Фибриновые нити



ФИБРИН

белок, образующийся из фибриногена под действием фермента тромбина; конечный продукт свертывания крови, структурная основа тромба.

Предшественник Ф. (фибриноген)- гликопротеин (мол. м. 340 тыс.), содержащий две одинаковые субъединицы, каждая из которых состоит из трех разл. полипептидных цепей Афибрин(мол. м. 67 тыс.), Вфибрин. Рис. 2 (мол. м. 56 тыс.) ифибрин. Рис. 3(47 тыс.); формула фибриногена (Аα, В


фибрин. Рис. 4, фибрин. Рис. 5)2 (А и В — N-концевые последовательности соотв. α- и фибрин. Рис. 6-цепей, которые наз. фибринопептидами А и В).

В молекуле фибриногена находится 24 связи S-S, три из которых связывают 6 полипептидных цепей в N-концевых областях, формируя центральный, или E-домен. Два идентичных крайних D-домена включают С-концевые области фибрин. Рис. 7 и фибрин. Рис. 8-цепей (молекула имеет форму гантели).

Переход фибриногена в Ф. происходит по схеме:

фибрин. Рис. 9

Активация перехода фибриногена в Ф. происходит в Е-до-мене, в N-концевых областях А
фибрин. Рис. 10и Вфибрин. Рис. 11-цепей. Она начинается с гидролиза тромбином пептидных связей, образованных Arg-15 и GIy-16 в фибрин. Рис. 12цепи (букв. обозначения см. в ст. аминокислоты). При этом высвобождаются две молекулы фибри-нопептида А и формируются два участка полимеризации, которые спонтанно взаимод. с комплементарными центрами полимеризации, расположенными в С-концевых областях D-доменов двух др. молекул. Нековалентное межмол. взаимод. между E- и D-доменами ведет к образованию двухнитча-того полимера.

След. этап активации — отщепление двух молекул фибри-нопептида В в результате гидролиза тромбином пептидной связи между остатками Arg-14 и GIy-15 в фибрин.  <div><sjdiv id=


с. 13" />-цепи, в результате чего формируются два дополнит, участка полимеризации в E-домене фибрин-мономера, комплементарных двум центрам в D-доменах. Скорость отщепления фибринопептидов В увеличивается в процессе полимеризации фибрин-мономеров. Растущие изначально только в длину протофибриллы Ф. начинают утолщаться и ветвиться. Фибриллы ассоциируются латерально, превращаясь в толстые, скрученные наподобие спирали волокна трехмерной сети фибринового сгустка.

Структура фибринового сгустка стабилизируется транспептидазой, или фактором ХШа, который в присутствии Ca2+ катализирует образование поперечных «сшивок» между антипараллельными фибрин. Рис. 14цепями путем образования ковалентных изопептидных связей между Gln-398 одной цепи и Lys-406 другой (в результате реакции трансамидирования). В последующем образуются изопептидные связи между α-цепями, в которых участвуют остатки Gln-328 и Lys-518, а также Gln-366 и Lys-584 с образованием фибрин. Рис. 15мультимеров, что обусловливает латеральный рост фибриновых волокон.

От структуры фибринового сгустка и степени его стабилизации зависят мех. свойства сгустка, такие, как эластичность и прочность.
о важно для выполнения им гемостатич. функций, поскольку он является основой гемостатич. тромба, препятствующего истечению крови из сосудов при нарушении их целостности при разл. рода повреждениях. Генетич. аномалии молекулы фибриногена и низкая концентрация фактора ХШа в крови приводят к ненормальной полимеризации и образованию фибринового сгустка с нарушенными физ. свойствами, что ведет к ряду патологич. состояний, сопровождающихся кровоточивостью или тромботич. осложнениями у больных.

Ф. является также прир. субстратом плазмина, который регулирует процесс фибринолиза, приводящий к растворению фибриновых сгустков и тромбов. Высокое сродство Ф. к предшественнику плазмина (плазминогену) и его тканевому активатору обеспечивает возможность образования плазмина непосредственно на поверхности полимерного фибрина, или тромба.

Лит.: Овчинников Ю.А., Биоорганическая химия, М., 1987, с. 234–36; Медведь Л.В., Литвинович СВ., «Биохимия животных и человека», 1989, № 13, с. 18–27; Позднякова T. M., там же, с. 27–36.

И. П. Баскова

Источник: gufo.me

Что такое фибрин?

Фибрин — это высокомолекулярный белок, который является производным синтезируемого печенью фиброгена. Имеет форму длинных поперечноисчерченных или гладких волокон. Сгустки этих волокон составляют основу тромба, который образуется во время свертывания крови.


В отличие от фиброгена, который является первым фактором свертывания крови, фибрин не находится в плазме постоянно. Он появляется из-за неординарных ситуаций, которые активируют систему гомеостаза — способность организма соблюдать постоянство вне зависимости от факторов внешней среды. Такими неординарными ситуациями являются раны и воспаления, возникающие из-за нарушения целостности тканей и сосудов.

Процесс образования фибрина

Образование фибрина — сложный химический процесс. Он состоит из нескольких этапов:

  1. Отщепление от фиброгеновой молекулы двух пептидов А и двух пептидов Б под действием тромбина с последующим образованием фибрин-мономера. Полученный мономер состоит из двух одинаковых частиц, соединенных между собой дисульфидными мостиками. Каждая частица при этом состоит из 3-х отличающихся между собой полипептидных цепей.
  2. Самопроизвольное превращение фибрин-мономера в сгусток, который называется фибрин-агрегат или нестабилизированный фибрин. Этот процесс ускоряют вещества, которые несут в себе положительный заряд и тормозят вещества с отрицательно заряженными частицами. Во время агрегации мономера молекулы из глобул трансформируются в фибриллы — нитевидные белки. В создании нестабилизированного фибрина участвуют разные виды химических связей и силы гидрофобного воздействия. Они могут ослабляться в средах, вызывающих денатурацию. Из-за денатурации фибрин-агрегат может восстановиться в мономер.

  3. На нестабилизированный фиброген воздействует фибринстабилизирующий фактор, из-за которого структура агрегата меняется. Из-за появления ковалентных связей в полипептидных цепях фибрин-агрегат стабилизируется в фибрин-полимер.
    Если человек страдает от врожденных или хронических болезней, сопровождаемых дефицитом фибринстабилизирующего фактора, агрегатная форма не сможет стабилизироваться в полимер. Тогда из фибрине не образуется сгусток.

Множество молекул фибрина-полимера кооперируются в нити. Они захватывают тромбоциты и другие клетки крови и формируют из них губчатое вещество. Оно сбивается, становится плотнее и образовывает тромб.

Функции белка фибрина

У белка фибрина не много физиологических функций, но каждая из них очень важна для организма. Всего их несколько:

  • Остановка кровотечений. Когда ткань повреждается и начинается кровотечение, происходит быстрая (при отсутствии патологий свертываемости крови) трансформация фиброгена в фибрин. Из фибрина формируется кровяной сгусток, который закупоривает сосуд и препятствует кровопотере.
  • Противовоспалительный эффект. Попадая в очаг воспаления фибрин обволакивает болезнетворные агенты и не дает им попадать в здоровые ткани.
  • Участие в процессе регенерации нервных тканей.

Когда фибрин выполняет свою биологическую функцию, организм стремится уменьшить его концентрацию в крови. Этот процесс называется фибринолизом — процесс растворения кровяных сгустков и тромбов.

Роль фибрина в воспалении

Фибриновый синтез начинается сразу после контакта фиброгена с ферментом тромбокиназа, которая высвобождается из поврежденных или разрушенных тканей. После этого происходит реакция фиксации, во время которой фибрин захватывает патологические вещества и блокирует их. Таким образом фибрин не дает воспалению перекинуться на здоровую ткань.

Также фибрин не дает расти самому очагу воспаления. На самых начальных его этапах, когда еще не началось активное деление лейкоцитов и их миграция к очагу воспаления, молекулы фибрина окружают очаг в круг и препятствуют его распространению.

Избыток и недостаток фибрина — опасно ли?

На самом деле понятия нормы касательно количества фибрина не существует. В первую очередь врачи смотрят на результаты коагулограммы и уровень фиброгена.

Если в зоне поражения тканей будет мало фибрина, это повлечет за собой нежелательные последствия:

  • расширение очага воспаления из-за нарушения свертывания крови и отсутствия качественного фибринового каркаса;
  • замедленное затягивание ран, часто сопровождаемое вторичным натяжением (так называется самостоятельное заживление раны с последующим образованием большого рубца);
  • повышается риск кровотечений.

Бывают случаи, когда во время воспалений количество фибрина наоборот значительно превышает норму, а фибринолиз еще не начинается. Это чревато развитием таких патологических процессов:

  • обострение характера воспаления с появлением сильных болей, сильной отечностью и даже полным прекращением кровообращения в очаге воспаления;
  • сильная задержка регенерации;
  • сдавливание сосудов из-за закупорки тромбами и кровяными сгустками;
  • нарушение фагоцитоза (клеточное питание) и массовая гибель клеток.

У здорового человека уровень фибрина (скорее фиброгена) тоже не должен сильно колебаться. При повышенной концентрации этого белка человек становится более предрасположенным к возникновению тромбов. Эти тромбы могут отрываться и бесконтрольно блуждать по сосудам. Случается, что тромб попадает в какой-то важный сосуд и закупоривает его, из-за прекращения кровообращения человек может умереть. При пониженной концентрации фибрина появляется предрасположенность к кровотечениям. При таком нарушении можно потерять много крови даже из-за банального пореза.

Источник: gidanaliz.ru

Образование фибрина[править | править код]

Образуется фибрин в три стадии:

  1. На первой стадии под действием тромбина от молекулы фибриногена отщепляются два пептида А (молекулярная масса около 2000) и два пептида Б (молекулярная масса около 2500) и образуется фибрин-мономер, построенный из двух идентичных субъединиц, соединённых дисульфидными связями. Каждая из субъединиц состоит из трёх неодинаковых полипептидных цепей, обозначаемых a, b, g.

  2. На второй стадии фибрин-мономер самопроизвольно превращается в сгусток, называемый фибрин-агрегатом, или нестабилизированным фибрином. Агрегация фибрин-мономера (самосборка фибриновых волокон) включает переход молекулы из состояния глобулы в состояние фибриллы. В образовании фибрин-агрегата принимают участие водородные и электростатические связи и силы гидрофобного взаимодействия, которые могут быть ослаблены в концентрированных растворах мочевины и др. агентов, вызывающих денатурацию. Это приводит к восстановлению фибрин-мономера. Образование фибрин-агрегата ускоряется веществами, несущими положительный заряд (ионы кальция, протаминсульфат), и тормозится отрицательно заряженными соединениями (гепарин).
  3. На третьей стадии фибрин-агрегат претерпевает изменения, обусловленные ферментативным воздействием фибринстабилизирующего фактора XIII а (или фибринолигазы). Под действием этого фактора образуются прочные ковалентные связи между g-, а также между a-полипептидными цепями молекул фибрин-агрегата, в результате чего он стабилизируется в фибрин-полимер, нерастворимый в концентрированных растворах мочевины. При врождённой или приобретённой недостаточности в организме фактора XIII и при некоторых заболеваниях фибрин-агрегат не стабилизируется в фибрин-полимер, что сопровождается кровоточивостью.

Фибрин получают путём промывки и высушивания кровяного сгустка. Из фибрина приготовляют стерильные губки и плёнки для остановки кровотечения из мелких сосудов при различных хирургических операциях.

Болезни[править | править код]

Чрезмерное количество фибрина в крови приводит к тромбозу, а нехватка фибрина предрасполагает к кровоизлияниям.

Дисфибриногенемия — заболевание печени, которое может привести к снижению синтезируемого фибриногена или к синтезу молекул фибриногена с пониженной активностью. Афибриногенемия (фиброген-дефицит), гипофиброгенемия и дисфибриногенемия — наследственные заболевания, связанные с мутациями генов четвертой хромосомы, приводящие соответственно к отсутствию синтеза фибриногена, к уменьшению количества синтезируемого фибриногена и к изменению его структуры и понижению активности.

Более распространены приобретенные формы дефицита фибриногена, которые могут быть обнаружены путём проведения лабораторных исследований плазмы крови или цельной крови путём тромбобластометрии. Причиной такого состояния могут быть гемодилюция, кровопотеря, некоторые случаи диссеминированного внутрисосудистого свёртывания, а также сепсис. У пациентов с дефицитом фибриногена коррекция его содержания в крови возможна путём инфузии свежезамороженной плазмы, криопреципитата или концентрированного фибриногена. Существует все больше свидетельств того, что коррекция дефицита фибриногена или нарушений его полимеризации очень важны для больных с кровотечением.

Локальные скопления фибрина в радужке глаза, преципитаты, являются симптомом иридоциклита.

Источник: ru.wikipedia.org

Фибрин и воспаление

Фибрин играет в воспалительном процессе очень важную роль. Он образуется сразу же, как только фибриноген вступает в контакт с разрушенной или поврежденной тканью — с освободившейся из нее тканевой тромбокиназой или с упомянутыми выше пептидами, которые образуются или высвобождаются в начале воспалительной реакции. При свертывании фибрина токсичные вещества оказываются заключенными в сгустке, что уже на ранней стадии воспаления предотвращает их дальнейшее распространение в организме. Эта реакция, называемая «фиксацией», при острых воспалительных процессах происходит еще до начала развития лейкоцитоза и служит важным биологическим механизмом защиты органов тела от наводнения, их болезнетворными агентами, токсинами и т. п. Таким образом, местная реакция выступает как адаптивный феномен; локальные отрицательные изменения представляют меньшее зло и допустимы ради защиты жизненно важных внутренних органов.

Образование нерастворимого фибрина существенно затрудняет и даже останавливает местное кровообращение в воспалительном очаге. Это приводит к отеку и боли. Повреждение ткани и нарушение ее функций в дальнейшем по возможности устраняется репаративными процессами. Этим процессам на их раннем этапе способствуют протеолитические ферменты организма, в частности плазмин, которые разжижают густой, вязкий экссудат и вызывают деполимеризацию фибрина. Даже в начале воспаления эти ферменты оказывают на него тормозящее влияние.

Во время упомянутого выше превращения фибриногена в фибрин триптические ферменты, находящиеся тут же в очаге воспаления, уже действуют как ингибиторы воспалительной реакции. На биохимическом уровне это проявляется в торможении полимеризации молекул фибриногена в молекулы фибрина. Таким образом, функция этих протеаз состоит в разжижении материала путем расщепления фибрина и других крупных белковых молекул на более короткие растворимые пептиды и аминокислоты, а также в торможении образования малорастворимых или нерастворимых макромолекул.

В экспериментах на животных удалось показать, что введение протеаз извне до начала воспалительной реакции полностью предотвращает ее развитие или по крайней мере сводит ее к легкому кратковременному раздражению. Это означает, что профилактическое применение триптических ферментов или папаиназ в большинстве случаев прекращает развитие воспаления в самом его начале и практически предупреждает его. Это доказывают и гистохимические исследования. Профилактические дозы ферментов, вводимые через 3—4 мин после начала воспалительного раздражения, приводят к тому, что межклеточное и внутриартериальное образование фибрина оказывается значительно меньшим, чем в контроле.

При просмотре литературы кажется странным, что исследователи придавали так мало значения антиполимеризационному действию протеаз при воспалительных и дегенеративных процессах. Немедленное отложение фибрина — одна из самых важных защитных реакций организма: она создает сплошной барьер вокруг очага повреждения и таким образом изолирует его. Помимо выполнения этой защитной функции, фибрин впоследствии служит субстратом для соединительнотканных клеток, участвующих в регенерации. Образование рубцовой ткани, келоида или избыточное отложение бесполезного коллагена в значительной степени зависит от местного образования фибрина и длительности его сохранения.

Согласно Аструпу [2], фибрин образуется в количествах, необходимых и достаточных для процесса заживления. Однако возникают затруднения, а иногда и серьезные осложнения, если фибрин образуется и откладывается в избытке. Аструп пишет: «Фибринолиз — относительно медленный процесс. Поэтому следует думать, что необходимость обеспечить растворение образовавшегося фибрина в определенное время и при определенных обстоятельствах представляет для живого организма серьезную проблему. Задержка фибринолиза может быть причиной ряда патологических процессов».

Количество фибрина, необходимое для тех или иных целей, зависит от факторов свертывания крови, таких, как протромбин, тромбоциты, тканевые тромбокиназы или фибриноген. Факторами, тормозящими свертывание крови, служат протеазы, в частности плазмин.

Нарушение системы гемостаза, ведущее к пониженному образованию фибрина, сопряжено с рядом опасностей. При недостаточной изоляции очага воспаление начинает распространяться; нарушается заживление раны — она заживает «вторичным натяжением» с образованием большого количества рубцовой ткани; при нарушении механизма свертывания крови возможны кровотечения. Если же динамическое равновесие в системе сдвинуто в противоположном направлении, т. е. фибрин образуется в избытке, что бывает чаще, то это ведет к особенно резко выраженным симптомам воспаления — более обширному отеку, более острой боли, полной остановке кровообращения в результате сдавления сосудов и закупорки их микротромбами, а также к задержке фагоцитоза, усиленному отмиранию клеток и более позднему заживлению. Если это состояние затягивается и фибринолиз протекает вяло или начинается слишком поздно, то происходит некроз обширных участков и заживление идет медленно, с избыточным образованием рубцовой ткани. Кровообращение в очаге ухудшается, что ведет к нарушению функции ткани. Возможные результаты — ишемия и опасность тромбоза; отложения фибрина и рубцы на артериальном эндотелии предрасполагают к образованию бляшек и атером.

ФИБРИН (латинский fibra волокно) — нерастворимый в воде белок, образующийся из фибриногена при действии на него тромбина в процессе свертывания крови. Кровяной фибриновый сгусток, останавливающий кровотечение, состоит из сплетенных в густую сеть нитей фибрина и захваченных ими форменных элементов крови.

Фибрин образуется из растворенного в плазме крови фибриногена (см.) при действии протеолитического фермента тромбина (см.).

Биологическая роль фибрина заключается в осуществлении гемостаза (см.), защите раневых поверхностей от возбудителей инфекции путем образования фибринового барьера; фибрин участвует также в репарации соединительной ткани и в воспалительных процессах (см. Воспаление). Нарушение фибринообразования или качественная неполноценность фибрина приводят к расстройствам гемостаза, к появлению геморрагических диатезов (см.).

Превращение фибриногена в фибрин происходит при нарушении целостности кровеносных сосудов или при патологическом внутрисосудистом свертывании крови (возможно, в кровяном русле происходит постоянное образование фибрина). Этот процесс включает три стадии. В первой стадии тромбин вызывает отщепление от фибриногена фибриноиептида А (мол. вес 2000), затем фибриноиептида В (молекулярный вес 2400). Оставшаяся часть молекулы фибриногена носит название фибрин-мономера. Во второй стадии происходит спонтанная полимеризация фибрин-мономеров в фибрин-полимеры, последние имеют вид белковых нитей, в которых молекулы фибрин-мономеров соединены водородными связями, образованными между остатками аминокислот тирозина (см.) и гистидина (см.). Полимеризация (см.) осуществляется постепенно через образование димеров, тримеров и т. д. Эта стадия происходит без участия тромбина и, согласно теории В. А. Белицера и сотр., в ее основе лежит программа самосборки фибрин-мономеров специфическими функциональными центрами. При этом происходит изменение формы молекул фибрина из глобулярной в фибриллярную. По мере образования пучков протофибрилл формируется поперечная исчерченность молекул фибрина

В третьей стадии под влиянием фермента, называемого фибринста-билизирующим, или XIII фактором свертывания крови, в присутствии ионов Са2г происходит связывание фибрин-полимеров ковалентными связями. Фактор XIII вызывает реакцию переноса амидной группы с образованием пептидной связи между остатком глутамина одной молекулы белка и остатком лизина другой. Реакции третьей стадии вызывают стабилизацию белка, или образование поперечных связей между полимерами фибрина, и ведут к образованию в фибрине сначала димеров 7-цепей, а затем полимеров а-цепей. Стабилизация улучшает гемостатические свойства фибрина в результате увеличения механической прочности и эластичности сгустка фибрина уменьшения его чувствительности к протеолизу и повышения роли в репарации тканей. Оптимальной температурой для полимеризации фибрина является температура 37° при pH от 6,9 до 7,4. Подкисление раствора до pH 5,1—5,3 нарушает полимеризацию при повышении значения pH до 5,7 — 6,1 происходит спонтанная полимеризация. Сдвиги pH в сторону нейтральной или слабощелочной реакции способствуют образованию фибринового сгустка. Скорость образования фибрина более или менее постоянна при 30—40°. При повышении температуры до 50° фибрин не образуется вследствие необратимой денатурации фибриногена. Кроме тромбина, образование фибрина вызывают протеазы змеиных ядов (см.) — рептилаза, арвин (анкрод), дефибраза и др: При этом образуется неполноценный фибрин, так как протеазы змеиных ядов отщепляют от молекулы фибриногена только пептид А или пептид В и не активируют фактор XIII.

Молекула фибрина так же как фибриногена состоит из трех типов полипептидных цепей, обозначаемых а, |3 и у и отличающихся от него отсутствием фибринопептидов А и В в а- и (3-цепях. Формулу стабилизированного фибрина представляют как (аР, (3, у2), где аР обозначает полимеры а-цепей, у2— димеры у-цепей. Фибрин не растворим в солевых растворах, в щелочах и кислотах.

Фибриновый сгусток, образующийся в естественных условиях при свертывании крови, включает сыворотку крови и форменные элементы, он обладает способностью адсорбировать на своей поверхности и инактивировать значительные количества тромбина и X фактора свертывания крови. Фибрин, полученный из 1 мг фибриногена, адсорбирует до 2000 ЕД тромбина. В связи с этим фибрин обозначается как антитромбин I.

Сгустки фибрина подвергаются ретракции и лизису. Протеолитическое расщепление фибрина вызывается рядом протеаз, в том числе трипсином (см.), расщепляющим до 360 связей в молекуле фибрина Специфичная для фибрина протеаза фибринолизин (см.) расщепляет в его молекуле до 160—180 пептидных связей, в результате чего образуются четыре основные продукта расщепления — фрагменты X, Y, D и Е; из них для стабилизированного фибрина характерен только фрагмент D, который в отличие от фрагмента D фибриногена имеет форму димера, содержащего ковалентно связанные у-цепи.

Фибрин в тканях и органах обнаруживают методами электронной микроскопии и окраской эозином и гематоксилином Маллори (см. Маллори методы) и по Вейгерту (см. Вейгерта методы окраски). Фибрин в плазме крови определяют методом Рутберга. При этом к 1 мл плазмы крови добавляют 0,1 мл 5% раствора хлорида кальция, образовавшийся сгусток фибрина извлекают и просушивают на фильтровальной бумаге до так называемого суховоздушного состояния, затем взвешивают.

В клинической практике препараты фибрина используют в виде фибринной губки или пленки (см. Фибрипная губка, пленка) для заживления ран и остановки кровотечения (см.).

Библиогр.: Андреенко Г. В. Фиб-ринолиз. (Биохимия, физиология, патология), М., 1979; Белиц ер В. А.Домены — крупные функционально важные блоки молекул фибриногена н фибрина, в кн.: Биохимия животных и человека, под ред. М. Д. Курского, в. 6, с. 38, Киев, 1982; 3 у б а и р о в Д. М. Биохимия свертывания крови, М., 1978; Кудряшов Б. А. Биологические проблемы регуляции жидкого состояния крови и ее свертывания, М., 1975; Human blood coagulation, haemostasis and thrombosis, ed. by Б. Biggs, Oxford a. o., 1972; Per1 i с k E. Gerinnungslaboratorium in Kli-nik und Praxis, Lpz., 1971. См. также библиогр. к ст. Свертывающая система крови.

Фибриновые нити

Фибриновые нити

Несмотря на кажущееся однообразное строение, белки обладают разнообразными свойствами — от сверхпрочных структурных молекул до быстрых и активных ферментов. Некоторые из этих способностей до сих пор не находят логического объяснения.

Например, фибрин, мгновенно формирующий прочную и эластичную трехмерную основу для сгустков крови и тромбов. Благодаря этому умению кровоток в поврежденных, но восстановленных сосудах не прекращается. К сожалению, это же позволяет тромбам оставаться в полости вен и артерий в течение многих лет, отрываясь в самый непредвиденный момент.

Джон Вайсел из Университета Пенсильвании и его коллеги сумели разобраться в секретах биомеханики фибрина:

когда сгусток многократно растягивается, отдельно расположенные волокна выстраиваются параллельно, сохраняя прочность и эластичность.

Уровни структуры белка

Фибрин нельзя назвать постоянным белком — он образуется в организме лишь в момент острой необходимости, а потом разрушается ферментными системами. Любое повреждение стенки сосуда, будь то разрез, разрыв или воспаление на месте атеросклеротической бляшки, активирует системы свертывания крови.

В результате многоступенчатой реакции, детализация которой заняла больше века, образуется трехмерная сеть: сначала от фибриногена, растворимой молекулы-предшественника, отщепляются стабилизирующие «хвосты». Потом клубки фибрина превращаются в нити, формируя сгусток (фибрин-агрегат, нестабилизированный фибрин). На третьей стадии фактор свертывания XIIIа сшивает отдельные нити между собой, окончательно стабилизируя тромб.

Те же самые превращения с человеческим фибрином авторам публикации в Science
пришлось совершить и в пробирке, прежде чем начать растягивать получившийся сгусток.

Упругие способности фибрин сохранял даже при трёхкратном удлинении.

Тромб

При этом связи, удерживающие отдельные фибриллы вместе, сохраняются. То есть нити не скользят друг относительно друга, что могло бы объяснить это феноменальное удлинение.

Вайсел и коллеги предложили другую модель — они фиксировали образцы при натяжении, после чего получали электронные и атомные микроскопические изображения как поверхности сгустка, так и его среза. Оказалось, что при удлинении в 2,5 раза параметр ориентационного порядка, характеризующий упорядоченность расположения нитей, возрастает с 0,1 до 0,7.

Более того, при этом пространства между нитями фибрина сохраняются. Это позволяет ферментам проникать внутрь сгустка, разрушая его, как только дефект стенки сосуда восстановится.

При двукратном растяжении отдельные нити становятся ближе друг к другу и занимаемый ими относительный объем увеличивается с 5 до 24%.

Это сопровождается уменьшением размеров сгустка почти в 10 раз (см. видео), а волокна истончаются почти в три раза (диаметр уменьшается со 185 нм до 74 нм). В этом истончении ученым и удалось найти объяснение. Как выяснилось, молекула фибрина, представляющая из себя спираль, немного раскручивается, удлиняясь, но при этом сохраняя упругие свойства. Из всех структурных белков на подобное способен только эластин.

Дело в том, что любой белок изначально представляет из себя цепочку из аминокислот, которая сразу после синтеза упаковывается сначала во вторичную, а потом и третичную структуру. Сначала это спираль или «лист в складках», а потом — клубки.

Как выяснилось, параметры спирали могут меняться,

что справедливо вовсе не для всех белков: например, тот же коллаген, похожий на фибрин по химическому составу, тоже образует спираль, но она не растягивается. В результате всего лишь 50-процентное, максимум 70-процентное удлинение, что не идет ни в какое сравнение с 200–250-процентным удлинением фибринового сгустка.

Теперь ученые рассчитывают понять, что нарушается в патологических ситуациях — при тромбозе вен нижних конечностей или образовании сгустков на месте атеросклеротических бляшек. А вот члены исследовательской команды, специализирующиеся на биомеханике, наверняка планируют воспроизвести описанные процессы в новых полимерных материалах.


Источник: 1poserdcu.ru