеиноген молока, овальбумин, вителлин

Металлопротеины

Ионы металлов

Ферритин, трансферрин, церулоплазмин, гемосидерин

Гликопротеины

Углеводы и их производные

Гликофорин, интерферон, иммуноглобулины

Липопротеины

Липиды и их производные

Хиломикроны, липопротеины плазмы крови

В этом разделе мы более подробно коснёмся строения и свойств хромопротеинов и нуклеопротеинов. Характеристика белков — представителей других классов будет рассмотрена позднее.

Раздел 3.2

Особенности строения и биологическая роль липопротеинов, нуклеопротеинов, фосфопротеинов, металлопротеинов.

 

3.2.1. Липопротеины – сложные белки, содержащие в качестве простетической группы липиды и их производные. Представителями служат хиломикроны и другие фракции липопротеинов крови. Липопротеины являются транспортными формами липидов в крови. Более подробно этот класс сложных белков рассматривается в разделе «Обмен липидов».

3.2.2. Нуклеопротеины – сложные белки, содержащие в качестве простетической группы нуклеиновые кислоты. Нуклеопротеинами являются вирусы, рибосомы, хроматин клеточного ядра. Существуют две разновидности нуклеопротеинов: 1) рибонуклеопротеины, в состав которых входит рибонуклеиновая кислота (РНК); 2) дезоксирибонуклеопротеины, в состав которых входит дезоксирибонуклеиновая кислота (ДНК). Строение и свойства нуклеиновых кислот будут рассматриваться позднее.

Особенность белковой части нуклеопротеинов заключается в том, что в её состав входит много положительно заряженных аминокислотных остатков. Так, в состав дезоксирибонуклеопротеинов входят белки гистоны, богатые лизином и аргинином. Между белковыми и небелковыми компонентами нуклеопротеинов образуются ионные связи (так как нуклеиновые кислоты заряжены отрицательно).

3.2.3. Фосфопротеины содержат в своём составе остатки фосфорной кислоты, соединённые с остатками гидроксиаминокислот (серин, треонин) при помощи сложноэфирных связей. К этой группе сложных белков относятся казеиноген молока, яичные белки овальбумин и вителлин. Многие внутриклеточные белки являются фосфопротеинами. Присоединение фосфатной группы к белку часто вызывает изменение его функции.

Фосфорилирование и обратный процесс – дефосфорилирование – распространенный механизм регуляции биологической активности белков. Например, фосфорилирование гистонов снижает их способность связываться с ДНК и участвовать в регуляции матричных синтезов с участием ДНК.

3.2.4. Металлопротеины. Если в белке содержатся ионы одного или нескольких металлов, то такие белки называются металлопротеинами. Ионы металлов соединены координационными связями с функциональными группами белка и участвуют в поддержании его пространственной структуры. Металлопротеины часто являются ферментами.

Трансферрин – водорастворимый железопротеин, содержащийся в сыворотке крови в составе β-глобулинов. Молекула трансферрина содержит 2 иона Fe3+; этот белок служит переносчиком железа в организме.

Ферритин – внутриклеточный глобулярный белок, содержится главным образом в селезенке, печени, костном мозге, выполняя роль депо железа в организме. Благодаря ферритину цитозольные запасы железа поддерживаются в растворимой и нетоксичной форме.

Гемосидерин, в отличие от ферритина и трансферрина, является водонерастворимым железосодержащим белковым комплексом. Он содержится главным образом в клетках печени и селезенки, накапливается при избытке железа в организме, например, при частых переливаниях крови.

Церулоплазмин – белок α2-глобулиновой фракции сыворотки крови, его молекула содержит 6 – 8 ионов меди. Обладает каталитической активностью, катализирует реакцию окисления Fe2+ в Fe3+. Это делает возможным связывание железа с трансферрином и его последующий транспорт в крови.

Раздел 3.3 Строение и функции гликопротеинов. Иммуноглобулины.
 


3.3.1. Гликопротеины – содержат в качестве простетической группы углеводы и их производные. Они присоединяются либо N-гликозидной связью к амидогруппе остатка аспарагина, либо О-гликозидной связью к гидроксигруппе остатка серина или треонина. Углеводная часть имеет нерегулярное строение.

Гликопротеины выполняют в организме следующие функции: структурную (коллаген, эластин), защитную (антитела, интерфероны), рецепторную, гормональную (гормоны гипофиза), ферментативную, транспортную.

3.3.2. Иммуноглобулины (антитела) — группа белков, вырабатываемых организмом в ответ на попадание в организм чужеродных структур (антигенов). Они синтезируются В-лимфоцитами или плазматическими клетками. В организме может вырабатываться порядка 107 разновидностей иммуноглобулинов, каждый из которых может распознавать определённый антиген. Все иммуноглобулины подразделяют на пять классов: IgA, IgG, IgM, IgD, IgE.

Основную структурную единицу иммуноглобулинов, или мономер, образуют четыре полипептидные цепи, соединённые между собой дисульфидными связями, из них:

а) две идентичные тяжёлые цепи (молекулярная масса 53000 — 75000 Да), обозначаемые буквами Н;

б) две идентичные лёгкие цепи (молекулярная масса около 23000 Да), обозначаемые буквами L.

Иммуноглобулины G, D и Е по своей структуре, как правило, являются мономерами, молекулы IgM построены из пяти мономеров, IgA могут быть как мономерами, так и состоять из двух и более структурных единиц.

Белковые цепи, входящие в состав иммуноглобулинов, можно условно разделить на специфические домены, или области, имеющие определённые структурные и функциональные особенности.

N-концевые участки как L-, так и Н-цепей называются вариабельной областью (V), так как их структура характеризуется существенными различиями у разных классов антител. Внутри вариабельного домена имеются 3 гипервариабельных участка, отличающихся наибольшим разнообразием аминокислотной последовательности. Именно вариабельная область антител ответственна за связывание антигенов по принципу комплементарности; первичная структура белковых цепей в этой области определяет специфичность антител.

 

С-концевые домены Н- и L-цепей обладают относительно постоянной первичной структурой в пределах каждого класса антител и называются константной областью (С). Константная область определяет свойства различных классов иммуноглобулинов, их распределение в организме, может принимать участие в запуске механизмов, вызывающих уничтожение антигенов.

3.3.3. Функции иммуноглобулинов. IgG составляют около 75% общего количества иммуноглобулинов плазмы крови. IgG эффективно связывают и инактивируют чужеродные молекулы и клетки, попавшие в организм, а также облегчают их дальнейшее уничтожение, способны преодолевать плацентарный барьер, что обеспечивает иммунитет новорождённых в течение первых недель жизни.

IgA содержатся главным образом в секретах слизистых оболочек дыхательных и выделительных путей, желудочно-кишечного тракта, т.е. обеспечивают защиту поверхностей, сообщающихся с внешней средой.

IgM синтезируются на ранних стадиях иммунного ответа, вступают в реакцию агглютинации с антигенами, активируют систему комплемента.

IgD связаны с мембраной лимфоцитов, функционируют в качестве рецепторов для антигенов.

IgE участвуют в развитии аллергических реакций, в защите от паразитарных инвазий.

Раздел 3.4 Миоглобин и гемоглобин: сходство и различия структуры и функции.
 
3.4.1. Среди хромопротеинов различают гемопротеины (содержат в качестве простетической группы порфириновые производные) и флавопротеины (содержат производные рибофлавина — витамина B2). Хромопротеины участвуют в осуществлении многих жизненно важных функций, таких как тканевое дыхание, перенос кислорода, окислительно-восстановительные реакции, светоощущение, фотосинтез в растительных клетках и другие процессы.
Раздел 3.5

Производные гемоглобина. Молекулярные формы гемоглобина: отличия HbF и HbS от HbA.

 

3.5.1. Следует различать производные гемоглобина и его молекулярные формы. К производным гемоглобина относятся продукты взаимодействия гемоглобина (дезоксигемоглобина) с различными лигандами. Это взаимодействие, как правило, носит обратимый характер. Производные гемоглобина, представляющие наибольший интерес для медицины, перечислены в таблице 3.2.

Запомните, что метгемоглобин (MetHb), в отличие от гемоглобина, теряет способность связывать и транспортировать кислород. Следовательно, попадание в организм больших количеств веществ, вызывающих образование метгемоглобина (нитриты, нитраты, анилин, нитробензол, некоторые лекарства), может привести к гипоксии (кислородному голоданию) тканей и смерти. В то же время метгемоглобин может легко связывать ионы CN—, нейтрализуя их токсическое действие. В результате образуется цианметгемоглобин.

3.5.2. Молекулярные формы гемоглобина отличаются друг от друга строением полипептидных цепей. Примером такой разновидности гемоглобина, существующей в физиологических условиях, является фетальный гемоглобин (HbF), присутствующий в крови в эмбриональной стадии развития человека. В отличие от HbA, его молекула содержит 2 α- и 2 γ-цепи (то есть β-цепи заменены на γ-цепи). Такой гемоглобин обладает более высоким сродством к кислороду. Именно это позволяет эмбриону получать кислород из крови матери через плаценту. Вскоре после рождения HbF в крови ребёнка замещается на HbA.

В качестве примера аномального или патологического гемоглобина можно привести уже упоминавшийся (см. 2.4.) гемоглобин S, обнаруженный у больных серповидно-клеточной анемией. Как вам уже известно, он отличается от гемоглобина А заменой в β-цепях глутамата на валин. Эта аминокислотная замена вызывает снижение растворимости HbS в воде и уменьшение его сродства к O2.

Таблица 3.2
Производные гемоглобина
Критерий Дезоксигемоглобин Оксигемоглобин Карбгемоглобин Карбоксигемоглобин Метгемоглобин Цианметгемоглобин
Лиганд O2 СО2 СО ОН— CN—
Валентность железа II II II II III III
Место присоединения лиганда Fe2+ NH2- группы глобина Fe2+ Fe3+ Fe3+
Механизм образования Hb + O2 « HbO2 Hb-NH2 + CO2 « Hb-NH-COOH HbО2 + CO « HbCO + O2 Hb + O2 + OН— « MetHb(OH) + O2— MetHb(OH) + CN— « MetHb(CN) + OH—
Сродство к O2 низкое высокое низкое очень низкое отсутствует отсутствует
Присутствие в крови в норме присутствует присутствует присутствует отсутствует отсутствует отсутствует
Примеры

Обучающие задачи и эталоны их решения

 

3.5.1. Задачи.

1. В гидролизате сложного белка обнаружена фосфорная кислота. Можно ли с достаточной уверенностью сказать, к какому классу относится изучаемый белок?

2. Сравните растворимость простетической группы гемоглобина в воде и органических растворителях.

3. У альпиниста через 2 дня после подъёма на высоту 4000 м над уровнем моря содержание 2,3-дифосфоглицерата в эритроцитах составляет 6,5 ммоль/л (в норме — 4,5 ммоль/л) . Как это отразится на сродстве гемоглобина к кислороду? Какое значение для организма имеет такое изменение?

3.5.2. Эталоны решения.

1. Как видно из таблицы 3.1, фосфорная кислота является простетической группой белков класса фосфопротеинов. Известно также, что фосфат входит в состав нуклеиновых кислот, которые могут выступать в качестве простетической группы нуклеопротеинов. Поэтому фосфорная кислота может быть обнаружена в гидролизате как фосфопротеина, так и нуклеопротеина. Для уточнения класса гидролизованного белка нужно провести с гидролизатом качественные реакции на азотистые основания и пентозы (см. 3.1.).

2. Растворимость вещества в воде или органических растворителях зависит от того, какие функциональные группы преобладают в молекуле. Простетическая группа гемоглобина — гем — содержит только две полярные группировки (две карбоксильные группы), остальная часть молекулы неполярна (равномерное распределение электронной плотности). Поэтому гем хорошо растворяется в органических растворителях и не растворяется в воде (см. 3.2.).

3. 2, 3-Дифосфоглицерат (ДФГ) является аллостерическим регулятором, понижающим сродство гемоглобина к кислороду. Поэтому при увеличении содержания ДФГ в эритроцитах равновесие в уравнении диссоциации HbO2 смещается вправо. Увеличение отдачи кислорода оксигемоглобином имеет компенсаторное значение для организма, так как восполняет недостаточное поступление кислорода из атмосферы (см. 3.2.).

 

Источник: dendrit.ru

Семейство гемоглобинов

Сюда относятся гемсодержащие родственные глобулярные белки: миоглобин и гемоглобин. Оба белка имеют родственное происхождение, сходную конформацию полипептидных цепей и сходную функцию (транспорт О2), но различаются по молекулярной массе, количеству протомеров в четвертичной структуре и локализации в тканях (рис.42).

 

Миоглобин строение

Рис.42. Сравнение конформации миоглобина и β-цепи гемоглобина

 

Миоглобин содержится в клетках красных мышцах; присоединяет кислород, доставляемый гемоглобином и транспортирует его в митохондрии, а также в форме оксигемоглобина участвует в запасании О2. При кислородном голодании (сильная физическая нагрузка) кислород высвобождается из комплекса с миоглобином и поступает в митохондрии. Миоглобин – это глобулярный сложный белок; состоит из простетической не белковой группы гема и белковой части — апомиоглобина. Гем – состоит из органической части протопорфирина, в которой атомы азота 4 пирольных колец связаны 4 координационными связями с атомом Fe2+ (рис.43).

 

 

Миоглобин строение

 

 

Рис.43. Строение гема миоглобина

Апомиоглобин (рис.44) — состоит из одной полипептидной цепи, включающей 153 аминокислых остатков, которые во вторичной структуре уложены в 8 α–спиралей.

 

Миоглобин строение

 

Рис.44. Графическая формула апомиоглобина

( квадратом выделен гем)

 

 

Спирали обозначаются буквами от А до Н, аминокислотные остатки в спирали обозначаются цифрами их порядкового номера в спирали (Гис F8). Третичная структура — компактная глобула. Активный центр миоглобина находится между двумя α–спиралями F и Е, и содержит в основном гидрофобные остатки аминокислот и 2 остатка гистидина (Гис Е7 и Гис F8), расположенные по обе стороны от гемма (рис. 45).

Миоглобин строение

 

 

Рис.45. Расположение гемма в активном центре апомиоглобина протомеров апогемоглобина

 

 

Атом Fе2+ может образовывать 6 связей: 4 — с атомами протопо- фирина гемма, 5я — с азотом идозольного кольца Гис8, 6я — с лигандом О2; Гис Е7 не связан с гемом; он обеспечивает правильные присоединение О2 к миоглобину. Гидрофобные остатки аминокислот, окружающие их, припятствуют проникновению воды в центр связывания миоглобина и окислению Fе2+ в Fе3+, так как Fе3+ не способно связывать О2.

Источник: studopedia.su


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.