Что такое оцк


Кровь является субстанцией кровообращения, поэтому оценка эффективности последнего должна быть начата с оценки объема крови в организме. Общий объем циркулирующей крови (ОЦК)

можно условно разделить на часть, активно циркулирующую по сосудам, и часть, которая не участвует в данный момент в крово­обращении, т. е. депонированную (которая, однако, может при определенных условиях включиться в кровообращение). В настоя­щее время признается существование так называемого объема быстро циркулирующей крови и объема медленно циркулирующей крови. Последний и является объемом депонированной крови.

Наибольшая часть крови (73-75% всего объема) находится в венозном отделе сосудистой системы, в так называемой системе низкого давления. Артериальный отдел — система высокого давле­ния _ содержит 20% ОЦК; наконец, в капиллярном отделе имеет­ся лишь 5-7% общего объема крови. Из этого следует, что даже небольшая внезапная кровопотеря из артериального русла, напри­мер 200-300 мл, существенно уменьшает объем крови, нахо­дящейся в артериальном русле, и может повлиять на условия гемо­динамики, тогда как такая же по объему кровопотеря из венозного отдела сосудистой емкости практически не отражается на гемоди­намике.


На уровне капиллярной сети происходит процесс обмена элек­тролитов и жидкостной части крови между внутрисосудистым и внесосудистым пространством. Поэтому потеря объема цирку­лирующей крови, с одной стороны, отражается на интенсивности течения этих процессов, с другой — именно обмен жидкости и элект­ролитов на уровне капиллярной сети может быть тем адаптационным механизмом, который в известной степени способен корригировать остро возникающий дефицит крови. Эта коррекция происходит путем перехода определенного количества жидкости и электроли­тов из внесосудистого сектора в сосудистый.

У различных субъектов в зависимости от пола, возраста, тело­сложения, условий жизни, степени физического развития и тре­нированности объем крови колеблется и составляет в среднем 50- 80 мл/кг.

Уменьшение или увеличение ОЦК у нормоволемического субъекта на 5-10% обычно полностью компенсируется изменением емкости венозного русла без изменений центрального венозного давления. Более значительное увеличение ОЦК обычно сопряжено с увеличени­ем венозного возврата и при сохранении эффективной сократимости сердца приводит к увеличению сердечного выброса.

Объем крови складывается из общего объема эритроцитов и объ­ема плазмы. Циркулирующая кровь неравномерно распределяется


Что такое оцк

в организме. Сосуды малого круга содержат 20-25% объема кро­ви. Значительная часть крови (10-15%) аккумулируется органа­ми брюшной полости (включая печень и селезенку). После приема пищи сосуды гепато-дигестивной области могут содержать в себе 20-25% ОЦК. Подсосочковый слой кожи при определенных ус­ловиях, например, при температурной гиперемии вмещает до 1 л крови. Гравитационные силы (в спортивной акробатике, гимнасти­ке, у космонавтов и др.) также оказывают существенное влияние на распределение ОЦК. Переход из горизонтального в вертикаль­ное положение у здорового взрослого человека приводит к накоп­лению в венах нижних конечностей до 500-1000 мл крови.

Хотя известны средние нормы ОЦК для нормального здорового человека, эта величина у различных людей весьма вариабельна и зависит от возраста, массы тела, условий жизни, степени трени­рованности и т. д. Если установить здоровому человеку постельный режим, т. е. создать условия гиподинамии, то через 1,5-2 недели общий объем его крови снизится на 9-15% от исходного. Усло­вия жизни различны у обычного здорового человека, у спортсме­нов и у людей, занимающихся физическим трудом, а они влияют на величину ОЦК. Показано, что у больного, находящегося на по­стельном режиме в течение длительного периода, может произой­ти снижение ОЦК на 35-40%.


При снижении ОЦК отмечается: тахикардия, артериальная ги­потония, снижение центрального венозного давления, мышечного тонуса, атрофия мышц и т. д.

В основу методов измерения объема крови в настоящее время положен непрямой способ, основанный на принципе разведения.

Постоянство объема циркулирующей крови обусловливает стабильность кровообращения и связано со многими функциями организма, в конечном счете определяющими его гомеостаз.

Из ЭСМТ

Гомеостаз — относительное динамическое постоянство внутренней среды (крови, тканевой жидкости) и устойчивость основных физиологических функций организма.

Объем циркулирующей крови (ОЦК) можно измерить, определив отдельно объем всех циркулирующих эритроцитов (ОЦЭ) и объем всей плазмы крови (ОЦП) и сложив обе величины: ОЦК=ОЦЭ+ОЦП. Однако достаточно вычислить лишь одну из этих величин, а ОЦК подсчитать, основываясь на показаниях гематокрита.

Из курса физиологии

Гематокрит — прибор для определения отношения объема форменных элементов крови к объему плазмы. В норме плазма — 53 — 58%, форменные элементы — 42 — 47%.

Методы определения объема плазмы и эритроцитов основаны на принципе разведения в крови введенного в сосудистое русло РФП.

Схема радиодиагностического анализа,
основанного на принципе оценки степени разведения РФП


Исследуемый объем = Активность введенного препарата/Активность пробы

Представим, что надо установить объем жидкости, налитой в сосуд. Для этого в него вводят точно измеренное количество индикатора (например, красителя). После равномерного размешивания (разведения!) берут такой же объем жидкости и определяют в нем количество красителя. По степени разведения красителя легко вычислить объем жидкости в сосуде. Для определения ОЦЭ больному вводят внутривенно 1 мл эритроцитов, меченых 51 Сr (активностью 0,4 МБк). Метку эритроцитов проводят в свежезаготовленной 0(1) резус-отрицательной консервированной крови путем введения в нее 20 — 60 МБк стерильного раствора хромата натрия.

Через 10 мин после введения меченых эритроцитов берут пробу крови из вены противоположной руки и подсчитывают активность этой пробы в колодезном счетчике. К этому сроку меченые эритроциты равномерно распределены в периферической крови. Радиоактивность 1 мл пробы крови будет настолько ниже радиоактивности 1 мл введенных меченых эритроцитов, насколько количество последних меньше числа всех циркулирующих эритроцитов.

Объем всей массы эритроцитов, циркулирующих в крови, вычисляют по формуле: ОЦЭ = N/n , где N — общая радиоактивность введенных эритроцитов; n — активность пробы 1 мл эритроцитов.

Сходным образом определяют ОЦП. Только для этого внутривенно вводят не меченые эритроциты, а человеческий сывороточный альбумин, меченный 99тТс, активностью 4 МБк.


В клинике принято рассчитывать ОЦК относительно массы тела больного. ОЦК у взрослых людей в норме равен 65 — 70 мл/кг. ОЦП — 40 — 50 мл/кг, ОЦЭ — 20 — 35 мл/кг.

Задание 6

Больному ввели меченые эритроциты в количестве 5 мл. Радиоактивность 0,01 мл исходного раствора — 80 имп/мин. Радиоактивность 1 мл эритроцитов в крови, полученной через 10 мин после инъекции радионуклида, равна 20 имп/мин. Показатель венозного гематокрита у больного — 45%. Определите ОЦЭ и ОЦК.

По мере развития сердечной недостаточности ОЦК неуклонно возрастает, главным образом за счет плазмы, тогда как ОЦЭ остается нормальным или даже снижается. Раннее выявление гиперволемии позволяет своевременно включить ряд лекарственных средств (в частности, диуретиков) в систему лечения таких больных и корректировать проведение лекарственной терапии. Плазмопотеря является одним из важных звеньев развития шока, и ее учитывают при назначении интенсивной терапии.

«Медицинская радиология»,
Л.Д.Линденбратен, Ф.М.Лясс

Материалы публикуются для ознакомления, и не являются предписанием к лечению! Рекомендуем обратиться к врачу-гематологу в вашем лечебном учреждении!

Гиповолемия — одно из опасных заболеваний кроветворной системы, которое может привести к смерти человека. Что такое синдром гиповолемии? Чем опасна болезнь и каковы ее разновидности? Рассмотрим причины, симптомы, виды гиповолемии, методы лечения.


Уменьшение объема циркуляции крови в гематологии носит название гиповолемия. При развитии данного заболевания происходит нарушение форменных элементов в плазме крови. В норме объем циркулирующей плазмы (ОЦП) в организме человека колеблется около 69 мл/кг у мужчин и 65 мл/кг у женщин. Гиповолемия относится к тяжелым состояниям, которые при несвоевременно оказанной медицинской помощи могут привести к смерти человека. Данное заболевание не является самостоятельным, а развивается как осложнение на фоне внутренних заболеваний. Именно поэтому после того как у человека появляются симптомы гиповолемии, важно установить этиологический фактор и только тогда предпринимать меры по лечению. При гиповолемии происходит неправильное распределение внутриклеточной жидкости, что и ведет к уменьшению циркуляции крови.

Что такое оцк

Гиповолемия — уменьшение объема циркуляции крови

Важно: Синдром гиповолемии может развиваться как при тяжелых патологиях внутренних органов, так и при менее опасных состояниях, поэтому важно установить причины гиповолемии и только потом проводить лечение.

Причины

Снижение объема циркулирующей крови может происходить по множественным причинам, но в основном такое состояние проявляется при следующих заболеваниях:

  1. Обезвоживание организма.
  2. Нарушения обменных процессов: сахарный диабет.
  3. Болезни почек: гломерулонефрит, почечная недостаточность.
  4. Травмы внутренних органов.
  5. Осложнение после оперативных вмешательств.
  6. Перитонит.
  7. Внутренние кровотечения.
  8. Болезни ЖКТ.
  9. Эндокринные нарушения.
  10. Патологии сердечно-сосудистой системы.

Предрасполагающими факторами к развитию гиповолемии считаются:

  1. Недостаточное употребление воды.
  2. Регулярные стрессы, депрессии.
  3. Ожоги.
  4. Переливание крови.
  5. Многократная и обильная рвота.
  6. Диарея.

Что такое оцк

Обезвоживание — одна из причин гиповолемии

Это далеко не все причины, которые могут спровоцировать развитие гиповолемии. В редких случаях пациентам выставляется диагноз гиповолемия щитовидной железы, при которой происходит не только уменьшение жидкости, но и снижается выработка гормонов. В основном такое состояние диагностируется крайнее редко и только после длительных кровопотерь.

Виды

В гематологии разделяют три основных вида гиповолемии, каждая из которых имеет свои особенности:

  1. Нормоцитемическая — характеризуется снижением циркулирующей крови при стойком гематокрите. В основном причиной такого состояния считается острая кровопотеря, коллапс и другие тяжелые состояния, ведущие к уменьшению тока в венах и больших артериях.

  2. Олигоцитемическая гиповолемия — снижение количества крови и форменных элементов с понижением гематокрита. Основной причиной развития данного состояния считается , которая развивается в результате дефицита эритроцитов или обширном гемолизе эритроцитов. Такое состояние характерно при полученных ожогах 1 или 2 степени.
  3. Полицитемическая гиповолемия — вызывается снижением объема крови на фоне уменьшения количества плазмы.

Стадии болезни

Течение гиповолемии напрямую зависит от количества кровопотери, а также симптомов, с которыми больной обратился к врачам.

Что такое оцк

Различают три основных степени гиповолемии, каждая из которых имеет характерные признаки:

  1. Легкая степень. Кровопотеря в среднем составляет не больше 15% от общей циркуляции крови. У больных отмечается снижение артериального давления, тахикардия, учащенный пульс и дыхание. Кожные покровы бледные, верхние и нижние конечности холодные, также присутствует повышенная сухость во рту, общая слабость.
  2. Средняя степень. Потеря крови составляет до 40%. Состояние больного достаточно тяжелое, артериальное давление ниже 90 мм.рт.ст., учащенный пульс, тяжелое аритмичное дыхание, повышенная потливость, цианоз губ, бледность, повышенная сонливость, ощущение нехватки воздуха. В некоторых случаях может присутствовать рвота, обмороки, снижается количество мочи.

  3. Тяжелая степень. Больной теряет до 70% общего объема крови, давление ниже 60 мм.рт.ст., пульс еле прослушивается, выраженная тахикардия, спутанность сознания, возможны судороги, дыхание жесткое. Такое состояние крайнее опасно для жизни человека, поскольку может привести к летальному исходу.

Как проявляется гиповолемия?

Клинические признаки гиповолемии достаточно выраженные и сопровождаются следующими симптомами:

  1. Снижение диуреза.
  2. Повышенная жажда.
  3. Бледность кожных покровов.
  4. Снижение температуры тела.
  5. Увеличение частоты сердечных сокращений.
  6. Снижение массы тела.
  7. Сухость и шелушение кожи.
  8. Отеки ног.
  9. Повышенная усталость.
  10. Снижение артериального давления.
  11. Частые головные боли.
  12. «Мушки» перед глазами.

Диагностика и лечение

При подозрении на гиповолемию, врач назначает ряд лабораторных исследований, которые позволяют определить количество эритроцитов и плазмы крови, также назначается анализ мочи. При снижении внеклеточной жидкости, анализ крови выполняется вместе с белковыми растворами, глюкозой, растворами электролитов. Результаты исследований позволяют создать полную картину болезни, определить стадию, вид, назначить соответствующее лечение.


Система крови включает органы кроветворения и кроверазрушения, циркулирующую и депонированную кровь. Система крови: костный мозг, тимус, селезенка, лимфатические узлы, печень, циркулирующая и депонированная кровь. На кровь у взрослого здорового человека приходится в среднем 7% массы тела. Важным показателем системы крови является объем циркулирующей крови (ОЦК), суммарный объем крови, находящейся в функционирующих кровеносных сосудах. Около 50% всей крови может храниться вне кровотока. При повышении потребности организма в кислороде или уменьшении количества гемоглобина в крови в общую циркуляцию поступает кровь из депо крови. Основные депо крови селезёнка , печень и кожа . В селезёнке часть крови оказывается выключенной из общей циркуляции в межклеточных пространствах, здесь она сгущается, Таким образом, селезенка является основным депо эрит­роцитов . Обратное поступление крови в общий кровоток осуществляется при сокращении гладкой мускулатуры селезёнки. Кровь, находящаяся в сосудах печени и сосудистом сплетении кожи (у человека до 1 л), циркулирует значительно медленнее (в 10-20 раз), чем в других сосудах. Поэтому кровь в данных органах задерживается, т. е. они также являются резервуарами крови. Роль депо крови выполняет вся венозная система и в наибольшей степени вены кожи.

Изменения объема циркулирующей крови (оцк) и соотношений между оцк и количеством форменных элементов крови.

ОЦК взрослого человека — достаточно постоянная величина, составляет 7-8% от массы тела, зависит от пола, возраста и содержания в организме жировой ткани. Соотношение объемов форменных элементов и жидкой части крови называется гематокритом. В норме гематокрит мужчины равен 0,41-0,53, женщины — 0,36-0,46. У новорождённых гематокрит примерно на 20 % выше, у маленьких детей — примерно на 10 % ниже, чем у взрослого. Гематокрит повышен при эритроцитозах, снижен при анемиях.

Нормоволемия — (ОЦК) в норме.

Нормоволемия олигоцитемическая (нормальный ОЦК c уменьшенным количеством форменных элементов) – характерна для различных по происхождению анемий, сопровождается снижением гематокрита.

Нормоволемия полицитемическая (нормальный ОЦК с увеличенным количеством клеток, гематокрит повышен) развивается вследствие избыточной инфузии эритроцитарной массы; активации эритропоэза при хронической гипоксии; опухолевом размножении клеток эритроидного ряда.

Гиперволемия – ОЦК превышает среднестатистические нормы.

Гиперволемия олигоцитемическая (гидремия, гемодилюция) — возрастание объема плазмы, разведение клеток жидкостью, развивается при почечной недостаточности, гиперсекреции антидиуретического гормона, сопровождается развитием отеков. В норме олигоцитемическая гиперволемия развивается во второй половине беременности, когда гематокрит снижается до 28-36%. Такое изменение повышает скорость плацентарного кровотока, эффективность трансплацентарного обмена (это особенно существенно для поступления СО 2 из крови плода в кровь матери, так как разность концентраций этого газа очень небольшая).

Гиперволемия полицитемическая – увеличение объема крови главным образом из-за повышения числа форменных элементов крови, поэтому гематокрит повышен.

Гиперволемия приводит к увеличению нагрузки на сердце, увеличению сердечного выброса, повышению артериального давления.

Гиповолемия – ОЦК меньше среднестатистических норм.

Гиповолемия нормоцитемическая – уменьшение объема крови с сохранением объема клеточной массы, наблюдается в течение первых 3-5 часов после массивной кровопотери.

Гиповолемия полицитемическая – снижение ОЦК за счет потери жидкости (дегидратация) при диарее, рвоте, обширных ожогах. Артериальное давление при гиповолемической полицитемии снижается, массивная потеря жидкости (крови) может привести к развитию шока.

Кровь состоит из форменных элементов (эритроцитов, тромбоцитов, лейкоцитов) и плазмы. Гемогр а мма (греч. haima кровь + gramma запись) — клинический анализ крови, включает данные о количестве всех форменных элементов крови, их морфологических особенностях, скорости оседания эритроцитов (СОЭ), содержании гемоглобина, цветном показателе, гематокрите, среднем объеме эритроцитов (MCV), среднем содержании гемоглобина в эритроците (MCH), средней концентрации гемоглобина в эритроците (MCHC).

Гемопоэз (кроветворение) у млекопитающих осуществляется кроветворными органами, прежде всегокрасным костным мозгом. Некоторая часть лимфоцитов развивается в лимфатических узлах, селезёнке, вилочковой железе (тимусе).

Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.

В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток. Всего в схеме кроветворения различают VI классов клеток: I – стволовые кроветворные клетки (СКК); II – полустволовые; III – унипотентные; IV – бластные; V – созревающие; VI – зрелые форменные элементы.

Характеристика клеток различных классов схемы кроветворения

Класс I – Предшественниками всех клеток являются плюрипотентные гемопоэтическиестволовые клетки костного мозга . Содержание стволовых клеток не превышает в кроветворной ткани долей процента. Стволовые клетки дифференцируются по всем росткам кроветворения (это и означает плюрипотентность); они способны к самоподдержанию, пролиферации, циркуляции в крови, миграции в другие органы кроветворения.

Класс II – полустволовые,ограниченно полипотентные клетки – предшественницы: а) миелопоэза; б) лимфоцитопоэза. Каждая из них дает клон клеток, но только миелоидных или лимфоидных. В процессе миелопоэза образуются все форменные элементы крови, кроме лимфоцитов — эритроциты, гранулоциты, моноциты и тромбоциты. Миелопоэз происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Ткань, в которой происходит миелопоэз, называется миелоидной. Лимфопоэз происходит в лимфатических узлах, селезёнке,тимусеи костном мозге.

Класс III унипотентные клетки -предшественницы, они могут дифференцироваться только в одном направлении, при культивировании этих клеток на питательных средах они образуют колонии клеток одной линии, поэтому их называют также колониеобразующими единицами(КОЕ). Частота деления этих клеток и способность дифференцироваться дальше зависят от содержания в крови особых биологически активных веществ – поэтинов, специфичных для каждого ряда кроветворения. Эритропоэтин – регулятор эритропоэза, гранулоцитарно-моноцитарный колониестимулирующий фактор (ГМ-КСФ) регулируют продукцию нейтрофилов и моноцитов, гранулоцитарный КСФ (Г-КСФ) регулирует образование нейтрофилов.

В этом классе клеток существует предшественник В-лимфоцитов, предшественник Т-лимфоцитов.

Клетки трех названных классов схемы кроветворения, морфологически нераспознаваемые, существуют в двух формах: бластной и лимфоцитоподобной. Бластную форму приобретают делящиеся клетки, находящиеся в фазе синтеза ДНК.

Класс IV – морфологически распознаваемых пролиферирующихбластных клеток , начинающих отдельные клеточные линии: эритробласты, мегакариобласты, миелобласты, монобласты, лимфобласты. Эти клетки крупные, имеют большое рыхлое ядро с 2–4 ядрышками, цитоплазма базофильная. Часто делятся, дочерние клетки все вступают на путь дальнейшей дифференцировки.

Класс V – класссозревающих (дифференцирующихся) клеток, характерных для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток – от одной (пролимфоцит, промоноцит) до пяти – в эритроцитарном ряду.

Класс VI зрелые форменные элементы крови с ограниченным жизненным циклом. Только эритроциты, тромбоциты и сегментоядерные гранулоциты являются зрелыми конечными дифференцированными клетками. Моноциты – не окончательно дифференцированные клетки. Покидая кровеносное русло, они дифференцируются в тканях в конечные клетки – макрофаги. Лимфоциты при встрече с антигенами превращаются в бласты и снова делятся.

Гемопоэз на ранних стадиях развития эмбрионов млекопитающих начинается в желточном мешке, продуцирующем эритроидные клетки примерно с 16-19 дня развития, и прекращается после 60-го дня развития, после чего функция кроветворения переходит к печении начинается лимфопоэз в тимусе. Последним из кроветворных органов в онтогенезе развивается красный костный мозг, играющий главную роль в гемопоэзе взрослых особей. После окончательного формирования костного мозга гемопоэтическая функция печени угасает.

Большинство циркулирующих форменных элементов крови составляют эритроциты – красные безъядерные клетки, их в 1000 раз больше, чем лейкоцитов; поэтому: 1) гематокрит зависит от количества эритроцитов; 2)СОЭ зависит от количества эритроцитов, их величины, способности к образованию агломератов, от температуры окружающей среды, количества белков плазмы крови и соотношения их фракций. Повышенное значение СОЭ может быть при инфекционных, иммунопатологических, воспалительных, некротических и опухолевых процессах.

Внорме количество эритроцитов в 1л крови у мужчин — 4,0-5,010 12 , у женщин -3,7-4,710 12 .У здорового человека эритроциты в 85% имеют форму диска с двояковогнутыми стенками, в 15% — другие формы. Диаметр эритроцита 7-8мкм. Наружная поверхность клеточной мембраны содержит молекулы, определяющие группу крови, и другие антигены. Содержание гемоглобина в крови у женщин составляет 120-140г/л , у мужчин — 130-160г/л . Уменьшение числа эритроцитов характерно для анемий, увеличение — называется эритроцитозом (полицитемией). В крови взрослых содержится 0,2-1,0% ретикулоцитов.

Ретикулоциты — это молодые эритроциты с остатками РНК, рибосом и других органелл, выявляемых при специ­альной (суправитальной) окраске в виде гранул, сетки или нитей. Ретикулоциты образуются из нормоцитов в костном моз­ге, после чего поступают в перифе­рическую кровь.

При ускорении эритропоэза доля ретикулоцитов возраста­ет, а при замедлении снижается. В случае усиленного разрушения эритроцитов доля ре­тикулоцитов может превышать 50%. Резкое увеличение эритропоэза сопровождается появлением в крови ядерных эритроидных клеток (эритрокариоцитов) – нормоцитов, иногда даже эритробластов.

Что такое оцк

Рис. 1. Ретикулоциты в мазке крови.

Основная функция эритроцита состоит в транспорте кислорода от легочных альвеол к тканям и двуокиси углерода (СО 2) – обратно из тканей к легочным альвеолам. Двояковогнутая форма клетки обеспечивает наибольшую площадь поверхности газообмена, позволяет ей значительно деформироваться и проходить через капилляры с просветом 2-3 мкм. Такая способность к деформации обеспечивается за счет взаимодействия между белками мембраны (сегмент 3 и гликофорин) и цитоплазмы (спектрин, анкирин и белок 4.1). Дефекты этих белков ведут к морфологическим и функциональным нарушениям эритроцитов. Зрелый эритроцит не имеет цитоплазматических органелл и ядра и поэтому не способен к синтезу белков и липидов, окислительному фосфорилированию и поддержанию реакций цикла трикарбоновых кислот. Он получает большую часть энергии через анаэробный путь гликолиза и сохраняет ее в виде АТФ. Приблизительно 98% массы белков цитоплазмы эритроцита составляет гемоглобин (Hb), молекула которого связывает и транспортирует кислород. Длительность жизни эритроцитов 120 дней. Наиболее устойчивы к воздействиям молодые клетки. Постепенное старение клетки или ее повреждение приводит к появлению на ее поверхности «белка старения» — своеобразной метки для макрофагов селезенки и печени.

ПАТОЛОГИЯ «КРАСНОЙ» КРОВИ

Анемия — это снижение концентрации гемоглобина в единице объема крови, чаще всего при одновременном уменьшении числа эритроцитов.

Различные виды анемий выявляются у 10-20% населения, в большинстве случаев у женщин. Наиболее часто встречаются анемии, связанные с дефицитом железа (около 90% всех анемий), реже анемии при хронических заболеваниях, еще реже анемии, связанные с дефицитом витамина В12 или фолиевой кислоты, гемолитические и апластические.

Общие признаки анемий являются следствием гипоксии: бледность, одышка, сердцебиение, общая слабость, быстрая утомляемость, снижение работоспособности. Снижение вязкости крови объясняет возрастание СОЭ. Появляются функциональные шумы в сердце вследствие турбулентного тока крови в крупных сосудах.

В зависимости от выраженности снижения уровня гемоглобина выделяют три степени тяжести анемии: легкая — уровень гемоглобина выше 90 г/л;средняя — гемоглобин в пределах 90-70 г/л;тяжелая — уровень гемоглобина менее 70 г/л.

Кислородтранспортные возможности организма зависят от объёма крови и содержания в ней гемоглобина.

Объём циркулирующей крови в покое у молодых женщин составляет в среднем 4,3л, у мужчин-5,7л. При нагрузке ОЦК сначала увеличивается, а затем уменьшается на 0,2-0,3л из-за оттока части плазмы из расширенных капилляров в межклеточное пространство работающих мышц.При длительных упражнениях среднее значение ОЦК у женщин равно 4 л, у мужчин-5,2л. Тренировка выносливости ведёт к повышению ОЦК. При нагрузке максимальной аэробной мощности ОЦК у тренированных мужчин в среднем равен 6,42л

ОЦК и её составляющие: объём циркулирующей плазмы(ОЦП) и объём циркулирующих эритроцитов(ОЦЭ) повышаются при занятиях спортом. Увеличение ОЦК является специфическим эффектом тренировки выносливости. Его не наблюдается у представителей скоростно-силовых видов спорта. С учётом размеров(веса) тела разница между ОЦК у выносливых спортсменов, с одной стороны, и нетренированных людей и спортсменов, тренирующих другие физические качества, с другой, в среднем составляет более 20%. Если ОЦК у спортсмена, тренирующего выносливость, равна 6,4литра (95,4мл на 1кг веса тела), то у нетренированных она равна5,5 л (76,3мл/кг веса тела).

В таблице 9 приведены показатели ОЦК,ОЦЭ,ОЦП и количества гемоглобина на 1 кг веса тела у спортсменов с различной направленностью тренировочного процесса.

Таблица 9

Показатели ОЦК,ОЦЭ,ОЦП и количества гемоглобина у спортсменов с различной направленностью тренировочного процесса

Из таблицы 9 следует, что при увеличении ОЦК у выносливых спортсменов пропорционально увеличивается и общее количество эритроцитов и гемоглобина крови. Это значительно повышает общую кислородную ёмкость крови и способствует увеличению аэробной выносливости.

Благодаря увеличению ОЦК растёт центральный объём крови и венозный возврат к сердцу, что обеспечивает большой СО крови. Увеличивается кровенаполнение альвеолярных капилляров, что повышает диффузную способность лёгких. Увеличение ОЦК позволяет направлять большее количество крови в кожную сеть и таким образом увеличивает возможность организма для теплоотдачи во время длительной работы.

В период врабатывания АД,СО,СВ, АВР-О2 растут медленнее чем ЧСС. Причина этого- медленный рост(2-3мин) объёма циркулирующей крови вследствие медленного выхода крови из депо. Быстрый рост ОЦК может оказать травмирующую нагрузку на сосудистое русло.

Во время нагрузок большой аэробной мощности через сердце прокачивается большое количество крови с высокой скоростью. Излишек плазмы даёт резерв, позволяющий избежать гемоконцентрацию и увеличение вязкости. То есть у спортсменов увеличение ОЦК, обусловленое больше увеличением объёма плазмы, чем объёмом эритроцитов, приводит к снижению показателя гематокрита (вязкости крови) по сравнению с не спортсменами (42,8 против44,6).

Благодаря большому объёму плазмы уменьшается концентрация в крови продуктов тканевого обмена, например молочной кислоты. Поэтому концентрация лактата при анаэробной нагрузке растёт медленнее.

Механизм роста ОЦК состоит в следующем: рабочая гипертрофия мышц => возрастание запроса организма в белках => повышение продукции белка печенью => увеличивается выброс белков печенью в кровь => повышается колоидно- осматическое давление и вязкость крови => рост абсорбции воды из тканевой жидкости внутрь сосудов а также происходит задержка воды, поступающей в организм => увеличивается объём плазмы (основу плазмы составляют белки и вода) => рост ОЦК.

«Объём циркулирующей крови — доминирующий фактор хорошо уравновешенного кровообращения.» Уменьшение ОЦК, накопление крови в депо(в печени, в селезёнке, в сети воротной вены) сопровождается уменьшением объёма крови, которая прибывает к сердцу и которая выбрасывается каждой систолой. Внезапное уменьшение ОЦК ведёт за собой острую сердечную недостаточность. За уменьшением объёма крови, естественно, всегда следует серьёзная тканевая и клеточная гипоксия.

ОЦК (по отношению к весу тела) зависит от возраста: у детей до 1 года-11%, у взрослых-7%. На 1кг веса тела у детей 7-12 лет-70мл, у взрослых-50-60мл.

Источник: eyyes.ru

Потеря около 500 мл крови (10-15% объема циркулирующей крови) обычно не сопровождается заметной реакцией сердечно-сосудистой системы. Потеря 25% ОЦК вызывает снижение систолического артериального давления до 90-85 мм рт. ст., диастолического – до 45-40 мм рт. ст. Выраженный дефицит ОЦК (кровотечение, перитонит, острая кишечная непроходимость, острый панкреатит и др.) вызывает:
1. Гиповолемический шок.
2. Острую преренальную и ренальную почечную недостаточность.
3. Печеночную недостаточность в связи с уменьшением печеночного кровотока, гипоксией, дистрофией гепатоцитов.
4. Сердечную недостаточность, обусловленную кислородным голоданием миокарда.
5. Отек мозга вследствие гипоксии.
6. Диссеминированное внутрисосудистое свертывание крови.
7. Интоксикацию продуктами крови, излившейся в кишечник.

Все эти признаки означают, что у больного развилась полиорганная недостаточность. Ориентировочная оценка дефицита ОЦК возможна на основании внешних клинических проявлений, определения шокового индекса, по частоте сердечных сокращений, величине артериального давления, измерения количества крови (наружное и внутриполостное кровотечение, ОКППК).

Показатели гемоглобина, гематокрита, центрального венозного давления (ЦВД), объема циркулирующей крови (ОЦК), почасового диуреза позволяют более точно оценить тяжесть состояния больного и эффективность лечения. Следует помнить о том, что при исследовании крови в ранние сроки (несколько часов) после начала кровотечения число эритроцитов и содержание гемоглобина могут оставаться на нормальном уровне. Это связано с тем, что в течение первых часов происходит выброс эритроцитов из депо.

Одним из наиболее важных показателей, от которого во многом зависит дифференцированный подход к лечению, является дефицит ОЦК (ДефОЦК). По сути, он является разницей между должными и истинными показателями ОЦК:
ДефОЦК = ДолОЦК – ИстОЦК

Должные показатели ОЦК (ДолОЦК), как правило, определяют по таблицам, а наиболее точными способами определения истинного ОЦК (ИстОЦК) являются радионуклидный и красочный. Оба они основаны на разведении известного объема индикатора в исследуемом объеме крови. В качестве индикаторов используют конго красный, синий Эванса (Т-1824), полиглюкин, радиоактивное железо, фосфор, хром, йод.
Однако эти методики не лишены некоторых недостатков. При повторном использовании красочных методов происходит окрашивание кожи и слизистых, что ограничивает частоту применения индикатора и затрудняет дальнейшее наблюдение за состоянием больного. Исследование необходимо выполнять только натощак, поскольку липемия существенно влияет на его результаты. В связи с тем, что красители задерживаются в тканях, возникают затруднения при изучении ОЦК в динамике. Применение радиологических методов требует определенных условий и специальной аппаратуры. Для динамического определения ОЦК и его компонентов возникает необходимость повторного введения радиоактивного изотопа в довольно короткие сроки, что не всегда желательно.

В связи с этим более подробно остановимся на относительно простых и доступных методах изучения дефицита ОЦК.
В экстренной ситуации об объеме кровопотери можно приблизительно судить, используя индекс Алговера. Как известно, это отношение частоты пульса к систолическому артериальному давлению, которое в норме равно 0,5-0,6. Если индекс Алговера равен 0,7-0,8, то кровопотеря составляет 10% ОЦК (500 мл), 0,9-1,2 – 20% ОЦК (1000 мл), 1,3-1,4 – 30% ОЦК (1500 мл), 1,5 – 50% ОЦК (2000 мл), а при индексе шока равном 2,0, когда ЧСС достигает 140 уд/мин., а систолическое артериальное давление равно 70 мм рт. ст., дефицит ОЦК достигает 70%.

Дефицит ОЦК можно определять, используя гематокритное число (Мооrе, 1969):
ДефОЦК = ДолОЦК х (ДолHt – ИстHt / ДолHt), где
ДолОЦК – должный ОЦК в мл,
ДолHt – должный гематокрит в %, ИстHt – истинный гематокрит в %. Однако следует помнить, о том, что у больных с остановленным кровотечением будет небольшое завышение результатов. Это связано с тем, что инфузионная терапия приводит к гемодилюции и снижению показателя гематокритного числа.
В.Д. Сидора (1973) предложил изучать истинный ОЦК, используя следующую формулу:
ИстОЦК = вес больного в граммах / А, где
А – весовая часть ОЦК, определяемая в зависимости от величины венозного гематокрита.
Плазменный объем (ПО) и глобулярный объем (ГО) определяют по формулам:
ПО = ИстОЦК х (1 – ИстHt в л/л),
ГО = ИстОЦК – ПО.

Источник: esus.ru

ОЦК

Главная > О >

 

ОЦК (основной цифровой канал) – это цифровой интерфейс передачи данных со скоростью передачи сигналов 64·(1±100·10-6) кбит/с, еще называемый «стык ОЦК». 

Также словом ОЦК называют канал, передаваемый в потоке Е1 со скоростью 64 кбит/с. Смотри термин «канал Е1» в этом глоссарии. 

Здесь описано определение слова «ОЦК» именно, как «интерфейс ОЦК», или «стык ОЦК».

Интерфейс ОЦК описан в «ГОСТ 26886-86. Стыки цифровых каналов передачи и групповых трактов первичной сети ЕАСС. Основные параметры (с Изменением N 1)». Этот ГОСТ РАЗРАБОТАН И ВНЕСЕН Министерством связи СССР. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 19.12.1990 N 3200. ГОСТ 26886-86 полностью соответствует рекомендации МККТТ G.703.

Интерфейс ОЦК имеется в гибких первичных мультиплексорах, в модемах, и используется для организации телекоммуникационных линий связи, предназначенных для соединения оборудования использующего для передачи данных этот тип интерфейса.

Примеры типов оборудования использующих интерфейс ОЦК приведены ниже:
— конвертеры интерфейсов. Например, интерфейс RS-232 передается через интерфейс ОЦК;
— специальное оборудование, используемое в государственных ведомствах России и СНГ, например, на железной дороге в цифровых сетях технологической связи для диспетчерской централизации (аппаратура ДЦ (КП (контролируемый пункт), пост ДЦ), в армии и силовых ведомствах в составе стационарных и подвижных комплексов специальной связи.

Интерфейс ОЦК может быть реализован в двух разных формах:
1 – интерфейс который называется «сонаправленный стык ОЦК»;
2 — интерфейс который называется «противонаправленный стык ОЦК».

Сонаправленный стык ОЦК передает сигналы по двум витым парам, с волновым сопротивлением 120 Ом.
Одна витая пара используется для передачи данных и сигналов синхронизации, линия TxD (передача). 
Вторая пара используется для приема данных и сигналов синхронизации, линия RxD (прием).
Оборудование, подключаемое к сонаправленному стыку ОЦК может поддерживать следующие режимы синхронизации передачи данных:
— асинхронный режим. 
В этом режиме оба терминала соединенные друг с другом через интерфейс ОЦК передают данные со своей частотой и фазой, а принимают данные синхронно с частотой принимаемого сигнала;
— синхронный режим. 
В этом режиме один из двух терминалов соединенных друг с другом через интерфейс ОЦК является ведущим, а другой ведомым. 
Ведущий терминал передает данные со своей частотой и фазой. Ведущий терминал принимает данные синхронно с частотой принимаемого сигнала. 
Ведомый терминал принимает данные синхронно с частотой принимаемого сигнала, и передает данные с такой же частотой, с определенной точностью. 
Таким образом в этом режиме оба терминала работают синхронно с частотой задаваемой ведущим терминалом.

Противонаправленный стык ОЦК.
Оборудование, подключаемое к противонаправленному стыку ОЦК поддерживает только синхронный режим передачи данных. 
В этом режиме один из двух терминалов соединенных друг с другом через интерфейс ОЦК является ведущим, а другой ведомым. 
В ГОСТ 26886-86 написано «На противонаправленном стыке каналообразующая аппаратура ОЦК (аппаратура первичной сети) всегда является ведущей, а подключаемая к ОЦК аппаратура вторичных сетей или потребителей — ведомой».
Для синхронизации ведомого терминала используется отдельные «сигналы синхронизации передаваемых и принимаемых данных», которые передаются в направлении от ведущего терминала к ведомому.
Ведущий терминал передает и принимает данные со своей частотой и фазой. 
Ведомый терминал принимает данные, используя «сигнал синхронизации передаваемых данных» полученный от ведущего терминала.
Ведомый терминал принимает данные, используя «сигнал синхронизации принимаемых данных» полученный от ведущего терминала.
Сигналы — «сигнал синхронизации передаваемых данных», «сигнал синхронизации принимаемых данных» полученные ведомым терминалом от ведущего терминала могут быть несинхронными по отношению друг к другу.

Противонаправленный стык ОЦК передает сигналы по четырем витым парам, с волновым сопротивлением 120 Ом, линии:
— TxD (передача, выход) – передаваемые данные;
— TxC – сигнал синхронизации передаваемых данных. 
Выход, если терминал является ведущим. 
Вход, если терминал является ведомым;
— RxD (прием, вход) – принимаемые данные;
— RxC – сигнал синхронизации принимаемых данных. 
Выход, если терминал является ведущим. 
Вход, если терминал является ведомым.

Таким образом оборудование использующее интерфейс ОЦК, и поддерживающее интерфейсы «сонаправленный стык ОЦК», «противонаправленный стык ОЦК», и способное работать в синхронном, или асинхронном режимах, как ведущий или ведомый терминал связи, должно содержать 6 интерфейсных линий связи:
TxD – передаваемые данные, выход;
TxCo – сигнал синхронизации передаваемых данных, выход, работа в ведущем режиме;
TxCi – сигнал синхронизации передаваемых данных, вход, работа в ведомом режиме;
RxD – принимаемые данные, вход;
RxCo — сигнал синхронизации принимаемых данных, выход, работа в ведущем режиме;
RxCi — сигнал синхронизации принимаемых данных, вход, работа в ведомом режиме.

Другие подробности в отношении этого интерфейса читайте в ГОСТ 26886-86.

Данные про интерфейс ОЦК в отношении оборудования использующего для передачи данных этот тип интерфейса читайте в «ГОСТ 28675-90. Устройства преобразования сигналов аппаратуры передачи данных для работы по основному цифровому каналу со скоростью 64 кбит/с. Типы и основные параметры».

 

Источник: www.1gptt.ru

  • Под осмолярностью понимают количество частиц в 1 кг воды (моляльность раствора — это число молей в 1 л воды). Осмотическая активность (молярность) является важной характеристикой водного пространства. Осмолярность определяет обмен жидкости между сосудом и тканью, поэтому ее изменения метут сущ…

    Физиология беременности

  • Ацидозом называется такое нарушение кислотно-основной системы, при котором в крови появляется относительный или абсолютный избыток кислот. Алкалоз — характеризуется абсолютным или относительным увеличением оснований в крови. Компенсированный ацидоз и алкалоз — это такое состояние, когда изменя…

    Физиология беременности

  • В настоящее время эти данные имеют больше академический интерес, но существующие компьютерные спирографы в считанные секунды способны выдать о них информацию, которая в значительной степени объективизирует состояние больного.

    Физиология беременности

  • Наиболее распространенный способ контроля за гемодинамикой — это аускультативный метод Рива-Роччи с использованием звуков Короткова, однако он требует для исключения ошибок выполнения ряда условий. Так, измерять АД у беременных следует в положении на левом боку при расположении манжеты на лево…

    Физиология беременности

  • Согласно современным представлениям единая система мать—плацента—плод, возникающая и развивающаяся в течение беременности, является функциональной системой. По теории П. К. Анохина функциональной системой считают динамическую организацию структур и процессов организма, которая вовлекает отдель…

    Физиология беременности

  • Белки плазмы определяют коллоидно-осмотическое давление плазмы. Совместно с гидростатическим давлением белки плазмы обеспечивают транскапиллярный обмен. Обычно определение белка осуществляют рефрактометрическим методом и с помощью биуретовой реакции.

    Физиология беременности

  • В настоящее время врачами-интенсивистами используется определенный набор тестов, позволяющий в зависимости от оснащенности отделения реанимации дать клиническую и физиологическую оценку состояния важнейшей функциональной системы дыхания.

    Физиология беременности

Источник: medbe.ru

Оценка тяжести состояния пациента при кровотечениях традиционно и, вполне оправданно с патофизиологических позиций, связывается с определением степени кровопотери. Именно острая, подчас – массивная, кровопотеря выделяет патологические процессы, осложненную геморрагией, из череды нозологических форм острой абдоминальной хирургической патологии, требуя проведения максимально быстрых лечебных мероприятий, направленных на спасение жизни больного. Cтепень нарушений гомеостаза, вызванных геморрагией, и адекватность их коррекции определяет принципиальную возможность, сроки и характер неотложного оперативного вмешательства. Диагностика степени кровопотери и определение индивидуальной стратегии заместительной терапии должны решаться хирургами совместно с врачами-реаниматологам, поскольку именно тяжесть постгеморрагического состояния организма является главным фактором, определяющим все дальнейшие лечебно-диагностические мероприятия. Выбор рациональной тактики лечения является прерогативной хирургов с учетом того, что тяжесть кровопотери служит важнейшим прогностическим признаком возникновения летальных исходов.

Так, летальность среди больных, поступивших в состоянии геморрагического шока в стационар с клинической картиной гастродуоденального кровотечения колеблется от 17, 1 до 28, 5% (Schiller et al. , 1970; C. Sugawa et al. , 1990). Кроме того определение тяжести кровотечения имеет важное прогностическое значение в возникновении рецидива гастродуоденального кровотечения: На Согласительной конференции Института Здоровья США (1989) единодушно признано, что ведущим фактором в возникновении рецидива язвенного гастродуоденального кровотечения является именно величина кровопотери до поступления, по мнению X. Mueller et al. (1994) шок является наиболее информативным признаком в прогнозе рецидива кровотечения и превосходит эндоскопические критерии.

В настоящее время известно более 70 классификаций степени тяжести кровопотери, что само по себе свидетельствует об отсутствии единой концепции в столь актуальном вопросе. На протяжении десятилетий менялись приоритеты в отношении маркеров тяжести кровопотери, что во многом свидетельствует об эволюции взглядов на патогенез постгеморрагических нарушений гомеостаза. Все подходы к оценке тяжести постгеморрагических расстройств, лежащие в основе классификаций тяжести острой кровопотери разделяют на четыре группы: 1) оценка объема циркулирующей крови (ОЦК) и его дефицита по гематологическим параметрам или прямыми методами, 2) инвазивный мониторинг центральной гемодинамики, 3) оценка транспорта кислорода, 4) клиническая оценка тяжести кровопотери.

Оценка объема циркулирующей крови (ОЦК) и его дефицита по гематологическим параметрам или прямыми методами используются для количественной оценки гиповолемии и качества ее коррекции. Многим авторам представлялось особенно важным дифференцированное определение дефицита циркулирующей плазмы и дефицита циркулирующих эритроцитов. При этом на основании дефицита объема циркулирующих эритроцитов (т. н. «истинная анемия») проводилось точное замещение недостающего объема эритроцитов гемотрансфузиями.

А. И. Горбашко (1974, 1982) использовал определение дефицита ОЦК по данным дефицита глобулярного объёма (ГО), выявляемого полиглюкиновым методом, что позволило выделить 3 степени кровопотери:

I степень (легкая) — при дефиците ГО до 20%,

II степень (средняя) – при дефиците ГО от 20 до 30%,

III степень (тяжелая) – при дефиците ГО 30% и более.

Определение глобулярного объёма в свою очередь проводилось по формуле:

ГО = (ОЦП – Ht) / (100-Ht), ОЦП=М х 100/С ,

где М — количество сухого полиглюкина в мг (в 40 мл 6% раствора полиглюкина — 2400 мг сухого вещества), С – концентрация полиглюкина в плазме в мг%, ОЦП — объем циркулирующей плазмы.

П. Г. Брюсов (1997) предлагает свой метод расчета степени кровопотери по дефициту глобулярного объёма в виде формулы:

Vкп=ОЦКд х (ГОд-ГОф) / Год ,

где Vкп – объем кровопотери, ОЦКд – должный ОЦК, Год – глобулярный объем должный, ГОф – глобулярный объем фактический.

Исследование гематокритного числа в динамике позволяет судить о степени постгеморрагической аутогемодилюции, адекватности проведения инфузионной и трансфузионной терапии. Считается, что потеря каждых 500 мл крови сопровождается снижением гематокрита на 5 — 6%, равно как переливание крови пропорционально повышает этот показатель. В качестве одного из быстрых и достоверных методов определения объёма кровопотери на основании показателей гематокрита может быть использован метод Мура (1956):

Объем кровопотери = ОЦКд х ( (Htд – Htф) / Htд,

где Htд — должный гематокрит, Htф-гематокрит фактический.

Тем не менее, абсолютное значение кровопотери и дефицита ОЦК при остром гастродуоденальном кровотечении выявить не удается. Это связано с несколькими факторами. Во-первых, крайне затруднительно установить исходный показатель ОЦК. Формулы теоретического расчета ОЦК по номограммам (Lorenz, Nadler, Allen, Hooper) дают лишь приблизительные значения, не учитывая конституциональных особенностей данного индивида, степени исходной гиповолемии, возрастных изменений ОЦК (у стариков его значение может варьировать в пределах 10-20% от должного). Во-вторых, перераспределение крови с секвестрацией ее на периферии и параллельно развивающаяся гидремическая реакция, а также начатая на догоспитальном этапе и продолжающаяся в стационаре инфузионная терапия делают ОЦК у каждого конкретного больного величиной весьма вариабельной.

Широко известны (но не широко применяемы в клинике) прямые методы определения ОЦК, основанные на принципах: 1) плазменных индикаторов – красителей, альбумина I131, полиглюкина (Gregersen, 1938; Е. Д. Черникова, 1967; В. Н. Липатов, 1969) ; 2) глобулярных индикаторов – эритроцитов, меченых Cr51, Fe59 и другими изотопами (Н. Н. Чернышева, 1962; А. Г. Караванов, 1969) ; 3) плазменного и глобулярного индикаторов одновременно (Н. А. Яицкий, 2002). Теоретически рассчитаны должные показатели ОЦК, объёма циркулирующей плазмы и эритроцитов, созданы номограммы для определения волемии по гематокриту и массе тела (Жизневский Я. А. , 1994). Используемые лабораторные методы определения величины ОЦК или даже более точный метод интегральной реографии, отражают величину ОЦК лишь в данный момент времени, тогда как достоверно установить истинную величину и, соответственно, объем кровопотери не представляется возможным. Поэтому методы оценки ОЦК и его дефицита в абсолютных значениях в настоящее время представляют интерес скорее для экспериментальной, нежели для клинической медицины.

Инвазивный мониторинг центральной гемодинамики. Простейшим методом инвазивной оценки степени гиповолемии является измерение величины центрального венозного давления (ЦВД). ЦВД отражает взаимодействие между венозным возвратом и насосной функцией правого желудочка. Указывая на адекватность наполнения полостей правого сердца, ЦВД косвенно отражает волемию организма. Следует принимать во внимание то, что на величину ЦВД оказывают влияние не только ОЦК, но и венозный тонус, контрактильность желудочков, функция предсердно-желудочковых клапанов, объем проводимой инфузии. Поэтому, строго говоря, показатель ЦВД не равнозначен показателю венозного возврата, но в большинстве случаев коррелирует с ним.

Тем не менее, по величине ЦВД можно получить ориентировочное представление о кровопотере: при уменьшении ОЦК на 10% ЦВД (в норме 2 – 12 мм водн. ст. ) может не измениться; кровопотеря более 20% ОЦК сопровождается снижением ЦВД на 7 мм водн. ст. Для выявления скрытой гиповолемии при нормальном ЦВД используют измерение при вертикальном положении пациента; снижение ЦВД на 4 – 6 мм водн. ст. указывает на факт гиповолемии.

Показателем, с большей степенью объективности отражающем преднагрузку левого желудочка, а значит, и венозный возврат, является давление заклинивания в легочных капиллярах (ДЗЛК), в норме составляющее 10+4 мм рт. ст. Во многих современных публикация ДЗЛК считается отражением волемии и является обязательной составляющей исследования называемого гемодинамического профиля. Измерение ДЗЛК оказывается незаменимым при необходимости высокой скорости заместительной инфузионной терапии на фоне левожелудочковой недостаточности (например, при кровопотере у стариков). Измерение ДЗЛК проводится прямым методом посредством установки в ветвь легочной артерии через центральный венозный доступ и полости правого сердца катетера Swan-Ganz и соединением его с регистрирующей аппаратурой. Катетер Swan-Ganz может быть использован для измерения сердечного выброса (СВ) по методу болюсной термодилюции. Некоторые современные мониторы (Baxter Vigilance) выполняют автоматическое непрерывное измерение сердечного выброса. Ряд катетеров снабжен оксиметрами, что позволяет осуществлять постоянный мониторинг кислородной сатурации смешанной венозной крови. Наряду с этим, катетеризация легочной артерии позволяет рассчитать индексы, отражающие работу миокарда, транспорт и потребление кислорода (Malbrain M. et al. , 2005).

Идея комплексной оценки гемодинамического профиля пациента и конечной цели гемодинамики – кислородного транспорта – нашла свое отражение в так называемом структурном подходе к проблеме шока. Предлагаемый подход основан на анализе показателей, представленных в виде двух групп: «давление / кровоток» — ДЗЛК, сердечный выброс (СВ), общее периферическое сосудистое сопротивление (ОПСС) и «транспорт кислорода» — DO2 (доставка кислорода), VO2 (потребление кислорода), концентрация лактата в сыворотке крови. Показатели первой группы описывают ведущие нарушения центральной гемодинамики в данный момент времени в виде так называемых малых гемодинамических профилей. В случае гиповолемического шока определяющим в нарушении центральной гемодинамики будет снижение наполнения желудочков (низкое ДЗЛК), приводящее к уменьшению СВ, что в свою очередь вызывает вазоконстрикцию и увеличение ОПСС (см. табл. ).

Таблица. Динамика основных показателей инвазивного мониторинга гемодинамики при критических состояниях.

Нормальное значение

Острая массивная кровопотеря

Кардиогенный шок

Септический, травматический, панкреатогенный шок

Давление заклинивание в легочных капиллярах (ДЗЛК)

15 / 9 мм рт. ст.

Низкое

Высокое

Низкое

Сердечный выброс (СВ)

5 – 5, 5 л/мин

Низкий

Низкий

Высокий

Общее периферическое сосудистое сопротивление (ОПСС)

1 200 — 1 600 дин. с. см-5

Высокое

Высокое

Низкое

Структурный подход в оценке гемодинамики является не только высоко информативным, но и позволяет контролируемо корригировать обусловленные кровопотерей волемические расстройства. Степень и компенсированность гиповолемии в данном случае показывают ДЗЛК и СВ, периферическую вазоконстрикцию – ОПСС.

Оценка транспорта кислорода. Современная концепция геморрагического шока, рассматривающая его как нарушение системного транспорта кислорода, потребовала разработки новых критериев динамической оценки статуса пациента. Традиционный анализ газов крови позволяет максимально быстро получать информацию о рО2, рСО2, рН крови. Более совершенные методы, например программный пакет «Deep picture», делает возможным автоматическое определение оксигенации крови в легких, транспорт кислорода на периферию, его потребление в тканях по уровню Р50, характеризующему положение кривой диссоциации HbO2 и сродство гемоглобина данной крови к кислороду. По последнему показателю рассчитывается способность кислородного обеспечения тканей при оптимальном содержании гемоглобина. Однако сдвиг кривой диссоциации оксигемоглобина определяется помимо учитываемых рН крови, раСО2, 2, 3-ДГФ еще и качественными особенностями самого гемоглобина (доля метгемоглобина, глюкозированного гемоглобина), а также циркулирующими среднемолекулярными пептидами, продуктами ПОЛ. Влияние компенсаторного сдвига кривой диссоциации оксигемоглобина может быть настолько велико, что возможна компенсация гипоксемии при раО2 40 – 50 торр и ниже. Постоянное неинвазивное измерение уровня периферического насыщения гемоглобина кислородом SaO2 как критерия кислородного транспорта стало возможным с практически повсеместным внедрением в клинику пульсоксиметрии. Тем не менее, в случае геморрагического шока показания пульсоксиметра могут быть весьма недостоверными вследствие снижения пульсового объема крови в периферических тканях на месте установки датчика в результате вазоконстрикции и артерио-венозного шунтирования. Кроме того, показания будут практически одинаковыми при раО2 80 и 200 торр по причине нелинейности кривой диссоциации HbO2. Полной информации об изменениях перфузии и органного транспорта кислорода не дает также изолированное применение метода транскутанного определения рО2, поскольку на величину последнего оказывают влияние не столько изменения гемоциркуляции, сколько адекватность внешнего дыхания.

Недостаточная объективность оценки транспорта кислорода на основании изолированного анализа одного или нескольких показателей, а также рассмотрение аэробного метаболизма как конечной цели многоуровневой саморегулирующейся системы поддержания гомеостаза привели к разработке и использованию интегральных величин, включающих параметры гемоциркуляции, количества и качества кислородоносителя, тканевого метаболизма. Такими интегральными величинами являются:

1) доставка кислорода, отражающая скорость транспорта О2 артериальной кровью (DO2 = x СаО2 = x (1, 34 х Hb x SaO2 ) x 10) , норма — 520—720 мл/ (мин-м),

2) потребление кислорода, представляющее собой кислородное обеспечение тканевого метаболизма (VO2 = СИ x (CaO2 – CvO2) = x (1, 34 x Hb) x (SaO2 – SvO2) , норма110 до 160 мл/ (мин-м),

3) коэффициент утилизации кислорода, отражающий долю кислорода, поглощенного тканями из капиллярного русла (КУО2 = VO2 / DO2), норма – 22 – 32%,

где DO2 – доставка кислорода, VO2 – потребление кислорода, КУO2 – коэффициент утилизации кислорода, СИ – сердечный индекс (сердечный выброс/площадь поверхности тела), Hb – гемоглобин крови, SaO2 – сатурация артериальной крови, SvO2 – сатурация венозной крови, СаО2 – концентрация кислорода в артериальной крови, CvO2 – концентрация кислорода венозной крови.

Параметры «транспорта кислорода» оценивают эффективность центральной гемодинамики в отношении оксигенации тканей. Именно показатели DO2 и VO2 определяют эффективность механизмов доставки кислорода тканям по величине СВ, содержания кислорода в артериальной и смешанной венозной крови. Дополнительным маркером адекватности оксигенации тканей или их ишемии с преобладанием анаэробного метаболизма служит повышение концентрации лактата сыворотки крови. На основании показателей транспорта кислорода можно определить, что является предпочтительным для ликвидации тканевой ишемии у больного в данный момент времени: повышение сердечного выброса или (и) возмещение недостатка кислородоносителя. Однако как бы ни была заманчива идея (кстати, уже воплощенная в жизнь) динамической оценки кровообращения структурным подходом по гемодинамическим формулам и транспорту кислорода, в силу печально известных объективных и субъективных факторов ее широкого применения в отечественной клинической практике ожидать приходиться не скоро.

Источник: volynka.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.