Электроэнцефалография ээг сущность метода


Электроэнцефалография (ЭЭГ) — прекрасный метод диагностики эпилепсии и различных повреждений головного мозга. К сожалению, ЭЭГ часто назначается всем подряд, в том числе пациентам, которые в нем совершенно не нуждаются.

Суть метода

ЭЭГ — это метод, который регистрирует электрические сигналы от нейронов (нервных клеток головного мозга). Действительно, некоторые заболевания могут проявляться выраженным нарушением электрической активности головного мозга.

Чаще всего это эпилепсия, при которой группа нейронов проявляет избыточную активность, и структурные изменения головного мозга (опухоль, киста, последствия инсульта и кровоизлияния). Практически всегда по ЭЭГ врач (нейрофизиолог) может определить, где находится этот очаг возбуждения.

Показания к проведению ЭЭГ

В нашей стране существуют стандарты диагностики для всех заболеваний. К сожалению, в соответствии с российскими стандартами такой прекрасный метод, как ЭЭГ, зачастую используется для диагностики не только эпилепсии и опухолей мозга, но и любых неврологических расстройств.


Показания к проведению ЭЭГ

Например, пациент жалуется на предобморочные состояния в душном помещении, при скоплении множества людей, в замкнутом пространстве. Или на приступообразную головную боль. Вот и показания для ЭЭГ согласно стандартам.

Причем в большинстве случаев используется рутинная ЭЭГ с записью до 20 минут. К сожалению, такая короткая запись нередко не фиксирует даже некоторые виды эпилепсии, при которой изменения активности достаточно выражены. Для детальной оценки электрической активности при эпилепсии нужна более длительная запись ЭЭГ, а лучше ночной мониторинг или запись после бессонной ночи (депривации сна). А уж если речь о «вегето-сосудистой дистонии» или головных болях, то ЭЭГ скорее лишь запутает и врача, и пациента.

Проблемы расшифровки результатов

Врач получает заключение ЭЭГ и пациент с надеждой ждет вердикта. Если уже установлены инсульт или опухоль, то обычно интриги никакой нет. Даже такая короткая запись покажет, что да, действительно, существует очаг патологической активности. Запись, в частности, поможет оценить эффективность лечения избыточной активности нейронов в зоне поражения.

Инновации в нейронауках Читайте также:
Инновации в нейронауках


А вот в других случаях, например при головных болях или панических атаках, могут быть варианты. Нередко в заключении указывается «дисфункция срединных структур» или «снижение порога судорожной готовности».

Такое заключение не является диагнозом или указанием на какую-то болезнь! Но для пациента это может выглядеть страшной находкой. А на самом деле все эти «дисфункции» могут свидетельствовать о том, что у пациента была тревога на момент исследования или просто болела голова.

Снижение порога судорожной готовности может произойти от тревоги на момент исследования

Настораживать врача должны только очаговые изменения ЭЭГ. Это повод назначить дополнительное обследование, например магнитно-резонансную томографию (МРТ), для исключения опухоли или кисты.

Ценность ЭЭГ

Получается, что рутинная 20-минутная ЭЭГ часто не несет в себе ключ к диагнозу. Если мы ищем опухоль, то лучше сделать МРТ или КТ (компьютерную томографию). Если мы ищем эпилепсию или оцениваем эффективность ее лечения, то лучше делать длительную запись ЭЭГ (мониторинг).


Мониторинг ЭЭГ — относительно дорогостоящее исследование, однако позволяет получить значительно больше информации по сравнению с рутинной ЭЭГ.

На практике же получается, что, следуя стандартам диагностики таких часто встречающихся заболеваний, как головные боли, вегетативная дистония, панические атаки, врач направляет пациента на ЭЭГ, заранее порой догадываясь о результатах обследования. К сожалению, это затягивает постановку правильного диагноза, а порой уводит в неправильном направлении и врача, и пациента, желающих разобраться со «снижением порога судорожной готовности».

Перефразируя известный афоризм, хочется добавить, что врач должен лечить пациента, а не его обследования.

Будьте здоровы!

Мария Мещерина

Фото istockphoto.com

Источник: apteka.ru

Электроэнцефалография ээг сущность методаЭлектроэнцефалография (ЭЭГ) — метод регистрации электрической активности мозга с помощью электродов, располагаемых на коже волосистой части головы.

По аналогии с работой компьютера, от работы отдельного транзистора до функционирования компьютерных программ и приложений, электрическую активность мозга можно рассматривать на различных уровнях: с одной стороны — потенциалы действия отдельных нейронов, с другой — общая биоэлектрическая активность мозга, которую регистрируют при помощи ЭЭГ.


Результаты ЭЭГ используются как для клинической диагностики, так и в научных целях. Существует интракраниальная, или внутричерепная ЭЭГ (intracranial EEG, icEEG), также называемая субдуральной ЭЭГ (subdural EEG, sdEEG) и электрокортикографией (ЭКоГ, или electrocorticography, ECoG). При проведении таких видов ЭЭГ регистрация электрической активности осуществляется непосредственно с поверхности мозга, а не с кожи головы. ЭКоГ характеризуется более высоким пространственным разрешением по сравнению с поверхностной (чрескожной) ЭЭГ, поскольку кости черепа и кожа головы несколько «смягчают» электрические сигналы.

Однако намного чаще используется электроэнцефалография транскраниальная. Этот метод является ключевым в диагностике эпилепсии, а также дает дополнительную ценную информацию при множестве других неврологических нарушений.

Историческая справка

В 1875 г. практикующий врач из Ливерпуля Ричард Катон (Richard Caton, 1842–1926) представил в Британском Медицинском Журнале результаты изучения электрического явления, наблюдаемого при исследовании им полушарий мозга кроликов и обезьян.
nbsp;1890 г. Бек (Beck) опубликовал исследование спонтанной электрической активности мозга кроликов и собак, проявлявшейся в виде ритмических колебаний, изменяющихся при воздействии света. В 1912 г. русский физиолог Владимир Владимирович Правдич-Неминский опубликовал первую ЭЭГ и вызванные потенциалы млекопитающего (собаки). В 1914 г. другие ученые (Cybulsky and Jelenska-Macieszyna) сфотографировали запись ЭЭГ искусственно вызванного приступа.

Немецкий физиолог Ганс Бергер (Hans Berger, 1873–1941) приступил к исследованиям ЭЭГ человека в 1920 г. Он дал устройству его современное название и, хотя другие ученые ранее проводили аналогичные эксперименты, иногда именно Бергер считается первооткрывателем ЭЭГ. В дальнейшем его идеи развивал Эдгар Дуглас Эдриан (Edgar Douglas Adrian).

В 1934 г. впервые был продемонстрирован паттерн эпилептиформной активности (Fisher и Lowenback). Началом клинической энцефалографии считается 1935 г., когда Гиббс, Дэвис и Леннокс (Gibbs, Davis and Lennox) описали интериктальную активность и паттерн малого эпилептического приступа. Впоследствии, в 1936 г. Гиббс и Джаспер (Gibbs and Jasper) охарактеризовали интериктальную активность как очаговый признак эпилепсии. В том же году в Массачусетском госпитале (Massachusetts General Hospital) была открыта первая лаборатория по изучению ЭЭГ.


Франклин Оффнер (Franklin Offner, 1911–1999), профессор биофизики Северо-западного Университета, разработал прототип электроэнцефалографа, который включал пьезоэлектрический самописец — кристограф (все устройство целиком называлось Динографом Оффнера).

В 1947 г. в связи с основанием Американского Общества Электроэнцефалографии (The American EEG Society) прошел первый Международный конгресс по вопросам ЭЭГ. А уже в 1953 г. (Aserinsky and Kleitmean) обнаружили и описали фазу сна с быстрым движением глаз.

В 50-х годах ХХ века английский врач Вильям Грей Вальтер разработал метод, названный ЭЭГ-топографией, который позволил картировать на поверхности мозга электрическую активность мозга. Этот метод не применяется в клинической практике, его используют только при проведении научных исследований. Метод приобрел особенную популярность в 80-е годы XX века и представлял особый интерес для исследователей в области психиатрии.

Физиологические основы ЭЭГ

При проведении ЭЭГ измеряют суммарные постсинаптические токи. Потенциал действия (ПД, кратковременное изменение потенциала) в пресинаптической мембране аксона вызывает высвобождение нейромедиатора в синаптическую щель. Нейромедиатор, или нейротрансмиттер, — химическое вещество, осуществляющее передачу нервных импульсов через синапсы между нейронами. Пройдя через синаптическую щель, нейромедиатор связывается с рецепторами постсинаптической мембраны. Это вызывает ионные токи в постсинаптической мембране. В результате во внеклеточном пространстве возникают компенсаторные токи. Именно эти внеклеточные токи формируют потенциалы ЭЭГ. ЭЭГ нечувствительна к ПД аксонов.


Хотя за формирование сигнала ЭЭГ ответственны постсинаптические потенциалы, поверхностная ЭЭГ не способна зафиксировать активность одного дендрита или нейрона. Правильнее сказать, что поверхностная ЭЭГ представляет собой сумму синхронной активности сотен нейронов, имеющих одинаковую ориентацию в пространстве, расположенных радиально к коже головы. Токи, направленные по касательной к коже головы, не регистрируются. Таким образом, во время ЭЭГ регистрируется активность радиально расположенных в коре апикальных дендритов. Поскольку вольтаж поля уменьшается пропорционально расстоянию до его источника в четвертой степени, активность нейронов в глубоких слоях мозга зафиксировать гораздо труднее, нежели токи непосредственно около кожи.

Токи, регистрируемые на ЭЭГ, характеризуются различными частотами, пространственным распределением и взаимосвязью с различными состояниями мозга (например, сон или бодрствование). Такие колебания потенциала представляют собой синхронизированную активность целой сети нейронов. Идентифицированы лишь немногие нейронные сети, ответственные за регистрируемые осцилляции (например, таламокортикальный резонанс, лежащий в основе «сонных веретен» — учащенных альфа-ритмов во время сна), тогда как многие другие (например, система, формирующая затылочный основной ритм) пока не установлены.


Методика проведения ЭЭГ

Для получения традиционного поверхностного ЭЭГ запись производят с помощью электродов, помещаемых на кожу волосистой части головы с применением электропроводящего геля или мази. Обычно перед помещением электродов по возможности удаляют омертвевшие клетки кожи, которые повышают сопротивление. Методику возможно усовершенствовать, используя углеродные нанотрубки, которые проникают в верхние слои кожи и способствуют улучшению электрического контакта. Такая система датчиков называется ENOBIO; однако представленная методика в общей практике (ни в научных исследованиях, ни тем более в клинике) пока не используется. Обычно во многих системах используются электроды, каждый из которых имеет отдельный провод. В некоторых системах используются специальные шапочки или сетчатые конструкции в виде шлема, в которых заключены электроды; чаще всего такой подход оправдывает себя, когда используется комплект с большим количеством плотно расположенных электродов.

Для большинства вариантов применения в клинике и в исследовательских целях (за исключением наборов с большим количеством электродов) расположение и название электродов определены Международной «10-20» системой.
пользование данной системы гарантирует, что названия электродов между различными лабораториями строго согласованы. В клинике чаще всего используется набор из 19 отводящих электродов (плюс заземление и электрод сравнения). Для регистрации ЭЭГ новорожденных обычно используется меньшее количество электродов. Чтобы получить ЭЭГ конкретной области мозга с более высоким пространственным разрешением, можно использовать дополнительные электроды. Набор с большим количеством электродов (обычно в виде шапочки или шлема-сетки) может содержать до 256 электродов, расположенных на голове на более или менее одинаковом расстоянии друг от друга.

Каждый электрод соединен с одним входом дифференциального усилителя (то есть один усилитель приходится на пару электродов); в стандартной системе электрод сравнения соединен с другим входом каждого дифференциального усилителя. Такой усилитель увеличивает потенциал между измерительным электродом и электродом сравнения (обычно в 1,000–100,000 раз, или коэффициент усиления напряжения составляет 60-100 дБ). В случае аналоговой ЭЭГ сигнал затем проходит через фильтр. На выходе сигнал регистрируется самописцем. Однако в наше время многие самописцы являются цифровыми, и усиленный сигнал (после прохождения через фильтр подавления шумов) преобразуется с помощью аналого-цифрового преобразователя. Для клинической поверхностной ЭЭГ частота аналого-цифрового преобразования происходит при 256-512 Гц; частота преобразования до 10 кГц используется в научных целях.


При цифровой ЭЭГ сигнал сохраняется в электронном виде; для отображения он также проходит через фильтр. Обычные параметры для фильтра низких частот и для фильтра высоких частот составляют 0,5–1 Гц и 35–70 Гц соответственно. Фильтр низких частот обычно отсеивает артефакты, представляющие собой медленные волны (например, артефакты движения), а фильтр высоких частот уменьшает чувствительность канала ЭЭГ к колебаниям высоких частот (например, электромиографические сигналы). Кроме того, может использоваться дополнительный узкополосный режекторный фильтр для устранения помех, вызванных линиями электропитания (60 Гц в США и 50 Гц во многих других странах). Режекторный фильтр часто используется, если запись ЭЭГ осуществляется в отделении интенсивной терапии, то есть в крайне неблагоприятных для ЭЭГ технических условиях.

Для оценки возможности лечения эпилепсии хирургическим путем возникает необходимость расположить электроды на поверхность мозга, под твердой мозговой оболочкой. Чтобы осуществить данный вариант ЭЭГ, производят краниотомию, то есть формируют трепанационное отверстие. Такой вариант ЭЭГ и называют интракраниальной, или внутричерепной ЭЭГ (intracranial EEG, icEEG), или субдуральной ЭЭГ (subdural EEG, sdEEG), или электрокортикографией (ЭКоГ, или electrocorticography, ECoG). Электроды могут погружаться в структуры мозга, например, миндалевидное тело (амигдала) или гиппокамп — отделы мозга, в которых формируются очаги эпилепсии, но сигналы которых невозможно зафиксировать в ходе поверхностной ЭЭГ. Сигнал электрокортикограммы обрабатывается так же, как цифровой сигнал рутинной ЭЭГ (см. выше), однако существует несколько особенностей. Обычно ЭКоГ регистрируется при более высоких частотах по сравнению с поверхностной ЭЭГ, поскольку, согласно теореме Найквиста, в субдуральном сигнале преобладают высокие частоты. Кроме того, многие артефакты, влияющие на результаты поверхностной ЭЭГ, не оказывают влияния на ЭКоГ, и поэтому часто использование фильтра для сигнала на выходе не требуется. Обычно амплитуда ЭЭГ сигнала взрослого человека составляет около 10-100 мкВ при измерении на коже волосистой части головы и около 10-20 мВ при субдуральном измерении.

Поскольку ЭЭГ-сигнал представляет собой разность потенциалов двух электродов, результаты ЭЭГ могут изображаться несколькими способами. Порядок одновременного отображения определенного количества отведений при записи ЭЭГ называется монтажом.

Биполярный монтаж

Каждый канал (то есть отдельная кривая) представляет собой разность потенциалов между двумя соседними электродами. Монтаж представляет собой совокупность таких каналов. Например, канал «Fp1-F3» — это разность потенциалов между электродом Fp1 и электродом F3. Следующий канал монтажа, «F3-C3», отражает разность потенциалов между электродами F3 и C3, и так далее для всего набора электродов. Общий для всех отведений электрод отсутствует.

Референциальный монтаж

Каждый канал представляет собой разность потенциалов между выбранным электродом и электродом сравнения. Для электрода сравнения не существует стандартного места расположения; однако его расположение отлично от расположения измерительных электродов. Часто электроды располагают в области проекций срединных структур мозга на поверхность черепа, поскольку в таком положении они не усиливают сигнал ни от одного из полушарий. Другой популярной системой фиксации электродов является крепление электродов на мочках уха или сосцевидных отростках.

Лапласовский монтаж

Используется при записи цифровой ЭЭГ, каждый канал — это разность потенциалов электрода и среднего взвешенного значения для окружающих электродов. Усредненный сигнал называется в таком случае усредненным референтным потенциалом. При использовании аналоговой ЭЭГ во время записи специалист переключается с одного типа монтажа на другой с целью максимально отразить все характеристики ЭЭГ. В случае цифровой ЭЭГ все сигналы сохраняются согласно определенному типу монтажа (обычно референциальному); поскольку любой тип монтажа может быть сконструирован математически из любого другого, специалист может наблюдать за ЭЭГ в любом варианте монтажа.

Нормальная ЭЭГ-активность

Обычно ЭЭГ описывают, используя такие термины как (1) ритмическая активность и (2) кратковременные компоненты. Ритмическая активность меняется по частоте и амплитуде, в частности, формируя альфа-ритм. Но некоторые изменения параметров ритмической активности могут иметь клиническое значение.

Большинство известных сигналов ЭЭГ соответствуют диапазону частот от 1 до 20 Гц (в стандартных условиях записи ритмы, частота которых выходит за пределы указанного диапазона, скорее всего являются артефактами).

 

В исследовательских целях с помощью усилителя постоянного тока регистрируют активность, близкую к постоянному току или для которой характерны крайне медленные волны. Обычно такой сигнал не регистрируют в клинических условиях, поскольку сигнал с такими частотами крайне чувствителен к целому ряду артефактов.

Некоторые виды активности на ЭЭГ могут быть кратковременными и не повторяются. Пики и острые волны могут быть следствием приступа или интериктальной активности у пациентов, страдающих эпилепсией или предрасположенных к этому заболеванию. Другие временные явления (вертекс-потенциалы и сонные веретена) считаются вариантами нормы и наблюдается во время обычного сна.

Стоит отметить, что существуют некоторые типы активности, которые статистически очень редки, однако их проявление не связано с каким-либо заболеванием или нарушением. Это так называемые «нормальные варианты» ЭЭГ. Примером такого варианта служит мю-ритм.

Параметры ЭЭГ зависят от возраста. ЭЭГ новорожденного очень сильно отличается от ЭЭГ взрослого человека. ЭЭГ ребенка обычно включает более низкочастотные колебания по сравнению с ЭЭГ взрослого.

Также параметры ЭЭГ варьируют в зависимости от состояния. ЭЭГ регистрируется вместе с другими измерениями (электроокулограммой, ЭОГ и электромиограммой, ЭМГ) для определения стадий сна в ходе полисомнографического исследования. Первая стадия сна (дремота) на ЭЭГ характеризуется исчезновением затылочного основного ритма. При этом может наблюдаться увеличение количества тета-волн. Существует целый каталог различных вариантов ЭЭГ во время дремоты (Joan Santamaria, Keith H. Chiappa). Во второй стадии сна появляются сонные веретена — кратковременные серии ритмичной активности в диапазоне частот 12-14 Гц (иногда называемые «сигма-полоса»), которые легче всего регистрируются в лобной области. Частота большинства волн на второй стадии сна составляет 3-6 Гц. Третья и четвертая стадии сна характеризуются наличием дельта-волн и обычно обозначаются термином «медленный сон». Стадии с первой по четвертую составляют так называемый сон с медленным движением глазных яблок (NonRapid Eye Movements, non-REM, NREM). ЭЭГ во время сна с быстрым движением глазных яблок (Rapid Eye Movement, REM) по своим параметрам похожа на ЭЭГ в состоянии бодрствования.

Результаты ЭЭГ, проведенной под общим наркозом, зависят от типа использованного анестетика. При введении галогенсодержащих анестетиков, например, галотана, или веществ для внутривенного введения, например, пропофола, практически во всех отведениях, особенно в лобной области, наблюдается особый «быстрый» паттерн ЭЭГ (альфа и слабый бета-ритмы). Согласно прежней терминологии, такой вариант ЭЭГ назывался лобный, распространенный быстрый (Widespread Anterior Rapid, WAR) в противоположность распространенному медленному паттерну (Widespread Slow, WAIS), возникающему при введении больших доз опиатов. Только недавно ученые пришли к пониманию механизмов воздействия анестезирующих веществ на сигналы ЭЭГ (на уровне взаимодействия вещества с различными типами синапсов и понимания схем, благодаря которым осуществляется синхронизированная активность нейронов).

Артефакты

Биологические артефакты

Артефактами называют сигналы ЭЭГ, которые не связаны с активностью головного мозга. Такие сигналы практически всегда присутствуют на ЭЭГ. Поэтому правильная интерпретация ЭЭГ требует большого опыта. Наиболее часто встречаются следующие типы артефактов:

  • артефакты, вызванные движением глаз (включая глазное яблоко, глазные мышцы и веко);
  • артефакты от ЭКГ;
  • артефакты от ЭМГ;
  • артефакты, вызванные движением языка (глоссокинетические артефакты).

Артефакты, вызванные движением глаз, возникают из-за разности потенциалов между роговицей и сетчаткой, которая оказывается довольно большой по сравнению с потенциалами мозга. Никаких проблем не возникает, если глаз находится в состоянии полного покоя. Однако практически всегда присутствуют рефлекторные движения глаз, порождающие потенциал, который затем регистрируется лобнополюсным и лобным отведениями. Движения глаз — вертикальные или горизонтальные (саккады — быстрые скачкообразные движения глаз) — происходят из-за сокращения глазных мышц, которые создают электромиографический потенциал. Независимо от того, осознанное это моргание глаз или рефлекторное, оно приводит к возникновению электромиографических потенциалов. Однако в данном случае при моргании большее значение имеют именно рефлекторные движения глазного яблока, поскольку они вызывают появление ряда характерных артефактов на ЭЭГ.

Артефакты характерного вида, возникающие вследствие дрожания век, ранее называли каппа-ритмом (или каппа-волнами). Обычно они регистрируются предлобными отведениями, которые находятся непосредственно над глазами. Иногда их можно обнаружить во время умственной работы. Обычно они имеют частоту тета- (4-7 Гц) или альфа-ритма (8-13 Гц). Данному виду активности присвоили название, поскольку считалось, что она является результатом работы мозга. Позднее установили, что эти сигналы генерируются в результате движений век, иногда настолько тончайших, что их очень сложно заметить. На самом деле они не должны называться ритмом или волной, потому что представляют собой шум или «артефакт» ЭЭГ. Поэтому термин каппа-ритм в электроэнцефалографии больше не используется, а указанный сигнал должен описываться как артефакт, вызванный дрожанием век.

Однако некоторые из этих артефактов оказываются полезными. Анализ движения глаз крайне важен при проведении полисомнографии, а также полезен в традиционной ЭЭГ для оценки возможных изменений в состояниях тревоги, бодрствования или во время сна.

Очень часто встречаются артефакты ЭКГ, которые можно перепутать со спайковой активностью. Современный способ регистрации ЭЭГ обычно включает один канал ЭКГ, идущий от конечностей, что позволяет отличить ритм ЭКГ от спайк-волн. Такой способ позволяет также определить различные варианты аритмии, которые наряду с эпилепсией могут быть причиной синкопальных состояний (обмороков) или других эпизодических нарушений и приступов. Глоссокинетические артефакты вызваны разностью потенциалов между основанием и кончиком языка. Мелкие движения языка «засоряют» ЭЭГ, особенно у пациентов, страдающих паркинсонизмом и другими заболеваниями, для которых характерен тремор.

Артефакты внешнего происхождения

В дополнение к артефактам внутреннего происхождения существует множество артефактов, которые являются внешними. Перемещение около пациента и даже регулирование положения электродов может вызвать помехи на ЭЭГ, всплески активности, возникающие из-за кратковременного изменения сопротивления под электродом. Слабое заземление электродов ЭЭГ может вызвать значительные артефакты (50-60 Гц) в зависимости от параметров местной энергосистемы. Внутривенная капельница также может служить источником помех, поскольку такое устройство может вызывать ритмичные, быстрые, низковольтные вспышки активности, которые легко перепутать с реальными потенциалами.

Коррекция артефактов

Недавно для коррекции и устранения артефактов ЭЭГ использовали метод декомпозиции, заключающийся в разложении сигналов ЭЭГ на некоторое количество компонентов. Существует множество алгоритмов разложения сигнала на части. В основе каждого метода лежит следующий принцип: необходимо проводить такие манипуляции, которые позволят получить «чистую» ЭЭГ в результате нейтрализации (обнуления) нежелательных компонентов.

Патологическая активность

Патологическую активность можно грубо разделить на эпилептиформную и неэпилептиформную. Кроме того, ее можно разделить на локальную (очаговую) и диффузную (генерализованную).

Очаговая эпилептиформная активность характеризуется быстрыми, синхронными потенциалами большого числа нейронов в определенной области мозга. Она может возникать вне приступа и указывать на область коры (область повышенной возбудимости), которая предрасположена к возникновению эпилептических приступов. Регистрации интериктальной активности еще недостаточно ни для того, чтобы установить, действительно ли пациент страдает эпилепсией, ни для локализации области, в которой приступ берет свое начало в случае фокальной, или очаговой эпилепсии.

Максимальная генерализованная (диффузная) эпилептиформная активность наблюдается в лобной зоне, однако ее можно наблюдать и во всех остальных проекциях мозга. Присутствие на ЭЭГ сигналов такого характера дает основание предполагать наличие генерализованной эпилепсии.

Очаговая неэпилептиформная патологическая активность может наблюдаться в местах повреждения коры или белого вещества головного мозга. Она содержит больше низкочастотных ритмов и/или характеризуется отсутствием нормальных высокочастотных ритмов. Кроме того, такая активность может проявляться в виде очагового или одностороннего уменьшения амплитуды сигнала ЭЭГ. Диффузная неэпилептиформная патологическая активность может проявляться в виде рассеянных аномально медленных ритмов или билатерального замедления обычных ритмов.

Преимущества метода

У ЭЭГ как инструмента для исследования мозга существует несколько значимых преимуществ, например ЭЭГ характеризуется очень высоким разрешением по времени (на уровне одной миллисекунды). Для других методов изучения активности мозга, таких как позитронно-эмиссионная томография (positron emission tomography, PET) и функциональная МРТ (ФМРТ, или Functional Magnetic Resonance Imaging, fMRI), разрешение по времени находится на уровне между секундами и минутами.

Методом ЭЭГ измеряют электрическую активность мозга напрямую, тогда как другие методы фиксируют изменения в скорости кровотока (например, однофотонная эмиссионная компьютерная томография, ОФЭКТ, или Single-Photon Emission Computed Tomography, SPECT; а также ФМРТ), которые являются непрямыми индикаторами активности мозга. ЭЭГ можно проводить одновременно с ФМРТ, чтобы совместно регистрировать данные как с высоким разрешением по времени, так и с высоким пространственным разрешением. Тем не менее, поскольку события, зарегистрированные в результате исследования каждым из методов, происходят в различные периоды времени, вовсе не обязательно, что набор данных отражает одну и ту же активность мозга. Существуют технические трудности комбинирования двух указанных методов, к которым относятся необходимость устранить с ЭЭГ артефакты радиочастотных импульсов и движения пульсирующей крови. Кроме того, в проводах электродов ЭЭГ могут возникнуть токи вследствие магнитного поля, создаваемого МРТ.

ЭЭГ может регистрироваться одновременно с проведением магнитоэнцефалографии, поэтому результаты этих комплементарных методов исследования с высоким разрешением по времени можно сравнить друг с другом.

Ограничения метода

Метод ЭЭГ имеет несколько ограничений, самое важное из которых — это слабое пространственное разрешение. ЭЭГ особенно чувствительна к определенному набору постсинаптических потенциалов: к тем, что формируются в верхних слоях коры, на вершинах извилин, непосредственно примыкающих к черепу, направленных радиально. Дендриты, расположенные глубже в коре, внутри борозд, находящиеся в глубоких структурах (например, поясной извилине или гиппокампе) или токи которых направлены по касательной к черепу, оказывают на сигнал ЭЭГ существенно меньшее влияние.

Оболочки головного мозга, цереброспинальная жидкость и кости черепа «смазывают» сигнал ЭЭГ, затеняя его интракраниальное происхождение.

Невозможно математически воссоздать единственный внутричерепной источник тока для заданного сигнала ЭЭГ, поскольку некоторые токи создают потенциалы, которые компенсируют друг друга. Ведется большая научная работа по локализации источников сигналов.

Клиническое применение

Стандартная запись ЭЭГ обычно занимает от 20 до 40 минут. Помимо состояния бодрствования, исследование может проводиться в состоянии сна или под воздействием на исследуемого разного рода раздражителей. Это способствует возникновению ритмов, отличных от тех, которые можно наблюдать в состоянии расслабленного бодрствования. К таким действиям относят периодическое световое раздражение вспышками света (фотостимуляция), усиленное глубокое дыхание (гипервентиляция) и открывание и закрывание глаз. Когда проводится исследование пациента, страдающего эпилепсией или находящегося в группе риска, энцефалограмму всегда просматривают на наличие интериктальных разрядов (то есть ненормальной активности, возникающей вследствие «эпилептической активности мозга», которая указывает на предрасположенность к эпилептическим приступам, лат. inter — между, среди, ictus — припадок, приступ).

В некоторых случаях проводят видео-ЭЭГ-мониторинг (одновременная запись ЭЭГ и видео-/аудиосигналов), при этом пациента госпитализируют на срок от нескольких дней до нескольких недель. Во время нахождения в стационаре пациент не принимает противоэпилептические препараты, что дает возможность записать ЭЭГ в приступный период. Во многих случаях запись начала приступа сообщает специалисту гораздо больше конкретной информации о заболевании пациента, чем межприступная ЭЭГ. Непрерывный ЭЭГ мониторинг включает использование портативного электроэнцефалографа, подсоединенного к пациенту в палате интенсивной терапии, для наблюдения за судорожной активностью, которая клинически неочевидна (то есть не определяется при наблюдении за движениями пациента или его психическим состоянием). Когда пациент вводится в состояние искусственной, индуцированной лекарствами комы, по паттерну ЭЭГ можно судить о глубине комы, и в зависимости от показателей ЭЭГ титруются препараты. В «амплитудно-интегрированной ЭЭГ» используют особый тип представления сигнала ЭЭГ, она используется совместно с непрерывным мониторингом функционирования мозга новорожденных, находящихся в реанимационном отделении.

Различные виды ЭЭГ используется в следующих клинических ситуациях:

  • для того, чтобы отличить эпилептический припадок от других видов приступов, например, от психогенных приступов неэпилептического характера, синкопальных состояний (обмороков), двигательных расстройств и вариантов мигрени;
  • для описания характера приступов с целью подбора лечения;
  • для локализации участка мозга, в котором зарождается приступ, для осуществления хирургического вмешательства;
  • для мониторинга бессудорожных приступов/бессудорожного варианта эпилепсии;
  • для дифференциации энцефалопатии органического характера или делирия (острого психического расстройства с элементами возбуждения) от первичных психических заболеваний, например кататонии;
  • для мониторинга глубины анестезии;
  • в качестве непрямого индикатора перфузии головного мозга в ходе каротидной эндартерэктомии (удаление внутренней стенки сонной артерии);
  • как дополнительное исследование с целью подтверждения смерти мозга;
  • в некоторых случаях с прогностической целью у пациентов в коме.

Использование количественной ЭЭГ (математической интерпретации сигналов ЭЭГ) для оценки первичных психических, поведенческих нарушений и нарушений обучения представляется довольно спорным.

Использование ЭЭГ в научных целях

Использование ЭЭГ в ходе нейробиологических исследований имеет целый ряд преимуществ перед другими инструментальными методами. Во-первых, ЭЭГ представляет собой неинвазивный способ исследования объекта. Во-вторых, нет такой жесткой необходимости оставаться в неподвижном состоянии, как при проведении функциональной МРТ. В-третьих, в ходе ЭЭГ регистрируется спонтанная активность мозга, поэтому от субъекта не требуется взаимодействия с исследователем (как, например, это требуется в поведенческом тестировании в рамках нейропсихологического исследования). Кроме того, ЭЭГ обладает высоким разрешением во времени по сравнению с такими методами, как функциональная МРТ, и может использоваться для идентификации миллисекундных колебаний электрической активности мозга.

Во многих исследованиях когнитивных способностей с помощью ЭЭГ используются потенциалы, связанные с событиями (event-related potential, ERP). Большинство моделей такого типа исследования базируется на следующем утверждении: при воздействии на субъект он реагирует либо в открытой, явной форме, либо завуалированно. В ходе исследования пациент получает какие-либо стимулы, и при этом ведется запись ЭЭГ. Потенциалы, связанные с событиями, выделяют путем усреднения сигнала ЭЭГ для всех исследований в определенном состоянии. Затем средние значения для различных состояний могут сравниваться между собой.

Другие возможности ЭЭГ

ЭЭГ проводят не только в ходе традиционного обследования для клинической диагностики и изучения работы мозга с точки зрения нейробиологии, но и для многих других целей. Вариант нейротерапии с биологической обратной связью (Neurofeedback) до сих пор остается важным дополнительным способом применения ЭЭГ, который в своей наиболее совершенной форме рассматривается в качестве основы для разработки интерфейса «мозг-компьютер» (Brain Computer Interfaces). Существует целый ряд коммерческих изделий, которые в основном базируются на ЭЭГ. Например, 24 марта 2007 г. американская компания (Emotiv Systems) представила видеоигровое устройство, управляемое с помощью мыслей, созданное на основе метода электроэнцефалографии.

Источник: www.cnsinfo.ru

Подробно об энцефалограмме

Суть обследования заключается в фиксации электрической активности нейронов структурных образований головного мозга. Электроэнцефалограмма – это своеобразная запись нейронной деятельности на специальной ленте при использовании электродов. Последние закрепляются на участки головы и регистрируют активность определенного участка мозга.

Активность человеческого мозга напрямую определяется работой его срединных образований – переднего мозга и ретикулярной формации (связующего нейронного комплекса), обуславливающих динамику, ритмичность и построение ЭЭГ. Связующая функция формации определяет симметричность и относительную идентичность сигналов между всеми структурами мозга.

Процедура назначается при подозрениях на различные нарушения структуры и деятельности ЦНС (центральной нервной системы) – нейроинфекции, такие как менингит, энцефалит, полиомиелит. При данных патологиях изменяется активность мозговой деятельности, и это сразу же можно диагностировать на ЭЭГ, а в дополнение установить локализацию пораженного участка. ЭЭГ проводится на основании стандартного протокола, в котором фиксируются снятие показателей при бодрствовании или сне (у младенцев), а также с применением специализированных тестов.

К основным тестам относятся:

  • фотостимуляция – воздействие на закрытые глаза яркими вспышками света;
  • гипервентиляция – глубокое редкое дыхание на протяжении 3-5 минут;
  • открытие и закрытие глаз.

Эти тесты считаются стандартными и их применяют при энцефалограмме головного мозга и взрослым и детям любого возраста, и при различных патологиях. Существует еще несколько дополнительных тестов, назначающихся в отдельных случаях, таких как: сжатие пальцев в так называемый кулак, нахождение 40 минут в темноте, лишение сна на определенный период, мониторинг ночного сна, прохождение психологических тестов.

Что можно оценить при ЭЭГ?

Данный вид обследования позволяет определить функционирование отделов головного мозга при разных состояниях организма – сне, бодрствовании, активной физической, умственной деятельности и других. ЭЭГ – это простой, абсолютно безвредный и безопасный метод, не нуждающийся в нарушении кожных покровов и слизистой оболочки органа.

В настоящее время он широко востребован в неврологической практике, поскольку дает возможность диагностировать эпилепсию, с высокой степенью выявлять воспалительные, дегенеративные и сосудистые нарушения в мозговых отделах. Также процедура обеспечивает определение конкретного месторасположения новообразований, кистозных разрастаний и структурных повреждений в результате травмы.

ЭЭГ с применением световых и звуковых раздражителей позволяет отличить истерические патологии от истинных, или выявить симуляцию последних. Процедура стала практически незаменимой для реанимационных палат, обеспечивая динамическое наблюдение коматозных пациентов.

Процесс изучения результатов

Анализ полученных результатов проводится параллельно во время процедуры, и в ходе фиксации показателей, и продолжается по ее окончании. При записи учитываются присутствие артефактов – механического движения электродов, электрокардиограммы, электромиограммы, наведение полей сетевого тока. Оценивается амплитуда и частота, выделяют наиболее характерные графические элементы, определяют их временное и пространственное распределение.

По окончании производится пато- и физиологическая интерпретация материалов, и на ее базе формулируется заключение ЭЭГ. По окончании заполняется основной медицинский формуляр по данной процедуре, имеющий название «клинико-электроэнцефалографическое заключение», составленный диагностом на проанализированных данных «сырой» записи.

Расшифровка заключения ЭЭГ формируется на базе свода правил и состоит из трех разделов:

  • Описание ведущих видов активности и графических элементов.
  • Вывод после описания с интерпретированными патофизиологическими материалами.
  • Корреляция показателей двух первых частей с клиническими материалами.

Виды активности человеческого мозга, фиксируемые при записи ЭЭГ

Основными видами активности, которые записываются в ходе процедуры и впоследствии подвергают интерпретации, а также дальнейшему изучению считаются волновые частота, амплитуда и фаза.

Частота

Показатель оценивается количеством волновых колебаний за секунду, фиксируется цифрами, и выражается в единице измерения – герцах (Гц). В описании указывается средняя частота изучаемой активности. Как правило, берется 4-5 участков записи длительностью1с, и рассчитывается число волн на каждом временном отрезке.

Амплитуда

Данный показатель – размах волновых колебаний эклектического потенциала. Измеряется расстоянием между пиками волн в противоположных фазах и выражается в микровольтах (мкВ). Для замера амплитуды применяется калибровочный сигнал. Если, к примеру, калибровочный сигнал при напряжении 50 мкВ определяется на записи высотой 10 мм, то 1 мм будет соответствовать 5 мкВ. В расшифровке результатов дается интерпретациям наиболее частым значениям, полностью исключая редко встречающиеся.

Фаза

Значение этого показателя оценивает текущее состояние процесса, и определяет его векторные изменения. На электроэнцефалограмме некоторые феномены оцениваются количеством содержащихся в них фаз. Колебания подразделяются на монофазные, двухфазные и полифазные (содержащие более двух фаз).

Ритмы мозговой деятельности

Понятием «ритм» на электроэнцефалограмме считается тип электрической активности, относящийся к определенному состоянию мозга, координируемый соответствующими механизмами. При расшифровке показателей ритма ЭЭГ головного мозга вносятся его частота, соответствующая состоянию участка мозга, амплитуда, и характерные его изменения при функциональных сменах активности.

Ритмы бодрствующего человека

Мозговая деятельность, зафиксированная на ЭЭГ у взрослого человека, имеет несколько типов ритмов, характеризующихся определенными показателями и состояниями организма.

  • Альфа-ритм. Его частота придерживается интервала 8–14 Гц и присутствует у большинства здоровых индивидуумов – более 90 %. Самые высокие показатели амплитуды наблюдаются в состоянии покоя обследуемого, находящегося в темной комнате с закрытыми глазами. Лучше всего определяется в затылочной области. Фрагментарно блокируется или совсем затихает при мыслительной деятельности или зрительном внимании.
  • Бета-ритм. Его волновая частота колеблется в интервале 13–30 Гц, и основные перемены наблюдаются при активном состоянии обследуемого. Ярко выраженные колебания можно диагностировать в лобных долях при обязательном условии наличия активной деятельности, например, психическое или эмоциональное возбуждение и другие. Амплитуда бета-колебаний гораздо меньше альфа.
  • Гамма-ритм. Интервал колебаний от 30, может достигать 120–180 Гц и характеризуется довольно сниженной амплитудой – менее 10 мкВ. Превышение границы 15 мкВ считается патологией, обуславливающей снижение интеллектуальных способностей. Ритм определяется при решении задач и ситуаций, требующих повышенного внимания и концентрации.
  • Каппа-ритм. Характеризуется интервалом 8–12 Гц, и наблюдается в височной части мозга при умственных процессах путем подавления альфа-волн в остальных участках.
  • Лямбда-ритм. Отличается малым диапазоном – 4–5 Гц, запускается в затылочной области при необходимости принятия зрительных решений, например, занимаясь поиском чего-либо с открытыми глазами. Колебания полностью пропадают после концентрации взгляда в одной точке.
  • Мю-ритм. Определяется интервалом 8–13 Гц. Запускается в затылочной части, и лучше всего наблюдается при спокойном состоянии. Подавляется при запуске любой активности, не исключая и мыслительную.

Ритмы в состоянии сна

Отдельная категория видов ритмов, проявляющихся либо в условиях сна, либо при патологических состояниях включает в себя три разновидности данного показателя.

  • Дельта-ритм. Характерен для фазы глубокого сна и для коматозных больных. Также фиксируется при записи сигналов от областей коры мозга, расположенных на границе с пораженными онкологическими процессами участков. Иногда может быть зафиксирован у детей 4–6 лет.
  • Тета-ритм. Интервал частоты находится в пределах 4–8 Гц. Данные волны запускаются гиппокампом (информационным фильтром) и проявляются при сне. Отвечает за качественное усвоение информации и лежит в основе самообучения.
  • Сигма-ритм. Отличается частотой 10–16 Гц, и считается одним из главных и заметных колебаний спонтанной электроэнцефалограммы, возникающий при естественном сне на начальной его стадии.

По итогам, полученным при записи ЭЭГ, определяется показатель, характеризующий полную всеохватывающую оценку волн – биоэлектрическую активность мозга (БЭА). Диагност проверяет параметры ЭЭГ – частоту, ритмичность и присутствие резких вспышек, провоцирующих характерные проявления, и на этих основаниях делает окончательное заключение.

Расшифровка показателей электроэнцефалограммы

Чтобы расшифровать ЭЭГ, и не упустить никаких мельчайших проявлений на записи, специалисту необходимо учесть все важные моменты, которые могут отразиться на исследуемых показателях. К ним относятся возраст, наличие определенных заболеваний, возможные противопоказания и другие факторы.

По окончании сбора всех данных процедуры и их обработки, анализ идет к завершению и затем формируется итоговое заключение, которое и будет предоставлено для принятия дальнейшего решения по выбору метода терапии. Любое нарушение активностей может быть симптомом болезней, обусловленных определенными факторами.

Альфа-ритм

Норма для частоты определяется в диапазоне 8–13 Гц, и его амплитуда не выходит за отметку 100 мкВ. Такие характеристики свидетельствуют о здоровом состоянии человека и отсутствии каких-либо патологий. Нарушениями считается:

  • постоянная фиксация альфа-ритма в лобной доле;
  • превышение разницы между полушариями до 35%;
  • постоянное нарушение волновой синусоидальности;
  • присутствие частотного разброса;
  • амплитуда ниже 25 мкВ и свыше 95 мкв.

Наличие нарушений данного показателя свидетельствует о возможной асимметричности полушарий, что может быть результатом возникновения онкологических новообразований или патологий кровообращения мозга, например, инсульта или кровоизлияния. Высокая частота указывает на повреждения мозга или на ЧМТ (черепно-мозговую травму).

Полное отсутствие альфа-ритма зачастую наблюдается при слабоумии, а у детей отклонения от нормы напрямую связаны с задержкой психического развития (ЗПР). О такой задержке у детей свидетельствует: неорганизованность альфа-волн, смещение фокуса с затылочной области, повышенная синхронность, короткая реакция активации, сверхреакция на интенсивное дыхание.

Бета-ритм

В принятой норме эти волны ярко определяются в лобных долях мозга с симметричной амплитудой в интервале 3–5 мкВ, регистрирующейся в обоих полушариях. Высокая амплитуда наводит врачей на мысли о присутствии сотрясения мозга, а при появлении коротких веретен на возникновение энцефалита. Увеличение частоты и продолжительности веретен свидетельствует о развитии воспаления.

У детей, патологическими проявлениями бета-колебаний считается частота 15–16 Гц и присутствующая высокая амплитуда – 40–50 мкВ, и если ее локализация центральный или передний отдел мозга, то это должно насторожить врача. Такие характеристики говорят о высокой вероятности задержки развития малыша.

Дельта и тета-ритмы

Увеличение амплитуды данных показателей свыше 45 мкВ на постоянной основе характерно при функциональных расстройствах мозга. Если же показатели увеличены во всех мозговых отделах, то это может свидетельствовать о тяжелых нарушениях функций ЦНС.

При выявлении высокой амплитуды дельта-ритма выставляется подозрение на новообразование. Завышенные значения тета и дельта-ритма, регистрирующиеся в затылочной области свидетельствуют, о заторможенности ребенка и задержку в его развитии, а также о нарушении функции кровообращения.

Расшифровка значений в разных возрастных интервалах

Запись ЭЭГ недоношенного ребенка на 25–28 гестационной неделе выглядит кривой в виде медленных вспышек дельта и тета-ритмов, периодически сочетающихся с острыми волновыми пиками длиной 3–15 секунд при снижении амплитуды до 25 мкВ. У доношенных младенцев эти значения ярко разделяются на три вида показателей. При бодрствовании (с периодической частотой 5 Гц и амплитудой 55–60 Гц), активной фазой сна (при стабильной частоте 5–7 Гц и быстрой заниженной амплитудой) и спокойного сна со вспышками дельта колебаний при высокой амплитуде.

На протяжении 3-6 месяцев жизни ребенка количество тета-колебаний постоянно растет, а для дельта-ритма, наоборот, характерен спад. Далее, с 7 месяцев до года у ребенка идет формирование альфа-волн, а дельта и тета постепенно угасают. На протяжении следующих 8 лет на ЭЭГ наблюдается постепенная замена медленных волн на быстрые – альфа и бета-колебания.

До 15 лет в основном преобладают альфа-волны, и к 18 годам преобразование БЭА завершается. На протяжении периода от 21 до 50 лет устойчивые показатели почти не изменяются. А с 50 начинается следующая фаза перестройки ритмичности, что характеризуется снижением амплитуды альфа-колебаний и возрастанием бета и дельта.

После 60 лет частота также начинает постепенно угасать, и у здорового человека на ЭЭГ замечаются проявления дельта и тета-колебаний. По статистическим данным, возрастные показатели от 1 до 21 года, считающиеся «здоровыми» определяются у обследуемых 1–15 лет, достигая 70%, и в интервале 16–21 – около 80%.

Наиболее частые диагностируемые патологии

Благодаря электроэнцефалограмме довольно легко диагностируются заболевания, такие как эпилепсия, или различные виды черепно-мозговых травм (ЧМТ).

Эпилепсия

Исследование позволяет определить локализацию патологического участка, а также конкретный вид эпилептической болезни. В момент судорожного синдрома запись ЭЭГ имеет ряд определенных проявлений:

  • заостренные волны (пики) – внезапно нарастающие и спадающие могут проявляться и в одном и в нескольких участках;
  • совокупность медленных заостренных волн при приступе становится еще более выраженной;
  • внезапное повышение амплитуды в виде вспышек.

Применение стимулирующих искусственных сигналов помогает при определении формы эпилептической болезни, так как они обеспечивают видимость скрытой активности, сложно поддающейся диагностированию при ЭЭГ. Например, интенсивное дыхание, требующее гипервентиляцию, приводит к уменьшению просвета сосудов.

Также используется фотостимуляция, проводимая при помощи стробоскопа (мощного светового источника), и если реакции на раздражитель нет, то, скорее всего, присутствует патология, связанная с проводимостью зрительных импульсов. Появление нестандартных колебаний указывает на патологические изменения в мозге. Врачу не следует забывать, воздействие мощным светом может привести к эпилептическому припадку.

ЧМТ

При необходимости установить диагноз ЧМТ или сотрясения со всеми присущими патологическими особенностями, зачастую применяют ЭЭГ, особенно в случаях, когда требуется установить место локализации травмы. Если ЧМТ легкая, то запись зафиксирует несущественные отклонения от нормы – несимметричность и неустойчивость ритмов.

Если же поражение окажется серьезным, то и соответственно отклонения на ЭЭГ будут ярко выражены. Нетипичные изменения в записи, ухудшающиеся на протяжении первых 7 дней, свидетельствуют о масштабном поражении мозга. Эпидуральные гематомы чаще всего не сопровождаются особой клиникой, их можно определить лишь по замедлению альфа-колебаний.

А вот субдуральные кровоизлияния выглядят совсем иначе – при них формируются специфические дельта-волны со вспышками медленных колебаний, и при этом расстраиваются альфа. Даже после исчезновения клинических проявлений на записи могут еще какое-то время наблюдаться общемозговые патологические изменения, за счет ЧМТ.

Восстановление функции мозга напрямую зависит от типа и степени поражения, а также от его локализации. В зонах, подвергающимся нарушениям или травмам, может возникнуть патологическая активность, что опасно развитием эпилепсии, поэтому во избежание осложнений травм, следует регулярно проходить ЭЭГ и наблюдать за состоянием показателей.

Несмотря на то что ЭЭГ довольно несложный и не требующий вмешательства в организм пациента метод исследования, он отличается довольно высокой диагностической способностью. Выявление даже мельчайших нарушений в деятельности головного мозга обеспечивает быстрое принятие решения по выбору терапии и дает больному шанс на продуктивную и здоровую жизнь!

Источник: apkhleb.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.