Белки острой фазы биохимия


Воспалительный процесс – защитная реакция организма на повреждение тканей различными факторами: травмы, операции, радиация, аллергия, вирусы, бактерии, жив паразиты, иммун комплексы, грибы, злокач опухоли. Факторы: *физические (ожоги) *биологические *химические (щелочи, кислоты)

Воспалительная реакция направлена на метаболич перестройку, локализацию очага воспаления, на локализацию процесса и восстановление функции пораженного органа.

Может быть острым и хроническим. Вялое воспаление – неполноценность эффекторов воспаления: иммунодефициты, старость, авитаминоз, стресс, сах диабет. Хроническое воспаление -–основа многих системных зб.

Воспаление может быть локальным (местным) и характеризоваться общей реакцией организма. Лакальная реакция обусловлена выбросом медиаторов воспаления: гистамин, серотонин, простогландины и др цитокины.


Выброс лизосомальных ферментов из гранул нейтрофилов.

Моноциты в очаге воспаления ——- цитокины – ФНО, интерлейкины. Цитокины продуцируются практич всеми клетками организма и обладают разными свойствами.

Увел проницаемость стенок сосудов ——— отек тканей, агрегация тромбоцитов и эритроцитов, образование фибринового сгустка в зоне повреждения. Адгезия нейтрофилов, тучных клеток и т д . А затем дефект замещается пролиферацией фибробластов.

Медиаторы воспаления классифицируют (по происхождению): 1.Гуморальные.2.Клеточные. 3.Вновь образующиеся.

Медиаторы ранней фазы – гистамин, серотонин, кинин, калликреин, а также вновь образ-ся производные арахидоновой кислоты – эльказаиноиды: простагландин, тромбоксаин, лейкотриены, ПОЛ (кислородпроизводные) – супероксидный анион.

— цитокины (ИЛ-1, ИЛ-2, ФНО-альфа). ФНО может вырабатываться в большой концентрации и вызывать шок и ДВС. ФНО и ИЛ — основная роль в патогенезе эндотоксикоза (при раковой кахексии, сепсисе).

Медиаторы поздней фазы – белки системы комплемента – С3, С4, С5.

Локальный эффект медиаторов проявляется альтерацией, экссудацией и пролиферацией.

1) При альтерации – повреждение и самоповреждение тканей.

2) Экссудация – ишемия, увел проницаемости кров сосудов, гиперемия, стаз, хемотаксис и фагоцитоз.


3) Пролиферация – активир фибробласты, репарация.

При персистенции возбудителя в тканях разв продолжение альтерации и экссудации на фоне пролиферации. Сочетание этих процессов и определяет специфику воспаления.

Хроническое воспаление присоединяется и тогда когда процесс вызван такой иммунной системы на аутоантиген (СКВ), воспалит процесс не останавливается. В развитии воспалительной реакции участвуют все системы организма – нервная, иммунная, ССС, эндокринная.

Перестройка метаболизма зависит и от активации нейроэндокринной системы.

Системный ответ организма на воспаление: *изменение общего самочувствия *боль, лихорадка *аппетит падает *гол боль, слабость *лейкоцитоз, СОЭ ускорено *увеличение в плазме белков острой фазы воспаления.

Основное количество БОФ при электрофорезе передвигается с альфа-, альфа-2 глобулинами и немного с бета-глобулинами. Это и обуславливает повышение альфа-глобулиновой фракции при воспалении.

К БОФ относится более 30 различных плазменных белков: СРБ, гаптоглобин, кислый альфа-гликопротеин, альфа- антипротеазный ингибитор (альфа-1- антитрипсин), фибриноген, амилоидный белок А и Р, церулоплазмин, ферритин, альфа-2- макроглобулин, плазминоген, ряд факторов системы гемостаза – 7, проконвертин,8, 9, 11, протеины S и С, антитромбин 3, интерферон.

С3, С4, С5 – белки системы комплемента. Глобулины ОФ – обладают антимикробными, антиоксидантными, бактерицидными или бактериостатическими, иммуномодулирующими свойствами.По степени участия этих белков в острой фазе воспаления (по степени повышения):


1. Главные реактанты ОФВ – концентрация их увелич в течении 6-12 часов после повреждения тканей, повышается в 10-100 раз и более (СРБ, амилоидный белок А)

2. Белки с умеренным увеличением концентрации в 2-5 раз в течении 24 часов (орозомукоид, альфа-1-антипротеазный ингибитор, гаптоглобин, фибриноген, ферритин)

3. Незначительное увеличение острофазных белков в течении 48 часов на 20-60% (церулоплазмин, белки СК – С3, С4, С5)

4. Нейтральные реактанты – их концентрация не увелич, альфа-2 макроглобулин, иммуноглобулины G, A, M.

5. Негативные реактанты – их уровень понижаетс в ОФВ в течении 12-48-72 часов (альбумин, преальбумин, трансферрин)

СРБ – наиболее ранний критерий в ОФВ, он впервые описан в 1930 году у больных с крупозной пневмонией, свое название получил за способность вступать в реакцию с С-полисахаридами пневмококков, образуя осадок. По хим структуре СРБ состоит из 5 субъединиц, каждая с молекулярной массой 21000 Д. СРБ при электрофорезе передвигается с бета-глобулиновой фракцией, имеет параллелизм с увеличением альфа-2.

Биосинтез СРБ в гепатоцитах, частично в Т-лимф. Период полужизни 12-24 часа. Регуляция биосинтеза ИЛ-1 и ИЛ-6. Основное значение СРБ – узнавание некоторых микробных агентов и токсинов, образовавшихся при распаде клеток, СРБ связывает эти вещества и удаляет из кровотока. СРБ может связаться не только с полисахаридами бактерий, но и с фосфолипидами, гликолипидами – детоксикационная функция СРБ. Является также иммуномодулятором, способствует фагоцитозу (стимулир нейтрофилы, моноциты, макрофаги) В норме концентрация СРБ от 1-8 (ин. 10) мг/л, качественная реакция такое количество СРБ не обнаруживает.


Уровень СРБ в сыворотке и др жидкостях увелич при остром воспалении и не зависит от наличия гемолиза. Увел СРБ – неспециф реакция (увел при любом воспалении), его увелич в доклинической стадии (через 5-6 часов воспалит реакции, с макс подъемом на 2-5 сутки, затем исчезает с затуханием воспалительного процесса)

Определение СРБ – важное значение как показателя воспаления – инфекции, опухоли, ожоги, осложнения после операции, родов, травм, индикатор ОИМ, индикатор реакции отторжения трансплантантов.

СРБ – маркер оценки проводимой антибактериальной терапии. Индикатор осложнения атеросклерот процессов (можно прогнозировать развпитие ОИМ) По уровню СРБ – о тяжести воспалительного процесса.

СРБ до 50 мг/л – при локальных бактер инф, ОИМ, вирусных инф, при хр инф(туберкулез, сифилис, дерматомиозит, ревматоидный артрит, язвен колит) СРБ более 50 мг/л – тяжелые и обшир бактер инф (сепсис, ОПН, острая пневмония, активная фаза ревматизма, при системных васкулитах, тромбозе вен, некрозе опухолей, обширные травмы. СРБ может связ с ат – будет заниженная реакция СРБ. Количественное определение СРБ – иммунотурбидиметрич анализ, нефелометрия, методом иммунодиффузии на готовых планшетках.


Основные методы, которые следует использовать для определения белков ОФ, следующие.

1. Инструментальные: нефелометрия, иммунотурбидиметрия.
2. Методы, не требующие оборудования: радиальная иммунодиффузия.
3. Латекс-агглютинация

Количественное определение СРБ – иммунотурбидиметрич анализ (базируется на способности СРБ образовывать иммунные комплексы с содержащимися в специфической сыв-ке антителами к нему, что приводит к увеличению абсорбции раствора), нефелометрия, методом иммунодиффузии на готовых планшетках.

 

Орозомукоид (кислый альфа-1-гликопротеин). Это основной представитель группы серомукоидов. Имеет уникальные свойства, синтезируется в печени и некоторыми опухолевыми клетками. В норме его конц 0,4-1,2 г/л, гемолиз не влияет на его определение. В пуповинной крови конц этого белка снижена, увеличивается к 30 дню жизни.

Основная функция – связывание прогестерона, лекарственных препаратов, лекарственный ингибитор агрегации тромбоцитов, подавляет иммунореактивность. По сравнению с СРБ при воспалениях повышается медленно (в течении 2-х суток), увелич при сепсисе, ожогах, остр панкреатитах, туберкулезе, коллагенозах, ОПН, абсцессах.

Уровень серомукоида снижается при хр зб печени, при нефрот синдроме, энтеропатиях, у беременных, при приеме эстрогенов.


Гаптоглобин – гликопротеин, который составляет 25% альфа-2-глобулиновой фракции. Является транспортным белком, это типичный представитель БОФ. Основная функция – связывание в плазме свободного гемоглобина, образуется гемоглобин-гаптоглобиновый комплекс, обладающий большой молекулярной массой, этот комплекс не проходит через почечный фильтр (как свободный Нв) и не допускается потеря железа через почки. В норме циркулирующий гаптоглобин способен связать до 3 г Нв, однако при сильном гемолизе концентрации гаптоглобина недостаточно – появляется гемоглобинурия. Концентрации гаптоглобина при этом снижается до 0. Нормальное значение – 0,8 – 1,2 г/л (в зависимости от метода). В течении трех месяцев после рождения концентрация его очень низкая и восстанавливается до 16 лет Гаптоглобин увелич при всех реакциях острой фазы — активная форма туберкулеза, пневмонии, коллагенозах, ЖК болезни, лимфогранулематозе, остеомиелите, ОИМ, сепсисе, гнойных процессах. Маркер болезни Ходжкина. Повышение уровня гаптоглобина сопров увеличением альфа-2-глобулиновой фракции.

При ОИМ – гаптоглобин увелич в первые сутки с макс подъемом на 8-9-е и позже на 7-8-ой неделе, снижаетсся значительно позже, чем другие тесты острой фазы.

Низкие концентрации гаптоглобина – циррозы печени, хр гепатиты, анемии (гемолитические и гемобласт), нефр синдром, инф мононуклеоз, токсоплазмоз. Гаптоглобин – чувствит показатель гемолиза при гемотрансфузиях, при этом снижается его конц. При истощении гаптоглобина при ДВС в плазме обн метгемальбумин (это гем, связ с альбумином). Этот белок метгемальбумин повышается при пароксизме гемоглобинурии, ГБН, гемолит анемиях другого происхождения, остром геморрагическом панкреатите.


Альфа-1-антитрипсин (антипротеазный ингибитор), гликопротеин, составляет основное количество альфа-1-глобулиновой фракции. У здоровых 1,4-3,2 г/л, это ингибитор сериновых протеаз – трипсина, химотрипсина, калликреина, урокиназы. Так как у него низкая молекулярная масса 55 кД, этот белок легко покидает сосудистое русло—— в интерстиции и взаимодействует с протеиназами тканей, связывает их. Транспортная роль – связывает элластазу и транспортирует ее на альфа-2-макроглобулин. Важную роль в дыхательной системе – поддерживает структуру альвеол, при его снижении теряется элластичность легочной ткани, она разрушается элластазой —- энфизема —— дыхательная недостаточность (у курильщиков). Как БОФ при воспалениях повышается в 2-3 раза и обеспечивает ограничение зоны деструкции. Повышается при терм ожогах, различных гнойно-воспал зб, остр панкреатитах, перитонитах, злок опухолях, метастазировании, недостаточная концентрация его связана с наследственностью, это способствует зб легких и печени. У детей при его дефиците – холестаз, цирроз. Сложности в его определении связаны с дефицитным субстратом, широко не определяется.


Фибриноген– гликопротеид с молекулярной массой 340 кД, синтезируется в гепатоцитах, в норме 2-4 г/л, в сыворотке крови отсутствует, так как под действием тромбина превращается в фибрин и выпадает в осадок. Влияет на вязкость крови, ее способность свертываться, на СОЭ. Повышается в 1,5-2-2,5 раза при сепсисе, злок опухолях, ОГН,ОПН, ОИМ, актив ревм артрите, ожогах, пневмониях, миеломах, туберкулезе, в послеоперац период, после травм, у беременных увел в 2 раза. Увеличение фибриногена рассматривается как независимый фактор риска СС зб.

Снижение конц фибриногена- при тяжелой печеночной недостаточности, отравлении гепатотропными ядами (грибами), при лечении антикоагулянтами, кровопотере при ДВС-с-ме в стадии гипокоагуляции, при лечении активаторами фибринолиза, при опухолях КМ, лейкозах, может быть наслед дефицит фибриногена. Метод Рутберг применяется – 0,5-0,7 г/л – уже кровотечение.

Церулоплазмин. Медьсвязанный белок, 134000 Д, синтезируется в печени, передвигается с альфа-2-глобулиновой фракцией. Электрофоретически 4 фракции его с различной подвижностью. Играет важную роль в обмене меди, это буферная система для связывания свободных ионов меди (95% всех ионов меди нах в церулоплазмине), церулоплазмин – оксидаза, участвует в окислении серотонина, катехоламина, витамина С, диоксифениланина (ДОФП). Церулоплазмин – антиоксидант, связывает супероксидные анион-радикалы и таким образом ингибирует ПОЛ. Выполняет ряд функций в кроветворной системе – окисляет железо (2+) в железо (3+), в норме конц его 0,2-0,3 г/л. Как БОФ увелич в 1,5-2 раза у 60% больных с острым воспалением – ОИМ, туб, злок опухолях (меланома, ЛГМ), СКВ, РА, инф мононуклеоз, шизофрения, у бер-х ув в 2-3 раза, связано со стим влиянием эстрогена на синтез церулоплазмина. У новорожденных ц крайне низкий до 6 мес, а затем увеличивается.


Снижается ц при болезни Вильсона-Коновалова (дегенерация печени и спинного мозга), одновременное сниж конц меди в сыворотке, в суточной моче конц меди – увелич. Ранняя диагностика важна – тк применение хелатных соединений (связыв медь) нормализирует состояние больного. Снижение ц при нарушении всасывания в тонком кишечнике ( энтериты, с-м мальабсорбции – общее наруш всасывания), тяж поражении печени, недостатке в пище белка.

Альфа-1-антитрипсин – нейтрализация протеолитических ферментов: трипсина и плазмина, а так же протеаз, освобождающихся из лейкоцитов и чужеродных клеток. Синтезируется гепатоцитами. Физиологическая концентрация 2-4 г/л. Повышение – воспалительные процессы. Понижение – обструктивные болезни легких, особенно эмфизема

Ферритин– основное депао железа в организме – 45000 Д, общее кол-во железа в ферритине 800 мг у муж, 200 мг у жен.

Нормы в широких пределах: Ферритин муж- 20-200 мкг/л, Жен – 12-150 мкг/л У детей новорож – 25-200 мкг/л 1 мес- 160-200 мкг/л 5 мес – 50-200 мкг/л 15 лет – 7-150 мкг/л


ферритин отражает запасы железа в крови. При воспалительных процессах в результате перераспределения железа в организме кол ферритина увелич – это легочные зб, урогенитальные, ожоги, РА, СКВ, остеомиелит ОМЛ лейкоз, ЛГМ, талласемия, алкогольный гепатит, сидеробластная анемия. Увел ферритин при избытке железа в организме – гемохроматоз, передозировка при лечении препаратами железа, гемотрансфузиях, голодании, истощении.Для контроля дефицита железа определение ферритина наиболее ценно, увеличение ферритина при острых воспал процессах может маскировать истинное значение его, рекомендуется параллельно опред СРБ.

Ферритин – опухолевый маркер при раке молочной железы, матки.

Увеличение ферритина в данном случае всяз с увел синтеза раково-эмбрионального ферритина. Снижение ферритина при дефиците железа в организме – ЖДА, острые и хр кровопотери, анемии при гемодиализе, у берем, у вегетарианцев.

Для диагностики скрытого деф железа использ определение ферритина, трансферрина, железа, СРБ, альфа-1- кислого гликопротеина, гемограмму.

С3, С4, С5 – белки системы комплемента, относятся к БОФ, при воспалении их активация – лизис чужеродных клеток, однако нередко их содержание может снижаться, т к вместе с другими белками расходуется комплемент на опсонизацию и лизис клеток (РА, ревматизм, ССЗ), при ОГН, СКВ, энтеропатиях, трансплантациях – вторичная недостаточность белков СК, таким образом воспалительная реакция вызывает значительное увеличение целого класса белков-гликопротеинов, являясь ингибиторами и дезактиваторами тех веществ, которые высвобождаются при повреждении.

Уровень ОФБ увел в фазу экссудации и удерживается 10-15 суток, затем снижается.

Повышенное содержание гамма-глобулина обозначает переход экссудативного процесса в пролиферативный, нормализация гамма-глобулина через 5-6 мес после о восп – критерий выздоровления.

Продолжительная гипергаммаглобулинемия – хронизация процесса и возможность присоединения аутоагрессии. Для наблюдения за течением воспалительного процесса – необходимо несколько тестов, так как возможен дисгармоничный ответ на воспаление (когда вовлекается печень)

Другие белки плазмы крови.

Трансферрин (сидероферрин) – гликопротеин, основной транспортный белок железа в организме, при электрофорезе передвигается с бета-глобулиновой фракцией, мол масса =90 кД, выделено 19 его изоформ. В трансферрине связанная (токсичная) форма железа (2+) переходит в нетоксичную (3+), он связывает также цинк, кобальт, кальций, медь, основное место синтеза печень.

В норме = 2-4 г/л трансферрина (отражает ОЖСС) В норме 1/3 трансферрина насыщена железом, а 2/3 свободны.

Снижена конц трансферрина при восп зб, хрон инф, голодании, гемохроматозе, состоянии, связанном с потерей белка (нефрот синдром, энтеропатии, злок опухоли) неэффективность эритропоэза, наследственный дефицит.

Повыш конц при беременности, приеме эстрогенов, скрытом дефиците железа, терапии кортикостероидами.

Интерфероны – система белков, обладающих широким спектром п/вирусной, п/опухолевой активности, иммуномодуляторы и радиопротекторы.

Альфа-, бета-, гамма- интерфероны.

Функция: индукция и продукция различных белков, которые участвуют в процессах антивирусной защиты. Взаимодействие интерферонов происходит на плазматической мембране —— внутрь клетки интерферон проникает —— повыш синтез иммуноглобулинов, увел фагоцитарная активность макрофагов, гамма-инф ингибирует рост опухолей, бактерии, способствует диф-ке Т-лимфоцитов. Антивирусное действие осуществляется через систему клеточного синтеза нуклеиновых кислот.

Подавляют размножение и-РНК вируса, способность синтезировать инф у людей неодинакова: 12-35 % особенно дети до 2 лет, после 60 лет – снижается способность к синтезу инф, в меньшей степени инф синтезируется в холодное время года.

К числу «индикаторных» Б м.б. отнесен и обнаруживаемый в плазме (сыв-ке) крови больных ИМ тропонин Т. Полосатая мускулатура в качестве главных компонентов содержит 2 типа миофиламентов: толстые филаменты образованы миозином, а тонкие – актином, тропомиозином и тропонином. Тропонин – протеиновый комплекс, состоящий из 3 субъединиц, различающихся по структуре и функции: 1) тропонин Т. Молекулярная масса около 39 000 Д. включен в тропониновый комплекс посредством тропомиозиновых молекул; 2) тропонин I. Молекулярная масса 26 500 Д. ингибитор протеина, АТФазы; 3) тропонин С. Молекулярная масса 18 000 Д. имеет 4 места связывания с Са. Это кардиоспецифический маркер, обнаруживаемый в плазме крови в достаточно большом количестве (до 10 мкг/л и более) уже спустя 2,5 ч после развития ИМ, его содержание оказывается повышенным на протяжении до 12 сут после появления болевого приступа, ознаменовавшего начало повреждения миокарда. Максимальное увеличение содержания тропонина Т в крови отмечается по прошествии 12-14 ч. Показано, что тропонин Т является клинически значимым и высокоспецифичным лабораторным биохимическим маркером ИМ в острой и подострой его фазе. Положительные результаты качественного теста отмечаются у 100% больных ИМ с зубцом Q до 48 ч от начала болевого синдрома. Диагностически значимый уровень определяется в период до 14 сут от начала заболевания, когда общеизвестные энзимы маркеры уже не обнаруживают специфических изменений. Для определения содержания в крови тропонина Т используется Иммуноферментный тест. Для выполнения исследований используют пробирки, на внутренне поверхности ктр нанесен стрептавидин. Тропонин Т одной частью своей молекулы соединяется с антителом, связанным с биотином (стрептавидин-авидиновый тест), другой частью – с антителом, коньюгированным с ферментом пероксидазой. При действии пероксидазы на субстрат выделяется окрашенный продукт, ктр фотометрируют на длине волны 405 нм после90-минутной инкубации (при 37оС), — твердофазная технология определения.

Источник: studopedia.info

Определение

Увеличение концентрации сывороточных белков, называемых  реактанты острой фазы, сопровождает воспаление и повреждение тканей.  Во время реакции острой фазы обычные уровни различных белков. Считается, что эти изменения способствуют защите человека и другим адаптивным возможностям. Несмотря на свое название,  реакция  острой фазы сопровождает как острые, так и хронические воспалительные состояния и связана с широким спектром нарушений, включая инфекцию, травму, инфаркт, воспалительные артриты и другие системные аутоиммунные и воспалительные заболевания и различные новообразования. Белки острой фазы определяются как те белки, концентрации сыворотки которых увеличиваются или уменьшаются, по меньшей мере, на 25% во время воспалительных состояний. Такие белки соответственно называют либо положительными, либо отрицательными остро фазовыми реагентами. . Скорость оседания эритроцитов (СОЭ), косвенно   отражает вязкость плазмы и наличие белков острой фазы, особенно фибриногена, а также других влияний, некоторые из которых пока еще не идентифицирован 

Ответ острой фазы имеет решающее значение для способности организма успешно реагировать на травму и инфекцию. Ответ острой фазы обычно длится всего несколько дней, однако, если его не остановить, он может внести вклад в развитие хронических воспалительных состояний, повреждение тканей и развитие заболеваний. Ответ острой фазы, как правило, характеризуется лихорадкой и изменениями сосудистой проницаемости, а также глубокими изменениями в биосинтетическом профиле различных белков острой фазы.

Схема 1Схема 2

Белки острой фазы — это эволюционно консервативное семейство белков, продуцируемых в основном в печени в ответ на травму и инфекции.

У всех млекопитающих синтез белков острой фазы регулируется воспалительными цитокинами, такими как интерлейкин-6 (IL-6), интерлейкин-1 (IL-1) и фактор некроза опухоли (TNF). Например, гаптоглобин (Hp), С-реактивный белок (СРБ), сывороточный амилоид А (SAA), альфа-1 кислый гликопротеин (AGP) и гемопексин регулируются в основном IL-1 или комбинацией IL-1 и IL-6, тогда как фибриноген, альфа-1- антихимотрипсин и альфа-1-антитрипсина регулируются IL-6 .

Концентрация конкретных белков острой фазы в крови изменяется в течение воспалительного процесса, увеличиваясь или уменьшаясь как минимум на 25 процентов. Так, концентрация церулоплазмина может увеличиться на 50 процентов, а СРБ и сывороточного амилоида в 1000 раз.

Схема, график

Изменение с временем концентрации БОФ в плазме крови после повреждения (травмы, ожога, хирургического вмешательства) в процентах от исходного уровня): 

1 — С-реактивный белок, амилоидный А-белок сыворотки; 

2 — а1-антитрипсин, а1-кислый гликопротеин, гаптоглобин, фибриноген; 

3 — С3- и С4-компоненты комплемента, С1-ингибитор, церулоплазмин; 

4 — альбумин, преальбумин, трансферрин, фибронектин, апоА-липопротеин

Роль и функции белков острой фазы

Рост концентрации в плазме белков острой фазы имеет целью помочь иммунной защите, способствуя распознаванию вторгшихся микробов, мобилизации лейкоцитов из циркуляции и повышению скорости артериального кровотока в месте поражения ткани или инфицирования ее. Эти действия способствуют локальному накоплению эффекторных молекул и лейкоцитов в участке воспаления. В сущности, белки острой фазы усиливают местное воспаление и антимикробную защиту. Одновременно, белки острой фазы также предотвращают воспаление в окружающих тканях путем нейтрализации молекул воспаления, индуцировавших воспаление (такие как цитокины, протеазы и оксиданты) и поступающих в кровоток, белки острой фазы предотвращают активацию клеток эндотелия и лейкоцитов в циркуляции.

Особенно важную роль белки острой фазы играют в создании иммунной защиты. О важной роли белков острой фазы свидетельствует их короткий период полужизни, широкие функциональные возможности в воспалении, заживлении, адаптации к болевым раздражителям.

Комплекс функциональных особенностей белков острой фазы позволяют относить их к медиаторам и ингибиторам воспаления.

Так, кпассические компоненты комплемента, многие из которых являются белками острой фазы, играют центральную провоспалительную роль в иммунитете. Активация комплемента приводит к хемотаксису клеток воспаления в очаг локализации инфекции, опсонизации инфекционных агентов, изменению проницаемости сосудов и экссудации белков в место воспаления. Другие белки острой фазы, такие как фибриноген, плазминоген, тканевый активатор плазминогена (ТАП), урокиназы и ингибитора активатора плазминогена-I (PAI-1) играют активную роль в восстановлении и ремоделирования ткани, а также проявляют противовоспалительное действие. Так, например, антиоксиданты, гаптоглобин и гемопексин обеспечивают защиту от реактивного кислорода, а спектр ингибиторов протеиназ осуществляют контроль активности протеолитических ферментов. Белки острой фазы принимают непосредственное участие во врожденном иммунитете против патогенов. Хорошо известно LPS-связывающая активность фибрина в тромбах. Повышение уровня СРБ прогностически неблагоприятный тест при ишемии / реперфузии, поскольку СРБ  активирует систему комплемента. Повышенный уровень сывороточного СРБ, как известно, связан с увеличением  риска  атеросклероза у человека.

Ферритин, еще один белок острой фазы, является одним из основных факторов сохранения железа и часто в лабораторной практике измеряется для оценки статуса железа пациента. Прокальцитонин (РСТ), как недавно обнаружено – маркер  бактериальной  инфекции.

С другой стороны, белки острой фазы могут рассматриваться в качестве предполагаемых лекарственных средств для лечения различных воспалительных заболеваний. Различные экспериментальные исследования показали, как введение конкретных белков острой фазы до или после инициирования ответа острой фазы может переключать провоспалительные пути к противовоспалительным, необходимым для завешения воспаления.

В связи с этим очищенные белки острой фазы используется для лечения эмфиземы легких и других заболеваний у пациентов с наследственным дефицитом альфа1-антитрипсина и показывает анти-воспалительные и иммунномодулирующие эффекты.

Многие белки острой фазы имеют двойственную функцию

Многофункциональна активность отдельных белков острой фазы. Несмотря на разнообразные про- и противовоспалительные свойства, приписываемые отдельным белкам острой фазы, их роль при инфекциях остается полностью неопределенной в отношении функциональных преимуществ при изменении концентрации в плазме. До сих пор существующие данные свидетельствуют, что белки острой фазы действуют на различные клетки, участвующие в ранних и поздних стадиях воспаления и что их эффекты определяются  временем, концентрацией и зависят от конформации.

Многие белки острой фазы имеют двойственную функцию: усиливают воспалительную реакцию в присутствии  патогенна, и  оказывают понижающий  действие на реакции после выведения возбудителя.

Источник: biohimik.net

Понятие "белки острой фазы" объединяет до 30 белков плазмы крови, участвующих в реакции воспалительного ответа организма на повреждение. Белки острой фазы синтезируются в печени, их концентрация существенно изменяется и зависит от стадии, течения заболевания и массивности повреждения.

Синтез белков острой фазы воспаления в печени стимулируют: 1).Интерлейкины — ИЛ-6, 2); ИЛ-1 и сходные с ним по действию (ИЛ-1 а, ИЛ-1Р, факторы некроза опухолей ФНО-ОС и ФНО-Р); 3). Глюкокортикоиды; 4). Факторы роста (инсулин, факторы роста гепатоцитов, фибробластов, тромбоцитов).

Выделяют 5 групп белков острой фазы

1. К «главным» белкам острой фазы у человека относят С-реактивный белок и амилоидный А белок сыворотки крови. Уровень этих белков возрастает при повреждении очень быстро (в первые 6-8 часов) и значительно (в 20-100 раз, в отдельных случаях — в 1000 раз).

2. Белки, концентрация которых при воспалении может увеличиваться в 2-5 раз в течение 24 часов. Это кислый α1-гликопротеид, α1-антитрипсин, фибриноген, гаптоглобин.

3. Белки, концентрация которых при воспалении или не изменяется или повышается незначительно (на 20-60% от исходного). Это церулоплазмин, С3-компонент комплемента.

4. Белки, участвующие в острой фазе воспаления, концентрация которых, как правило, остается в пределах нормы. Это α1-макроглобулин, гемопексин, амилоидный Р белок сыворотки крови, иммуноглобулины.

5. Белки, концентрация которых при воспалении может снижаться на 30-60%. Это альбумин, трансферрин, ЛПВП, преальбумин. Уменьшение концентрации отдельных белков в острой фазе воспаления может быть обусловлено снижением синтеза, увеличением потребления, либо изменением их распределения в организме.

Целый ряд белков острой фазы обладает антипротеазной активностью. Это α1-антитрипсин, антихимотрипсин, α2-макроглобулин. Их важная функция состоит в ингибировании активности эластазоподобных и химотрипсиноподобных протеиназ, поступающих из гранулоцитов в воспалительные экссудаты и вызывающих вторичное повреждение тканей. Снижение уровней ингибиторов протеиназ при септическом шоке или остром панкреатите является плохим прогностическим признаком.

Парапротеинемия – появление в плазме крови нехарактерных белков.

Например, во фракции α-глобулинов может появиться α-фетоглобулин, карциноэмбриональный антиген.

α-Фетоглобулин — один из фетальных антигенов, которые циркулируют в крови примерно у 70% больных с первичной гепатомой. Этот антиген выявляется также у пациентов с раком желудка, предстательной железы и примитивными опухолями яичка. Исследование крови на наличие в ней α-фетопротеина полезно для диагностики гепатом.

Карциноэмбриональный антиген (КЭА) — гликопротеид, опухолевый антиген, характерный в норме для кишечника, печени и поджелудочной железы плода. Антиген появляется при аденокарциномах органов ЖКТ и поджелудочной железы, в саркомах и лимфомах, также обнаруживается при целом ряде неопухолевых состояний: при алкогольном циррозе печени, панкреатите, холецистите, дивертикулите и язвенном колите.

ФЕРМЕНТЫ ПЛАЗМЫ КРОВИ

Ферменты, находящиеся в плазме крови, можно разделить на 3 основные группы:

1. Секреторные. Они синтезируются в печени, эндотелии кишечника, сосудов поступают в кровь, где выполняют свои функции. Например, ферменты свертывающей и противосвертывающей системы крови (тромбин, плазмин), ферменты обмена липопротеинов: липопротеиновая липаза (ЛПЛ) и лецитинхолестеринацилтрансфераза (ЛХАТ).

2. Тканевые. Ферменты клеток органов и тканей. Они попадают в кровь при увеличении проницаемости клеточных стенок или при гибели клеток тканей. В норме их содержание в крови очень низкое. Некоторые тканевые ферменты имеют диагностическое значение, т.к. по ним можно определить пораженный орган или ткань, по этому их еще называют индикаторными. Например, ферменты ЛДГ с 5 изоформами, креатинкиназа с 3 изоформами, АСТ, АЛТ, кислая и щелочная фосфатаза и т.д.

3. Экскреторные. Ферменты, синтезируемые железами ЖКТ (печень, поджелудочная железа, слюнные железы) в просвет ЖК тракта и участвующие в пищеварении. В крови эти ферменты появляются при повреждении соответствующих желез. Например, при панкреатите в крови обнаруживают липазу, амилазу, трипсин, при воспалении слюнных желез – амилазу, при холестазе – щелочную фосфатазу (из печени).

 

Фракция Белки Конц г/л Функция
альбумины Транстиретин 0,25 Транспорт тироксина и трийодтиронина
Альбумин Поддержание осмотического давления, транспорт жирных кислот, билирубина, жёлчных кислот, стероидных гормонов, лекарств, неорганических ионов, резерв аминокислот
α1-глобулины α1-антитрипсин 2,5 Ингибитор протеиназ
Кислый α1— гликопротеин Транспорт прогестерона
Протромбин 0,1 Фактор II свёртывания крови
Транскортин 0,03 Транспорт кортизола, кортикостерона, прогестерона
     
Тироксинсвязывающий глобулин 0,02 Транспорт тироксина и трийодтиронина
α2-глобулины Церулоплазмин 0,35 Транспорт ионов меди, оксидоредуктаза
Антитромбин III 0,3 Ингибитор плазменных протеаз
Гаптоглобин Связывание гемоглобина
α2-Макроглобулин 2,6 Ингибитор плазменных протеиназ, транспорт цинка
Ретинолсвязывающий белок 0,04 Транспорт ретинола
Витамин Д связывающий белок 0,4 Транспорт кальциферола
β-глобулины ЛПНП 3,5 Транспорт холестерола
Трансферрин Транспорт ионов железа
Фибриноген Фактор I свёртывания крови
Транскобаламин 25*10-9 Транспорт витамина В12
Глобулин связывающий белок 20*10-6 Транспорт тестостерона и эстрадиола  
С-реактивный белок <0,01 Активация комплемента
γ-глобулины IgG Поздние антитела
IgA 3,5 Антитела, защищающие слизистые оболочки
IgM 1,3 Ранние антитела
IgD 0,03 Рецепторы В-лимфоцитов
IgE <0,01 Реагин

 

Биохимия мочи.

Общие свойства мочи.

Количество выделяемой за сутки мочи (диурез) в норме у взрослых людей колеблется от 1000 до 2000 мл и составляет в среднем 50–80% от объема принятой жидкости. Суточное количество мочи ниже 500 мл и выше 2000 мл у взрослых считается патологическим. Увеличение объема мочи (полиурия) наблюдается при приеме большого количества жидкости, употреблении пищевых веществ, повышающих диурез (арбуз, тыква и др.). При патологии полиурия отмечается при заболеваниях почек (хронические нефриты и пиелонефриты), сахарном диабете и других патологических состояниях. Большое количество мочи выделяется при несахарном диабете – 15 л в сутки и более.

Уменьшение суточного количества мочи (олигурия) наблюдается при недостаточном приеме жидкости, лихорадочных состояниях (значительное количество воды удаляется из организма через кожу), рвоте, поносе, токсикозах, остром нефрите и т.д. В случае тяжелых поражений почечной паренхимы (при острых диффузных нефритах), мочекаменной болезни (закупорка мочеточников), отравлениях свинцом, ртутью, мышьяком, при сильных нервных потрясениях возможно почти полное прекращение выделения мочи (анурия). Длительная анурия ведет к уремии.

В норме днем выделяется больше мочи, чем ночью. При некоторых патологических состояниях (начальные формы сердечной декомпенсации, цистопиелиты и т.д.) моча в большем количестве выделяется ночью, чем днем.

Цвет мочи в норме колеблется от соломенно-желтого до насыщенного желтого. Окраска мочи зависит от содержания в ней пигментов.

Моча насыщенного желтого цвета обычно концентрированная, имеет высокую плотность и выделяется в относительно небольшом количестве. Бледная (соломенного цвета) моча чаще имеет низкую относительную плотность и выделяется в большом количестве.

При патологии цвет мочи может быть красным, зеленым, коричневым и т.д. в зависимости от наличия в ней не встречающихся в норме красящих веществ. Например, красный или розово-красный цвет мочи наблюдается при гематурии и гемоглобинурии, а также после приема антипирина, амидопирина и других лекарственных средств. Коричневый или красно-бурый цвет встречается при высокой концентрации в моче уробилина и билирубина.

Относительная плотность мочи у взрослого человека в течение суток колеблется в довольно широких пределах (от 1,002 до 1,035), что связано с периодическим приемом пищи, воды и потерей жидкости организмом (потоотделение и др.). Чаще она равна 1,012–1,020. Плотность мочи дает определенное представление о количестве растворенных в ней веществ. В сутки с мочой выделяется от 50 до 75 г плотных веществ. Приближенный расчет содержания плотного остатка в моче (в граммах на 1 л) можно произвести, умножив две последние цифры относительной плотности на коэффициент 2,6.

При тяжелой недостаточности почек все время выделяется моча с одинаковой относительной плотностью, равной плотности первичной мочи, или ультрафильтрата (~ 1,010). Это состояние носит название изостенурии.

Постоянно низкое значение плотности мочи указывает на нарушение концентрационной функции почек при хроническом нефрите, первично или вторично сморщенной почке. При несахарном диабете также выделяется моча низкой плотности (1,001–1,004), что связано с нарушением обратной реабсорбции воды в канальцах. При олигурии (понижение суточного количества мочи), например при остром нефрите, моча имеет высокую плотность. Высокая плотность характерна для сахарного диабета при полиурии, в этом случае она обусловлена содержанием в моче большого количества глюкозы.

Реакция мочи (рН) в норме при смешанной пище кислая или слабокислая (рН 5,3–6,5) На величину рН мочи влияет характер пищи. При употреблении преимущественно мясной пищи моча имеет более кислую реакцию, при овощной диете реакция мочи щелочная.

Кислая реакция мочи у человека зависит от присутствия в ней главным образом однозамещенных фосфатов (например, КН2РО4 или NaH2PO4). В щелочной моче преобладают двузамещенные фосфаты или бикарбонаты калия, натрия.

Резко кислая реакция мочи наблюдается при лихорадочных состояниях, сахарном диабете (особенно при наличии кетоновых тел в моче), голодании и т.д. Щелочная реакция мочи отмечается при циститах и пиелитах (микроорганизмы способны разлагать мочевину с образованием аммиака уже в полости мочевого пузыря), после сильной рвоты, приеме некоторых лекарственных средств (например, бикарбоната натрия), употреблении щелочных минеральных вод и т.д.

Химический состав мочи
Всего в моче в настоящее время обнаружено более 150 химических ингредиентов.
Органические вещества мочи.
Мочевинасоставляет большую часть органических веществ, входящих в состав мочи. В среднем за сутки с мочой взрослого человека выводится около 30 г мочевины (от 12 до 36 г). Общее количество азота, выделяемого с мочой за сутки, колеблется от 10 до 18 г, причем при смешанной пище на долю азота мочевины приходится 80–90%. Количество мочевины в моче обычно повышается при употреблении пищи, богатой белками, при всех заболеваниях, сопровождающихся усиленным распадом белков тканей (лихорадочные состояния, опухоли, гипертиреоз, диабет и т.д.), а также при приеме некоторых лекарственных средств (например, ряда гормонов). Содержание выделяемой с мочой мочевины уменьшается при тяжелых поражениях печени (печень является основным местом синтеза мочевины в организме), заболеваниях почек (особенно при нарушенной фильтрационной способности почек), а также при приеме инсулина и др.

Креатининтакже является конечным продуктом азотистого обмена. Он образуется в мышечной ткани из фосфокреатина. Суточное выделение креатинина для каждого человека – величина довольно постоянная и отражает в основном его мышечную массу. У мужчин на каждый 1 кг массы тела за сутки выделяется с мочой от 18 до 32 мг креатинина, а у женщин – от 10 до 25 мг. Эти цифры мало зависят от белкового питания. В связи с этим определение суточной экскреции креатинина с мочой во многих случаях может быть использовано для контроля полноты сбора суточной мочи.

Креатинв моче взрослых людей в норме практически отсутствует. Он появляется либо при употреблении значительных количеств креатина с пищей, либо при патологических состояниях. Как только уровень креатина в сыворотке крови достигает 0,12 ммоль/л, он появляется в моче.

В первые годы жизни ребенка возможна «физиологическая креатинурия». По-видимому, появление креатина в моче детей раннего возраста обусловлено усиленным синтезом креатина, опережающим развитие мускулатуры. Некоторые исследователи к физиологическим явлениям относят и креатинурию стариков, которая возникает как следствие атрофии мышц и неполного использования образующегося в печени креатина. Наибольшее содержание креатина в моче наблюдается при патологических состояниях мышечной системы и прежде всего при миопатии, или прогрессирующей мышечной дистрофии.

Принято считать, что креатин в моче (креатинурия) больных миопатией может появляться в результате нарушения в скелетной мускулатуре процессов его фиксации (удержания) и фосфорилирования. Если нарушен процесс синтеза фосфокреатина, то не образуется и креатинин; содержание последнего в моче резко снижается.

В результате креатинурии и нарушения синтеза креатинина резко повышается креатиновый показатель мочи: (количество креатина + количество креатинина)/(количество креатинина). В норме этот показатель близок к 1,1.

Известно также, что креатинурию можно наблюдать при поражениях печени, сахарном диабете, эндокринных расстройствах (гипертиреоз, адди-сонова болезнь, акромегалия и др.), инфекционных заболеваниях.

Аминокислотыв суточном количестве мочи составляют около 1,1 г. Соотношение между содержанием отдельных аминокислот в крови и моче неодинаково. Концентрация той или иной аминокислоты, выделяемой с мочой, зависит от ее содержания в плазме крови и степени ее реабсорбции в канальцах, т.е. от ее клиренса. В моче выше всего концентрация глицина и гистидина, затем глутамина, аланина, серина.

Гипераминоацидурия встречается при заболеваниях паренхимы печени. Это объясняется нарушением в печени процессов дезаминирования и трансаминирования. Наблюдается гипераминоацидурия также при тяжелых инфекционных заболеваниях, злокачественных новообразованиях, обширных травмах, миопатии, коматозных состояниях, гипертиреозе, лечении кортизоном и АКТГ и при других состояниях.

Известны также нарушения обмена отдельных аминокислот. Многие из этих нарушений имеют врожденный или наследственный характер. Примером может служить фенилкетонурия. Причина заболевания – наследственно обусловленный недостаток фенилаланин-4-монооксигеназы в печени, вследствие чего метаболическое превращение аминокислоты фенилаланина в тирозин блокировано. Результат такого блокирования – накопление в организме фенилаланина и его кетопроизводных и появление их в большом количестве в моче. Обнаружить фенилкетонурию очень просто с помощью хлорида железа: спустя 2–3 мин после добавления в мочу нескольких капель раствора хлорида железа появляется оливково-зеленая окраска.

Другим примером может служить алкаптонурия (гомогентизинурия). При алкаптонурии в моче резко увеличивается концентрация гомогентизиновой кислоты – одного из метаболитов обмена тирозина. В результате моча, оставленная на воздухе, резко темнеет. Причина нарушений метаболизма при алкаптонурии заключается в недостатке оксидазы гомогентизиновой кислоты.

Известны также врожденные болезни: гиперпролинемия (возникает в результате недостатка фермента пролиноксидазы, следствие – пролинурия); гипервалинемия (врожденное нарушение обмена валина, что сопровождается резким повышением концентрации валина в моче); цитруллинемия (врожденное нарушение цикла образования мочевины, обусловленное недостатком фермента аргининсукцинат-синтетазы, с мочой выделяется увеличенное количество цитруллина) и др.

Мочевая кислотаявляется конечным продуктом обмена пуриновых оснований. За сутки с мочой выделяется около 0,7 г мочевой кислоты. Обильное потребление пищи, содержащей нуклеопротеины, вызывает через некоторое время увеличенное выделение с мочой мочевой кислоты экзогенного происхождения. И, наоборот, при питании, бедном пуринами, выделение мочевой кислоты снижается до 0,2 г в сутки.

Повышенное выделение мочевой кислоты наблюдается при лейкемии, полицитемии, гепатитах и подагре. Содержание мочевой кислоты в моче повышается также при приеме ацетилсалициловой кислоты и ряда стероидных гормонов.

Наряду с мочевой кислотой в моче всегда содержится небольшое количество пуринов как эндо-, так и экзогенного происхождения.

Гиппуровая кислотав небольшом количестве всегда определяется в моче человека (около 0,7 г в суточном объеме). Она представляет собой соединение глицина и бензойной кислоты. Повышенное выделение гиппуровой кислоты отмечается при употреблении преимущественно растительной пищи, богатой ароматическими соединениями, из которых образуется бензойная кислота.

В 1940 г. А. Квик и А.Я. Пытель ввели в клиническую практику гиппуровую пробу (проба Квика–Пытеля). При нормальных условиях клетки печени обезвреживают введенную бензойную кислоту (больной принимает после легкого завтрака 3–4 г бензоата натрия), соединяя ее с глицином. Образовавшаяся гиппуровая кислота выводится с мочой. В норме при проведении пробы Квика–Пытеля с мочой выводится 65–85% принятого бензоата натрия. При поражении печени образование гиппуровой кислоты нарушается, поэтому количество последней в моче резко снижается.

Безазотистые органические компоненты мочи– это щавелевая, молочная и лимонная (цитрат), а также масляная, валериановая, янтарная (сукцинат), β-оксимасляная, ацетоуксусная и другие кислоты. Общее содержание органических кислот в суточном количестве мочи обычно не превышает 1 г.

В норме содержание каждой из этих кислот в суточном объеме мочи исчисляется миллиграммами, поэтому количественно определять их очень сложно. При тех или иных состояниях выведение многих из них увеличивается и их проще обнаружить в моче. Например, при усиленной мышечной работе повышается уровень молочной кислоты, количество цитрата и сукцината увеличивается при алкалозе.

Неорганические (минеральные) компоненты мочи.
В моче содержатся практически все минеральные вещества, которые входят в состав крови и других тканей организма. Из 50–65 г сухого остатка, образующегося при выпаривании суточного количества мочи, на долю неорганических компонентов приходится 15–25 г.

Ионы натрия и хлора.В норме около 90% принятых с пищей хлоридов выделяется с мочой (8–15 г NaCl в сутки). При ряде патологических состояний (хронический нефрит, диарея, острый суставной ревматизм и др.) выведение хлоридов с мочой может быть снижено. Максимальная концентрация ионов Na+ и Сl (в моче по 340 ммоль/л) может наблюдаться после введения в организм больших количеств гипертонического раствора.

Ионы калия, кальция и магния.Многие исследователи считают, что практически все количество ионов калия, которое имеется в клубочковом фильтрате, всасывается обратно из первичной мочи в проксимальном сегменте нефрона. В дистальном сегменте происходит секреция ионов калия, которая в основном связана с обменом между ионами калия и водорода. Следовательно, обеднение организма калием сопровождается выделением кислой мочи.

Ионы Са2+ и Mg2+ выводятся через почки в небольшом количестве. Принято считать, что с мочой выделяется лишь около 30% всего количества ионов Са2+ и Mg2+, подлежащего удалению из организма. Основная масса щелочноземельных металлов выводится с калом.

Бикарбонаты, фосфаты и сульфаты.Количество бикарбонатов в моче в значительной мере коррелирует с величиной рН мочи. При рН 5,6 с мочой выделяется 0,5 ммоль/л, при рН 6,6 – 6 ммоль/л, при рН 7,8 – 9,3 ммоль/л бикарбонатов. Уровень бикарбонатов повышается при алкалозе и понижается при ацидозе. Обычно с мочой выводится менее 50% всего количества выделяемых организмом фосфатов. При ацидозе выведение фосфатов с мочой возрастает. Повышается содержание фосфатов в моче при гиперфункции паращитовидных желез. Введение в организм витамина D снижает выделение фосфатов с мочой.

Серосодержащие аминокислоты:цистеин, цистин и метионин – являются источниками сульфатов мочи. Эти аминокислоты окисляются в тканях организма с образованием ионов серной кислоты. Общее содержание сульфатов в суточном количестве мочи обычно не превышает 1,8 г (в расчете на серу).

Аммиак.Существует специальный механизм образования аммиака из глутамина при участии фермента глутаминазы, которая в большом количестве содержится в почках. Аммиак выводится с мочой в виде аммонийных солей. Содержание последних в моче человека в определенной степени отражает кислотно-основное равновесие. При ацидозе их количество в моче увеличивается, а при алкалозе снижается. Содержание аммонийных солей в моче может быть снижено при нарушении в почках процессов образования аммиака из глутамина.

 

Источник: megaobuchalka.ru

РАЗДЕЛ 14. БИОХИМИЯ КРОВИ

IV. Белки плазмы крови

В плазме крови содержится 7% всех белков организма при концентрации 60 — 80 г/л. Белки плазмы крови выполняют множество функций. Одна из них заключается в поддержании осмотического давления, так как белки связывают воду и удерживают её в кровеносном русле.

• Белки плазмы образуют важнейшую буферную систему крови и поддерживают pH крови в пределах 7,37 — 7,43.

• Альбумин, транстиретин, транскортин, трансферрин и некоторые другие белки (табл. 14-2) выполняют транспортную функцию.

• Белки плазмы определяют вязкость крови и, следовательно, играют важную роль в гемодинамике кровеносной системы.

• Белки плазмы крови являются резервом аминокислот для организма.

• Иммуноглобулины, белки свёртывающей системы крови, α1-антитрипсин и белки системы комплемента осуществляют защитную функцию.

Методом электрофореза на ацетилцеллюлозе или геле агарозы белки плазмы крови можно разделить на альбумины (55 — 65%), α1-глобулины (2 — 4%), α2-глобулины (6 — 12%), β-глобулины (8 — 12%) и н-глобулины (12 — 22%) (рис. 14-19).

Рис. 14-19. Электрофореграмма (А) и денситограмма (Б) белков сыворотки крови.

Белки острой фазы биохимия

Применение других сред для электрофоретического разделения белков позволяет обнаружить большее количество фракций. Например, при электрофорезе в полиакриламидном или крахмальном гелях в плазме крови выделяют 16 — 17 белковых фракций. Метод иммуноэлектрофореза, сочетающий электрофоретический и иммунологический способы анализа, позволяет разделить белки плазмы крови более чем на 30 фракций.

Большинство сывороточных белков синтезируется в печени, однако некоторые образуются и в других тканях. Например, н-глобулины синтезируются В-лимфоцитами (см. раздел 4), пептидные гормоны в основном секретируют клетки эндокринных желёз, а пептидный гормон эритропоэтин — клетки почки.

Для многих белков плазмы, например, альбумина, α1-антитрипсина, гаптоглобина, трансферрина, церулоплазмина, α2-макроглобулина и иммуноглобулинов, характерен полиморфизм (см. раздел 4).

Почти все белки плазмы, за исключением альбумина, являются гликопротеинами. Олигосахариды присоединяются к белкам, образуя гликозидные связи с гидроксильной группой серина или треонина, или взаимодействуя с карбоксильной группой аспарагина. Концевой остаток олигосахаридов в большинстве случаев представляет собой N-ацетилнейраминовую кислоту, соединённую с галактозой. Фермент эндотелия сосудов нейраминидаза гидролизует связь между ними, и галактоза становится доступной для специфических рецепторов гепатоцитов. Путём эндоцитоза «состарившиеся» белки поступают в клетки печени, где разрушаются. Т1/2 белков плазмы крови составляет от нескольких часов до нескольких недель.

При ряде заболеваний происходит изменение соотношения распределения белковых фракций при электрофорезе по сравнению с нормой (рис. 14-20).

Рис. 14-20. Протеинограммы белков сыворотки крови. а — в норме; б — при нефротическом синдроме; в — при гипогаммаглобулинемии; г — при циррозе печени; д — при недостатке α1-антитрипсина; е — при диффузной гипергаммаглобулинемии.

Белки острой фазы биохимия

Такие изменения называют диспротеинемиями, однако их интерпретация часто имеет относительную диагностическую ценность. Например, характерное для нефротического синдрома снижение альбуминов, α1— и y-глобулинов и увеличение α2— и β-глобулинов отмечают и при некоторых других заболеваниях, сопровождающихся потерей белков. При снижении гуморального иммунитета уменьшение фракции y-глобулинов свидетельствует об уменьшении содержания основного компонента иммуноглобулинов — IgG, но не отражает динамику изменений IgA и IgM.

Содержание некоторых белков в плазме крови может резко увеличиваться при острых воспалительных процессах и некоторых других патологических состояниях (травмы, ожоги, инфаркт миокарда). Такие белки называют белками острой фазы, так как они принимают участие в развитии воспалительной реакции организма. Основной индуктор синтеза большинства белков острой фазы в гепатоцитах — полипептид интерлейкин-1, освобождающийся из мононуклеарных фагоцитов. К белкам острой фазы относят С-реактивный белок, называемый так, потому что он взаимодействует с С-полисахаридом пневмококков, α1-антитрипсин, гаптоглобин, кислый гликопротеин, фибриноген. Известно, что С-реактивный белок может стимулировать систему комплемента, и его концентрация в крови, например, при обострении ревматоидного артрита может возрастать в 30 раз по сравнению с нормой. Белок плазмы крови α1-антитрипсин может инактивировать некоторые протеазы, освобождающиеся в острой фазе воспаления.

Содержание некоторых белков в плазме крови и их функции представлены в таблице 14-2.

Таблица 14-2. Содержание и функции некоторых белков плазмы крови

Группа

Белки

Концентрация в сыворотке крови, г/л

Функция

Альбумины

Транстиретин

0,25

Транспорт тироксина и трийодтиронина

 

Альбумин

40

Поддержание осмотического давления, транспорт жирных кислот, билирубина, жёлчных кислот, стероидных гормонов, лекарств, неорганических ионов, резерв аминокислот

α1-Глобулины

α1-Антитрипсин

2,5

Ингибитор протеиназ

 

ЛПВП

0,35

Транспорт холестерола

 

Протромбин

0,1

Фактор II свёртывания крови

 

Транскортин

0,03

Транспорт кортизола, кортикостерона, прогестерона

 

Кислый α1-гликопротеин

1

Транспорт прогестерона

 

Тироксинсвязывающий глобулин

0,02

Транспорт тироксина и трийодтиронина

α2-Г лобулины

Церулоплазмин

0,35

Транспорт ионов меди, оксидоредуктаза

 

Антитромбин III

0,3

Ингибитор плазменных протеаз

 

Гаптоглобин

1

Связывание гемоглобина

 

α2-Макроглобулин

2,6

Ингибитор плазменных протеиназ, транспорт цинка

 

Ретинолсвязывающий белок

0,04

Транспорт ретинола

 

Витамин D связывающий белок

0,4

Транспорт кальциферола

β-Глобулины

ЛПНП

3,5

Транспорт холестерола

 

Трансферрин

3

Транспорт ионов железа

 

Фибриноген

3

Фактор I свёртывания крови

 

Транскобаламин

25 x 10-9

Транспорт витамина В12

 

Глобулин связывающий белок

20 x 10-6

Транспорт тестостерона и эстрадиола

 

С-реактивный белок

<0,01

Активация комплемента

y-Глобулины

IgG

12

Поздние антитела

 

IgA

3,5

Антитела, защищающие слизистые оболочки

 

IgM

1,3

Ранние антитела

 

IgD

0,03

Рецепторы В-лимфоцитов

 

IgE

<0,01

Реагин

 Альбумин. Концентрация альбумина в крови составляет 40-50 г/л. В сутки в печени синтезируется около 12 г альбумина, Т1/2 этого белка — примерно 20 дней. Альбумин состоит из 585 аминокислотных остатков, имеет 17 дисульфидных связей и обладает молекулярной массой 69 кД. Молекула альбумина содержит много дикарбоновых аминокислот, поэтому может удерживать в крови катионы Са2+, Сu2+, Zn2+. Около 40% альбумина содержится в крови и остальные 60% в межклеточной жидкости, однако его концентрация в плазме выше, чем в межклеточной жидкости, поскольку объём последней превышает объём плазмы в 4 раза.

Благодаря относительно небольшой молекулярной массе и высокой концентрации альбумин обеспечивает до 80% осмотического давления плазмы. При гипоальбуминемии осмотическое давление плазмы крови снижается. Это приводит к нарушению равновесия в распределении внеклеточной жидкости между сосудистым руслом и межклеточным пространством. Клинически это проявляется как отёк. Относительное снижение объёма плазмы крови сопровождается снижением почечного кровотока, что вызывает стимуляцию системы ренин-ангиотензин-альдостерон, обеспечивающей восстановление объёма крови (см. раздел 11). Однако при недостатке альбумина, который должен удерживать Nа+, другие катионы и воду, вода уходит в межклеточное пространство, усиливая отёки.

Гипоальбуминемия может наблюдаться и в результате снижения синтеза альбуминов при заболеваниях печени (цирроз), при повышении проницаемости капилляров, при потерях белка из-за обширных ожогов или катаболических состояний (тяжёлый сепсис, злокачественные новообразования), при нефротическом синдроме, сопровождающемся альбуминурией, и голодании. Нарушения кровообращения, характеризующиеся замедлением кровотока, приводят к увеличению поступления альбумина в межклеточное пространство и появлению отёков. Быстрое увеличение проницаемости капилляров сопровождается резким уменьшением объёма крови, что приводит к падению АД и клинически проявляется как шок.

Альбумин — важнейший транспортный белок. Он транспортирует свободные жирные кислоты (см. раздел 8), неконъюгированный билирубин (см. раздел 13), Са2+, Сu2+, триптофан, тироксин и трийодтиронин (см. раздел 11). Многие лекарства (аспирин, дикумарол, сульфаниламиды) связываются в крови с альбумином. Этот факт необходимо учитывать при лечении заболеваний, сопровождающихся гипоальбуминемией, так как в этих случаях повышается концентрация свободного лекарства в крови. Кроме того, следует помнить, что некоторые лекарства могут конкурировать за центры связывания в молекуле альбумина с билирубином и между собой.

Транстиретин (преальбумин) называют тироксинсвязывающим преальбумином. Это белок острой фазы. Транстиретин относят к фракции альбуминов, он имеет тетрамерную молекулу. Он способен присоединять в одном центре связывания ретинолсвязывающий белок, а в другом — до двух молекул тироксина и трийодтиронина. Соединение с этими лигандами происходит независимо друг от друга. В транспорте последних транстиретин играет существенно меньшую роль по сравнению с тироксинсвязывающим глобулином.

α1-Антитрипсин относят к α1-глобулинам. Он ингибирует ряд протеаз, в том числе фермент эластазу, освобождающийся из нейтрофилов и разрушающий эластин альвеол лёгких. При недостаточности α1-антитрипсина могут возникнуть эмфизема лёгких (см. раздел 15) и гепатит, приводящий к циррозу печени. Существует несколько полиморфных форм α1-антитрипсина, одна из которых является патологической. У людей, гомозиготных по двум дефектным аллелям гена антитрипсина, в печени синтезируется α1-антитрипсин, который образует агрегаты, разрушающие гепатоциты. Это приводит к нарушению секреции такого белка гепатоцитами и к снижению содержания α1-антитрипсина в крови.

Гаптоглобин составляет примерно четверть всех α2-глобулинов. Гаптоглобин при внутрисосудистом гемолизе эритроцитов образует комплекс с гемоглобином, который разрушается в клетках РЭС. Если свободный гемоглобин, имеющий молекулярную массу 65 кД, может фильтроваться через почечные клубочки или агрегировать в них, то комплекс гемоглобин-гаптоглобин имеет слишком большую молекулярную массу (155 кД), чтобы пройти через гломерулы. Следовательно, образование такого комплекса предотвращает потери организмом железа, содержащегося в гемоглобине. Определение содержания гаптоглобина имеет диагностическое значение, например, снижение концентрации гаптоглобина в крови наблюдают при гемолитической анемии. Это объясняют тем, что при Т1/2 гаптоглобина, составляющем 5 дней, и Т1/2 комплекса гемоглобин-гаптоглобин (около 90 мин) увеличение поступления свободного гемоглобина в кровь при гемолизе эритроцитов вызовет резкое снижение содержания свободного гаптоглобина в крови.

Гаптоглобин относят к белкам острой фазы, его содержание в крови повышается при острых воспалительных заболеваниях.

Информация о некоторых других белках плазмы крови, представленных в табл. 14-2, имеется в соответствующих разделах учебника.

Источник: lifelib.info


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.