Альбумины и глобулины биохимия


Уровень альбумина в крови определяется с помощью биохимического анализа. Завышенные или заниженные показатели вещества, получаемого путем фракционирования, свидетельствуют о патологическом процессе в организме.

Альбумин или белковые фракции — наиболее часто встречающиеся исследуемые показатели, ведь вещество отражает, насколько полноценно работает печень по синтезу белков.

Интересный факт: в течение 2 суток печень продуцирует 15 грамм альбумина, приносящего пользу до 20 дней.

Альбумин — что это такое в биохимическом анализе крови?

Альбумин — основной белок в крови, составляющий более половины (от 50 до 65%) от общего количества плазмы. Синтезируется печенью человека и располагается в периферийной крови, лимфе, спинномозговой и интерстициальной жидкости. Жизненный период альбумина длится 15-20 суток. Белковое соединение низкомолекулярно, хотя фракция белков плазмы крови резервирует более 600 разновидностей аминокислот.

По результатам биохимического анализа крови и содержанию в кровяной сыворотке альбумина врач диагностирует работу почек и печени. Снижение концентрации белкового соединения указывает на наличие ревматизма и опухолей злокачественного характера.


Молекулярная структура сывороточного альбумина человека
На картинке: молекулярная структура сывороточного альбумина человека

Альбумины — важнейшие элементы в кровяной сыворотке, благодаря которым осуществляется полноценная деятельность организма.

Белки циркулируют с кровотоком и выполняют следующие функции:

  • наиважнейшая функция белковой фракции — связь и транспортировка различных веществ — гормонов, кислот, жиров, билирубина, кальция, соединения тканей.
  • Отвечает за поддержание давления в плазме крови, благодаря чему жидкость не вызывает отеков, не проникает в соединительную и мышечную ткань.
  • Резервное назначение — сохранение элементов белка. Молекулы альбумина отвечают за сохранность аминокислот, необходимых для правильного функционирования организма. Во время длительного голодания запасы аминокислот истощаются.

Внимание! Не игнорируйте врачебные рекомендации относительно сдачи биохимического анализа. Благодаря биохимии крови диагностируются патологии, связанные с колебаниями альбумина. Своевременная сдача анализа способствует предотвращению развития патологии и назначению эффективного лечения.

Альбумин: норма в крови

Нормы альбуминовой фракции в крови колеблются в пределах 35 -33 г / л, это намного больше содержания гамма-глобулина (8,0 — 12,0 — 17,0 г / л) и фибриногена (2,0 — 4,0 г / л), а в кровяной сыворотке фибриноген заметить затруднительно.

Нормы белка установлены в зависимости от возрастной категории людей. При сдаче анализа нормальный уровень в плазме у мужчины и женщины одинаковый, поэтому врач опирается на норму альбумина, исходя из возраста пациента.

Доли белков в крови человека
Изображено: доли белков в крови человека

Ниже представлены нормы крови в зависимости от возрастной категории пациентов:


  1. Малыши с рождения до 3 лет — 25 — 50 г / л;
  2. Дети с 3 до 14 лет — 38 — 54 г / л;
  3. 14 — 60 лет — 33 — 55 г / л;
  4. Пожилые люди старше 60 лет — 34 — 48 г / л.

Стоит отметить, что: у людей зрелого возраста замечается понижение уровня альбумина в крови.

Таблица норм по возрастам


Возраст Альбумин, г/л α1, г/л α2, г/л β, г/л γ, г/л
От 0 до 7 дней 32,5 – 40,7 1,2 – 4,2 6,8 – 11,2 4,5 – 6,7 3,5 – 8,5
От 1 недели до года 33,6 – 42,0 1,24 – 4,3 7,1 – 11,5 4,6 – 6,9 3,3 – 8,8
От 1 года до 5 лет 33,6 – 43,0 2,0 – 4,6 7,0 – 13,0 4,8 – 8,5 5,2 – 10,2
От 5 до 8 лет 37,0 – 47,1 2,0 – 4,2 8,0 – 11,1 5,3 – 8,1 5,3 – 11,8
От 8 до 11 лет 40,6 – 45,6 2,2 – 3,9 7,5 – 10,3 4,9 — 7,1 6,0 – 12,2
От 11 лет до 21 года 38,9 – 46,0 2,3 – 5,3 7,3 – 10,5 6,0 – 9,0 7,3 – 14,3
После 21 года 40,2 – 50,6 2,1 – 3,5 5,1 – 8,5 6,0 – 9,4 8,1 – 13,0

Норма альбумина в крови у женщин

Исследуя биохимический анализ крови беременной женщины, замечается снижение концентрации белка в плазме. Норма содержания альбумина во время вынашивания ребенка, в период лактации составляет 30 -34 г / л.

После родов и по окончании грудного вскармливания уровень белкового соединения в женском организме нормализуется до привычных значений.


Анализ крови у женщин

Важная информация! Повышение или понижение альбумина обусловлено внешними и внутренними факторами и указывает на патогенный процесс в организме представительницы женского пола.

Иногда недостаток белка вызван физиологическими особенностями, ведь белки выделяются в организм будущей мамы и поступают к плоду. Сбалансированное питание, полноценный отдых способствуют нормализации альбумина у беременной.

Норма альбумина в крови у мужчин

Нормальный уровень альбумина у представителей мужского пола средних лет составляет 33 — 55 г/ л.

Норма альбумина у детей

Детские показатели также зависят от возраста и чем младше ребенок, тем ниже содержание альбумина в крови:

  • 0 — 7 дней — 32,5 — 40,7 г/ л;
  • 7 дней — 12 месяцев — 33,6 — 42,0 г/ л;
  • 1 год — 5 лет — 33,6 — 43,0 г/ л;
  • 5 — 8 лет — 37,0 — 47,1 г/ л;
  • 8 — 11 лет — 40,6 — 45,6 г/ л;
  • 11 лет — 21 год — 38,9 — 46 г/ л.

У юношей и девушек старше 21 года концентрация белкового соединения в крови варьируется в пределах 40,2 — 50,6 г/ л.

Внимание! Референтные значения в анализе, сдаваемом в разных лабораториях, различны. При сомнениях в результате проведения биохимического теста предлагается пересдать кровь в другом медицинском учреждении.

Норма белковых фракций в сыворотке крови


Белковые фракции в плазме крови Норма, г/л Соотношение групп, %
Общий белок 65 – 85
Альбумин 35 — 55 54 — 65
α1 (альфа-1)-глобулины 1,4 – 3,0 02.05.2018
α2 (альфа-2)- глобулины 5,6 – 9,1 01.07.2013
β (бета)-глобулины 5,4 – 9,1 01.08.2015
γ (гамма)-глобулины 8,1 – 12,0 01.12.2022
Фибриноген * 2,0 – 4,0

Если альбумин повышен в крови — что это значит?

Если по результатам биохимии заметно повышение уровня альбумина, констатируется гиперальбуминемия, которая свидетельствует чаще всего о дегидратации (обезвоживании) организма.

Частые приступы рвоты, длительная диарея способствуют патологическому уменьшению жидкости в организме. Это становится причиной загустения крови и отрицательно сказывается на состоянии здоровья.

Самый простой тест для определения обезвоживания

Другая причина повышенного уровня белка — сильное переутомление.

Повышенный уровень альбумина диагностируется редко.

Но при установке гиперальбуминемии диагностируются следующие заболевания:


  • поражение желудочно-кишечного тракта холерным вибрионом;
  • инфекционные заболевания;
  • кишечная непроходимость;
  • системная красная волчанка;
  • плазмоцитома;
  • ревматоидный артрит;
  • пиелонефрит;
  • сахарный диабет;
  • гепатит, цирроз печени;
  • химические, термические или лучевые повреждения кожи;
  • длительный прием сильнодействующих лекарственных препаратов — глюкокортикостероидов или бромсульфалеина.

Для понижения белка рекомендовано придерживаться определенных немедикаментозных способов:

  • придерживание диеты с употреблением низкокалорийной пищи, избегать продуктов с высоким содержанием белков и углеводов, сделать акцент на вареной, тушеной, пареной еде с исключением жареных, соленых, острых блюд;
  • отказаться от употребления спиртных напитков, так как пораженная алкоголем почка не способна производить полноценный синтез и абсорбцию белков;
  • прекратить курить — у заядлых курильщиков повышается риск развития гипертонии, что влияет на чрезмерное содержание альбумина в крови. Специалисты советуют постепенно бросать курить, иначе вероятно осложнение состояния;
  • употреблять большое количество жидкости — не менее 2 литров в день во избежание обезвоживания и образования тромбов.

При отсутствии улучшений в анализе врач назначает применение медикаментов с использованием препаратов группы ингибиторов или лекарств, ускоряющих регуляцию синтеза холестерина в организме.

Низкий альбумин: причины

При понижении содержания альбумина и достижении 25 — 30 г / л констатируется гипоальбуминемия.

Сниженная концентрация белка свидетельствует о таких состояниях как:

  • злокачественный процесс в организме;
  • воспалительное заболевание почек — диабетическая нефропатия, нефротический синдром;
  • болезни пищеварительной системы;
  • лейкемия, сепсис крови;
  • дисфункции сердечно-сосудистой системы;
  • функциональные нарушения печени — атрофия, цирроз, гепатит;
  • поражение соединительной ткани;
  • наличие сильных травм, ожогов;
  • чрезмерное содержание воды в организме;
  • отек легких;
  • сильные кровопотери, переливание кровезаменителей;
  • генетические патологии, вследствие которых уровень альбумина снижается;
  • длительное голодание, вызванное придерживанием низкобелковой и несбалансированной диет.

Другие причины, из-за которых уровень альбумина снижается:

  • прием некоторых медикаментов, особенно при передозировке;
  • злоупотребление алкоголем и табакокурением.

Альбумины и глобулины биохимияПри повышенном уровне альбумина не поддавайтесь панике и не ищите у себя заболевания.


Пониженные показатели белка в биохимическом анализе появляются вследствие приема эстрогеносодержащих препаратов, голодания и употребления глюкокортикостероидов.

После получения результатов обратитесь к врачу для назначения дополнительных анализов.

Как повысить альбумин в крови?

Наиболее легкий способ повышения концентрации альбумина — ежедневное употребление продуктов с большим содержанием белков, жиров и клетчатки:

  • яйца;
  • молочные и кисломолочные продукты;
  • курятина;
  • овсянка;
  • рыба, морепродукты;
  • орехи и липиды;
  • фрукты и овощи.

Питательный режим желательно согласовать с лечащим врачом.

Правильное питание

Гипоальбуминемия часто связана с неправильной работой печени, поэтому врачи советуют исключить из рациона:

  • соленое, копченое, жареное, острое;
  • алкоголь.

Также важно пролечить инфекции, начать борьбу с ожирением, не злоупотреблять медикаментозными препаратами без назначения специалиста.

Другой метод повышения содержания белка — употребление печеночного чая. Травяной сбор способствует нормализации работы печени, очищает орган от шлаков и токсинов, улучшая общее состояние больного.

Напиток имеет минимум противопоказаний за исключением индивидуальной непереносимости и наличия камней в желчном пузыре, но перед применением желательно проконсультироваться с лечащим врачом.

Печеночный фито-чай
На фото: печеночный фито-чай

При гипоальбуминемии назначают препарат Альбумин. Лекарство вводится внутривенным струйным и капельным вливанием. Дозировка зависит от индивидуальных показаний, возраста и положения больного — иногда Альбумин применяется для лечения беременных женщин.

Препарат Альбумин человеческий, 20%, 50 мл.
На фото: препарат Альбумин человеческий, 20%, 50 мл.

Справка! Медикамент обладает противопоказаниями и рядом побочных действий, поэтому нельзя заниматься самолечением.

Подготовка к сдаче анализа

Биохимический анализ крови производится натощак в утренние часы. За 12 часов до забора крови из вены рекомендуется исключить из рациона жареную, соленую, копченую пищу.

Желательно избегать стрессовых ситуаций, перенапряжений и занятий спортом.

Обратите внимание! Если заниматься перед сдачей анализа активными видами деятельности, спортом — это дает ложный результат или способствует повышению уровня альбумина.

Источник: normatela.com

Глобулины

В отличие от альбуминов глобулины не растворимы в воде, а растворимы в слабых солевых растворах.

1-ГЛОБУЛИНЫ

В эту фракцию входят разнообразные белки. 1-глобулины имеют высокую гидрофильность и низкую молекулярную массу — поэтому при патологии почек легко теряются с мочой. Однако их потеря не оказывает существенного влияния на онкотическое давление крови, потому что их содержание в плазме крови невелико.

Функции 1-глобулинов

1. Транспортная. Транспортируют липиды, при этом образуют с ними комплексы — липопротеины. Среди белков этой фракции есть белки, предназначенные для транспорта гормонов: тироксин-связывающий белок – перенос тироксина, транскортин – транспорт кортизола, кортикостерона и прогестерона, кислый гликопротеин – транспорт прогетерона.

2. Участие в функционировании системы свертывания крови и системы комплемента— протромбин.

3. Регуляторная функция. Некоторые белки фракции1-глобулинов яляются эндогенными ингибиторами протеолитических ферментов. Наиболее высока в плазме концентрация1-антитрипсина. Содержание его в плазме от 2 до 4 г/л (очень высокое), молекулярная масса — 58-59 кДа. Главная его функция — угнетение эластазы — фермента, гидролизующего эластин (один из основных белков соединительной ткани).1-антитрипсин также является ингибитором протеаз: тромбина, плазмина, трипсина, химотрипсина и некоторых ферментов системы свертывания крови. К фракции1-глобулинов относят также1-антихимотрипсин. Он угнетает химотрипсин и некоторые протеиназы форменных элементов крови.

2-ГЛОБУЛИНЫ.

Высокомолекулярные белки. Эта фракция содержит регуляторные белки, факторы свертывания крови, компоненты системы компемента, транспортные белки. Сюда относится и церулоплазмин. Он является переносчиком меди, а также обеспечивает постоянство содержания меди в различных тканях, особенно в печени. При наследственном заболевании — болезни Вильсона — уровень церулоплазмина понижается. Вследствие этого повышается концентрация меди в мозге и печени. Это проявляется развитием неврологической симптоматики, а также циррозом печени.

Гаптоглобины.Содержание этих белков составляет приблизительно 1/4 часть от всех2-глобулинов. Гаптоглобин образует специфические комплексы с гемоглобином, освобождающимся из эритроцитов при внутрисосудистом гемолизе. Вследствие высокой молекулярной массы этих комплексов они не могут выводиться почками. Это предотвращает потерю железа организмом.

Комплексы гемоглобина с гаптоглобином разрушаются клетками ретикуло-эндотелиальной системы (клетки системы мононуклеарных фагоцитов), после чего глобин расщепляется до аминокислот, гем разрушается до билирубина и экскретируется желчью, а железо остается в организме, и может быть реутилизировано.

К этой же фракции относится и 2-макроглобулин. Молекулярная масса этого белка 720 кДа, концентрация в плазме крови 1.5-3 г/л. Он является эндогенным ингибитором протеиназ всех классов, а также связывает гормон инсулин.

С1-ингибитор— гликопротеид, является основным регуляторным звеном в классическом пути активации комплемента (КПК), способен угнетать плазмин, калликреин.

Транспортные белки:ретинолсвязывающий белок – транспорт витамина А, витамин Д- связывающий белок – транспорт витамина Д.

Компоненты системы свертывания крови и фибринолиза: антитромбинIIIи плазминоген.

-ГЛОБУЛИНЫ

К этой фракции относятся:

фибриноген— белок системы свертывания крови

белки компонентов системы активации комплемента

транспортные белки:трансферин (транспорт ионов железа), транскобаламин (перенос витамина В12), глобулин-связывающий половые гормоны (транспорт тестостерона и эстрадиола), ЛНП (транспорт липидов).

гемопексинпереносит свободный гем, порфирин. Связывает гемсодержащие белки и переносит их в печень для разрушения.

-ГЛОБУЛИНЫ

В этой фракции содержатся в основном антитела— белки, синтезируемые в лимфоидной ткани и в клетках РЭС, а также некоторые компоненты системы комплемента.

Функция антител — защита организма от чужеродных агентов (бактерии, вирусы, чужеродные белки), которые называютсяантигенами.

Главные классы антител в крови:

— иммуноглобулины G (IgG)

— иммуноглобулины M (IgM)

— иммуноглобулины A (IgA), к которым относятся IgD и IgE.

IgG и IgM способны активировать систему комплемента. Подробнее об иммуноглобулинах читайте в приложении 1 данного пособия.

К группе гамма-глобулинов относится также криоглобулины. Это белки, которые способны выпадать в осадок при охлаждении сыворотки. У здоровых людей их в сыворотке нет. Они появляются у больных с ревматическим артритом, миеломной болезнью.

Среди криоглобулинов существует белок фибронектин. Это высокомолекулярный гликопротеин (молекулярная масса 220 кДа). Он присутствует в плазме крови и на поверхности многих клеток (макрофагов, эндотелиальных клеток, тромбоцитов, фибробластов). Функциифибронектина: 1. Обеспечивает взаимодействие клеток друг с другом; 2. Способствует адгезии тромбоцитов; 3. Предотвращает метастазирование опухолей.

Плазменный фибронектин является опсонином — усиливает фагоцитоз. Играет важную роль в очищении крови от продуктов распада белков, например, распада коллагена. Вступая в связь с гепарином, участвует в регуляции процессов свертывания крови. В настоящее время этот белок широко изучается и используется для диагностики особенно при состояниях, сопровождающихся угнетением системы макрофагов (сепсис и др.)

Интерферон— это гликопротеин. Имеет молекулярную массу около 26 кДа. Обладает видовой специфичностью. Вырабатывается в клетках в ответ на внедрение в них вирусов. У здорового человека его концентрация в плазме мала. Но при вирусных заболеваниях его концентрация увеличивается.

Источник: studfile.net

РАЗДЕЛ 14. БИОХИМИЯ КРОВИ

IV. Белки плазмы крови

В плазме крови содержится 7% всех белков организма при концентрации 60 — 80 г/л. Белки плазмы крови выполняют множество функций. Одна из них заключается в поддержании осмотического давления, так как белки связывают воду и удерживают её в кровеносном русле.

• Белки плазмы образуют важнейшую буферную систему крови и поддерживают pH крови в пределах 7,37 — 7,43.

• Альбумин, транстиретин, транскортин, трансферрин и некоторые другие белки (табл. 14-2) выполняют транспортную функцию.

• Белки плазмы определяют вязкость крови и, следовательно, играют важную роль в гемодинамике кровеносной системы.

• Белки плазмы крови являются резервом аминокислот для организма.

• Иммуноглобулины, белки свёртывающей системы крови, α1-антитрипсин и белки системы комплемента осуществляют защитную функцию.

Методом электрофореза на ацетилцеллюлозе или геле агарозы белки плазмы крови можно разделить на альбумины (55 — 65%), α1-глобулины (2 — 4%), α2-глобулины (6 — 12%), β-глобулины (8 — 12%) и н-глобулины (12 — 22%) (рис. 14-19).

Рис. 14-19. Электрофореграмма (А) и денситограмма (Б) белков сыворотки крови.

Альбумины и глобулины биохимия

Применение других сред для электрофоретического разделения белков позволяет обнаружить большее количество фракций. Например, при электрофорезе в полиакриламидном или крахмальном гелях в плазме крови выделяют 16 — 17 белковых фракций. Метод иммуноэлектрофореза, сочетающий электрофоретический и иммунологический способы анализа, позволяет разделить белки плазмы крови более чем на 30 фракций.

Большинство сывороточных белков синтезируется в печени, однако некоторые образуются и в других тканях. Например, н-глобулины синтезируются В-лимфоцитами (см. раздел 4), пептидные гормоны в основном секретируют клетки эндокринных желёз, а пептидный гормон эритропоэтин — клетки почки.

Для многих белков плазмы, например, альбумина, α1-антитрипсина, гаптоглобина, трансферрина, церулоплазмина, α2-макроглобулина и иммуноглобулинов, характерен полиморфизм (см. раздел 4).

Почти все белки плазмы, за исключением альбумина, являются гликопротеинами. Олигосахариды присоединяются к белкам, образуя гликозидные связи с гидроксильной группой серина или треонина, или взаимодействуя с карбоксильной группой аспарагина. Концевой остаток олигосахаридов в большинстве случаев представляет собой N-ацетилнейраминовую кислоту, соединённую с галактозой. Фермент эндотелия сосудов нейраминидаза гидролизует связь между ними, и галактоза становится доступной для специфических рецепторов гепатоцитов. Путём эндоцитоза «состарившиеся» белки поступают в клетки печени, где разрушаются. Т1/2 белков плазмы крови составляет от нескольких часов до нескольких недель.

При ряде заболеваний происходит изменение соотношения распределения белковых фракций при электрофорезе по сравнению с нормой (рис. 14-20).

Рис. 14-20. Протеинограммы белков сыворотки крови. а — в норме; б — при нефротическом синдроме; в — при гипогаммаглобулинемии; г — при циррозе печени; д — при недостатке α1-антитрипсина; е — при диффузной гипергаммаглобулинемии.

Альбумины и глобулины биохимия

Такие изменения называют диспротеинемиями, однако их интерпретация часто имеет относительную диагностическую ценность. Например, характерное для нефротического синдрома снижение альбуминов, α1— и y-глобулинов и увеличение α2— и β-глобулинов отмечают и при некоторых других заболеваниях, сопровождающихся потерей белков. При снижении гуморального иммунитета уменьшение фракции y-глобулинов свидетельствует об уменьшении содержания основного компонента иммуноглобулинов — IgG, но не отражает динамику изменений IgA и IgM.

Содержание некоторых белков в плазме крови может резко увеличиваться при острых воспалительных процессах и некоторых других патологических состояниях (травмы, ожоги, инфаркт миокарда). Такие белки называют белками острой фазы, так как они принимают участие в развитии воспалительной реакции организма. Основной индуктор синтеза большинства белков острой фазы в гепатоцитах — полипептид интерлейкин-1, освобождающийся из мононуклеарных фагоцитов. К белкам острой фазы относят С-реактивный белок, называемый так, потому что он взаимодействует с С-полисахаридом пневмококков, α1-антитрипсин, гаптоглобин, кислый гликопротеин, фибриноген. Известно, что С-реактивный белок может стимулировать систему комплемента, и его концентрация в крови, например, при обострении ревматоидного артрита может возрастать в 30 раз по сравнению с нормой. Белок плазмы крови α1-антитрипсин может инактивировать некоторые протеазы, освобождающиеся в острой фазе воспаления.

Содержание некоторых белков в плазме крови и их функции представлены в таблице 14-2.

Таблица 14-2. Содержание и функции некоторых белков плазмы крови

Группа

Белки

Концентрация в сыворотке крови, г/л

Функция

Альбумины

Транстиретин

0,25

Транспорт тироксина и трийодтиронина

 

Альбумин

40

Поддержание осмотического давления, транспорт жирных кислот, билирубина, жёлчных кислот, стероидных гормонов, лекарств, неорганических ионов, резерв аминокислот

α1-Глобулины

α1-Антитрипсин

2,5

Ингибитор протеиназ

 

ЛПВП

0,35

Транспорт холестерола

 

Протромбин

0,1

Фактор II свёртывания крови

 

Транскортин

0,03

Транспорт кортизола, кортикостерона, прогестерона

 

Кислый α1-гликопротеин

1

Транспорт прогестерона

 

Тироксинсвязывающий глобулин

0,02

Транспорт тироксина и трийодтиронина

α2-Г лобулины

Церулоплазмин

0,35

Транспорт ионов меди, оксидоредуктаза

 

Антитромбин III

0,3

Ингибитор плазменных протеаз

 

Гаптоглобин

1

Связывание гемоглобина

 

α2-Макроглобулин

2,6

Ингибитор плазменных протеиназ, транспорт цинка

 

Ретинолсвязывающий белок

0,04

Транспорт ретинола

 

Витамин D связывающий белок

0,4

Транспорт кальциферола

β-Глобулины

ЛПНП

3,5

Транспорт холестерола

 

Трансферрин

3

Транспорт ионов железа

 

Фибриноген

3

Фактор I свёртывания крови

 

Транскобаламин

25 x 10-9

Транспорт витамина В12

 

Глобулин связывающий белок

20 x 10-6

Транспорт тестостерона и эстрадиола

 

С-реактивный белок

<0,01

Активация комплемента

y-Глобулины

IgG

12

Поздние антитела

 

IgA

3,5

Антитела, защищающие слизистые оболочки

 

IgM

1,3

Ранние антитела

 

IgD

0,03

Рецепторы В-лимфоцитов

 

IgE

<0,01

Реагин

 Альбумин. Концентрация альбумина в крови составляет 40-50 г/л. В сутки в печени синтезируется около 12 г альбумина, Т1/2 этого белка — примерно 20 дней. Альбумин состоит из 585 аминокислотных остатков, имеет 17 дисульфидных связей и обладает молекулярной массой 69 кД. Молекула альбумина содержит много дикарбоновых аминокислот, поэтому может удерживать в крови катионы Са2+, Сu2+, Zn2+. Около 40% альбумина содержится в крови и остальные 60% в межклеточной жидкости, однако его концентрация в плазме выше, чем в межклеточной жидкости, поскольку объём последней превышает объём плазмы в 4 раза.

Благодаря относительно небольшой молекулярной массе и высокой концентрации альбумин обеспечивает до 80% осмотического давления плазмы. При гипоальбуминемии осмотическое давление плазмы крови снижается. Это приводит к нарушению равновесия в распределении внеклеточной жидкости между сосудистым руслом и межклеточным пространством. Клинически это проявляется как отёк. Относительное снижение объёма плазмы крови сопровождается снижением почечного кровотока, что вызывает стимуляцию системы ренин-ангиотензин-альдостерон, обеспечивающей восстановление объёма крови (см. раздел 11). Однако при недостатке альбумина, который должен удерживать Nа+, другие катионы и воду, вода уходит в межклеточное пространство, усиливая отёки.

Гипоальбуминемия может наблюдаться и в результате снижения синтеза альбуминов при заболеваниях печени (цирроз), при повышении проницаемости капилляров, при потерях белка из-за обширных ожогов или катаболических состояний (тяжёлый сепсис, злокачественные новообразования), при нефротическом синдроме, сопровождающемся альбуминурией, и голодании. Нарушения кровообращения, характеризующиеся замедлением кровотока, приводят к увеличению поступления альбумина в межклеточное пространство и появлению отёков. Быстрое увеличение проницаемости капилляров сопровождается резким уменьшением объёма крови, что приводит к падению АД и клинически проявляется как шок.

Альбумин — важнейший транспортный белок. Он транспортирует свободные жирные кислоты (см. раздел 8), неконъюгированный билирубин (см. раздел 13), Са2+, Сu2+, триптофан, тироксин и трийодтиронин (см. раздел 11). Многие лекарства (аспирин, дикумарол, сульфаниламиды) связываются в крови с альбумином. Этот факт необходимо учитывать при лечении заболеваний, сопровождающихся гипоальбуминемией, так как в этих случаях повышается концентрация свободного лекарства в крови. Кроме того, следует помнить, что некоторые лекарства могут конкурировать за центры связывания в молекуле альбумина с билирубином и между собой.

Транстиретин (преальбумин) называют тироксинсвязывающим преальбумином. Это белок острой фазы. Транстиретин относят к фракции альбуминов, он имеет тетрамерную молекулу. Он способен присоединять в одном центре связывания ретинолсвязывающий белок, а в другом — до двух молекул тироксина и трийодтиронина. Соединение с этими лигандами происходит независимо друг от друга. В транспорте последних транстиретин играет существенно меньшую роль по сравнению с тироксинсвязывающим глобулином.

α1-Антитрипсин относят к α1-глобулинам. Он ингибирует ряд протеаз, в том числе фермент эластазу, освобождающийся из нейтрофилов и разрушающий эластин альвеол лёгких. При недостаточности α1-антитрипсина могут возникнуть эмфизема лёгких (см. раздел 15) и гепатит, приводящий к циррозу печени. Существует несколько полиморфных форм α1-антитрипсина, одна из которых является патологической. У людей, гомозиготных по двум дефектным аллелям гена антитрипсина, в печени синтезируется α1-антитрипсин, который образует агрегаты, разрушающие гепатоциты. Это приводит к нарушению секреции такого белка гепатоцитами и к снижению содержания α1-антитрипсина в крови.

Гаптоглобин составляет примерно четверть всех α2-глобулинов. Гаптоглобин при внутрисосудистом гемолизе эритроцитов образует комплекс с гемоглобином, который разрушается в клетках РЭС. Если свободный гемоглобин, имеющий молекулярную массу 65 кД, может фильтроваться через почечные клубочки или агрегировать в них, то комплекс гемоглобин-гаптоглобин имеет слишком большую молекулярную массу (155 кД), чтобы пройти через гломерулы. Следовательно, образование такого комплекса предотвращает потери организмом железа, содержащегося в гемоглобине. Определение содержания гаптоглобина имеет диагностическое значение, например, снижение концентрации гаптоглобина в крови наблюдают при гемолитической анемии. Это объясняют тем, что при Т1/2 гаптоглобина, составляющем 5 дней, и Т1/2 комплекса гемоглобин-гаптоглобин (около 90 мин) увеличение поступления свободного гемоглобина в кровь при гемолизе эритроцитов вызовет резкое снижение содержания свободного гаптоглобина в крови.

Гаптоглобин относят к белкам острой фазы, его содержание в крови повышается при острых воспалительных заболеваниях.

Информация о некоторых других белках плазмы крови, представленных в табл. 14-2, имеется в соответствующих разделах учебника.

Источник: lifelib.info

Структура простых белков представлена только полипептидной цепью (альбумин, инсулин). Однако необходимо понимать, что многие простые белки (например, альбумин) не существуют в «чистом» виде, они всегда связаны с какими-либо небелковыми веществами. Их относят к простым белкам только по той причине, что связи с небелковой группой слабые и при выделении in vitro они оказываются свободным от других молекул — простым белком.

Альбумины 

Альбумины – это группа схожих белков плазмы крови с молекулярной массой 69 кДа, содержат много глутаминовой кислоты и поэтому имеют кислые свойства и высокий отрицательный заряд при физиологических рН. Легко адсорбируют полярные и неполярные молекулы, являются белком-транспортером в крови для многих веществ, в первую очередь для билирубина и длинноцепочечных жирных кислот.

Глобулины

Группа разнообразных белков плазмы крови с молекулярной массой до 100 кДа, слабокислые или нейтральные. Они слабо гидратированы, по сравнению с альбуминами меньше устойчивы в растворе и легче осаждаются, что используется в клинической диагностике в «осадочных» пробах (тимоловая, Вельтмана). Несмотря на то, что их обычно относят к простым, многие глобулины содержат углеводные или иные небелковые компоненты.

При электрофорезе глобулины сыворотки крови разделяются, как минимум, на 4 фракции – α1-глобулины, α2-глобулины, β-глобулины и γ-глобулины.

Картина электрофореграммы (вверху) белков сыворотки крови
и полученной на ее основе протеинограммы (внизу) 

Так как глобулины включают в себя разнообразные белки, то их функции разнообразны: 

Часть α-глобулинов обладает антипротеазной активностью, что защищает белки крови и межклеточного матрикса от преждевременного разрушения, например, α1-антитрипсин, α1-антихимотрипсин, α2-макроглобулин.

Некоторые глобулины способны к связыванию определенных веществ: трансферрин (переносит ионы железа), церулоплазмин (содержит ионы меди), гаптоглобин (переносчик гемоглобина), гемопексин (транспорт гема).

γ-Глобулины являются антителами и обеспечивают иммунную защиту организма.

Гистоны

Нуклеосомы

Взаимодействие гистонов и ДНК

Гистоны – внутриядерные белки массой около 24 кДа. Обладают выраженными основными свойствами, поэтому при физиологических значениях рН заряжены положительно и связываются с дезоксирибо-нуклеиновой кислотой (ДНК), образуя дезоксирибо-нуклеопротеины. Существуют 5 типов гистонов – очень богатый лизином (29%) гистон Н1, другие гистоны Н2а, H2b, НЗ, Н4 богаты лизином и аргинином (в сумме до 25%).

Радикалы аминокислот в составе гистонов могут быть метилированы, ацетилированы или фосфорилированы. Это изменяет суммарный заряд и другие свойства белков.

Можно выделить две функции гистонов:

1. Регуляция активности генома, а именно – они препятствуют транскрипции.

2. Структурная – стабилизируют пространственную структуру ДНК.

Гистоны в комплексе с ДНК образуют нуклеосомы – октаэдрические структуры, составленные из гистонов Н2а, H2b, НЗ, Н4. Гистон H1 связан с молекулой ДНК, не позволяя ей «соскользнуть» с гистонового октамера. ДНК обвивает нуклеосому 2,5 раза, после чего обвивает следующую нуклеосому. Благодаря такой укладке достигается уменьшение размеров ДНК в 7 раз.

Далее такие «бусы» нуклеосом могут складываться в суперспираль и в более сложную структуру нуклеопротеина.

Протамины

Это белки массой от 4 кДа до 12 кДа, имеются в ядрах сперматозоидов многих организмов, в сперме рыб (молóках) они составляют основную массу белка. Протамины являются заменителями гистонов и служат для организации хроматина в спермиях. По сравнению с гистонами протамины отличаются резко увеличенным содержанием аргинина (до 80%). Также, в отличие от гистонов, протамины обладают только структурной функцией, регулирующей функции у них нет, хроматин в сперматозоидах неактивен.

Коллаген

Коллаген – фибриллярный белок с уникальной структурой, составляет основу межклеточного вещества соединительной ткани сухожилий, кости, хряща, кожи, но имеется, конечно, и в других тканях.

Полипептидная цепь коллагена включает 1000 аминокислот и носит название α-цепь. Насчитывается около 30 вариантов α-цепи коллагена, но все они обладают одним общим признаком – в большей или меньшей степени включают повторяющийся триплет [Гли-Х-Y], где X и Y – любые, кроме глицина, аминокислоты. В положении X чаще находится пролин или, гораздо реже, 3-оксипролин, в положении Y встречается пролин и 4-оксипролин. Также в положении Y часто находится аланин, лизин и 5-оксилизин. На другие аминокислоты приходится около трети от всего количества аминокислот.

Жесткая циклическая структура пролина и оксипролина не позволяет образовать правозакрученную α-спираль, но образует т.н. «пролиновый излом». Благодаря такому излому формируется левозакрученная спираль, где на один виток приходится 3 аминокислотных остатка. 

При синтезе коллагена первостепенное значение имеет гидроксилирование лизина и пролина, включенных в состав первичной цепи, осуществляемое при участии аскорбиновой кислоты. Также коллаген обычно содержит моносахаридные (галактоза) и дисахаридные (глюкоза-галактоза) молекулы, связанные с ОН-группами некоторых остатков оксилизина.

Этапы синтеза молекулы коллагена

Синтезированная молекула коллагена построена из 3 полипептидных цепей, сплетенных между собой в плотный жгут – тропоколлаген (длина 300 нм, диаметр 1,6 нм). Полипептидные цепи прочно связаны между собой через ε-аминогруппы остатков лизина. Тропоколлаген формирует крупные коллагеновые фибриллы диаметром 10-300 нм. Поперечная исчерченность фибриллы обусловлена смещением молекул тропоколлагена друг относительно друга на 1/4 их длины.

Эластин

Строение десмозина

По строению в общих чертах эластин схож с коллагеном. Находится в связках, эластичном слое сосудов. Структурной единицей является тропоэластин с молекулярной массой 72 кДа и длиной 800 аминокислотных остатков. В нем гораздо больше лизина, валина, аланина и меньше гидроксипролина. Отсутствие пролина обусловливает наличие спиральных эластичных участков.

Характерной особенностью эластина является наличие своеобразной структуры – десмозина, который своими 4-мя группами объединяет белковые цепи в системы, способные растягиваться во всех направлениях.

α-Аминогруппы и α-карбоксильные группы десмозина включаются в пептидные связи одной или нескольких белковых цепей.

Роль десмозина в соединении белков

Источник: biokhimija.ru

В основу классификации белков положены их физико-химические и химические особенности. Белки классифицируют по нескольким признакам.

Альбумины и глобулины биохимия

1.По строению

По химическому строению молекул все белки подразделяют на простые и сложные.

Простые белки (протеины) состоят только из аминокислот.

Сложные белки (протеиды) состоят из глобулярных белков и небелкового компонента. Небелковая часть сложного белка называется простетической группой.

Простетическая группа может быть представлена различными по химической природе соединениями. В зависимости от ее строения и свойств сложные белки подразделяются:

  • хромопротеины содержат в качестве небелковой части окрашенный компонент (гемоглобин, миоглобин, цитохромы, хлорофилл);
  • гликопротеины  содержат углеводы;
  • нуклеопротеины  содержат нуклеиновые кислоты;
  • липопротеины  содержат липиды;
  • фосфопротеины  содержат остаток ортофосфорной кислоты;
  • металлопротеины  содержат комплексно связанный металл.

Альбумины и глобулины биохимия

Альбумины и глобулины биохимия

Простые белки

К простым белкам относят альбумины, глобулины, протамины, гистоны, проламины, глютелины, протеиноиды.

Альбумины и глобулины белки, которые есть во всех тканях. Сыворотка крови наиболее богата этими белками. На долю альбуминов приходится более половины белков плазмы крови.

Альбумины

Альбумины составляют основную часть белков животных и растительных тканей. Альбумины – это глобулярные белки.

Альбумины – белки относительно небольшой молекулярной массы 25000-70000, они имеют выраженный кислый характер, так как содержат большое количество аспарагиновой и глутаминовой кислот.

Они растворяются в чистой воде и разбавленных растворах кислот, щелочей и солей. Из водных растворов альбумины осаждаются сернокислым аммонием только при полном насыщении раствора, т.к. это сильно гидратированые белки.

При кипячении свертываются и выпадают в осадок в виде густых хлопьев денатурированного белка. Образование пенки на молоке, загустение содержимого яиц при варке объясняется денату­рацией альбуминов. Пена, образующаяся при варке плодов и овощей, частично состоит из свернувшихся растительных альбуминов.

Альбумины – белки преимущественно животного происхождения. К ним относятся альбумины сыворотки крови, лактальбумин молока, овальбумин яичного белка, миоальбумин мышц животных, а также лейкозин пшеницы, ржи и ячменя, легуменин гречихи и сои, рицин касторовых бобов.

Альбумины выполняют в организме питательную, транспортную, обезвреживающую функции.

Характерным свойством альбуминов является их высокая адсорбционная способность. Они адсорбируют полярные и неполярные молекулы, выполняя транспортную роль.

Они транспортируют гормоны, холестерол, билирубин, лекарственные вещества, ионы кальция.

Альбумины связывают токсичные соединения – алкалоиды, тяжелые металлы, билирубин.

Благодаря высокой гидрофильности, небольшим размерам молекул, значительной концентрации альбумины играют важную роль в поддержании осмотического давления крови. Альбумины обеспечивают на 80% осмотическое давление крови от всех других сывороточных белков.

Альбумины синтезируются преимущественно в печени и быстро обновляются.

Глобулины

Глобулины – широко распространённая группа глобулярных белков, обычно сопутствующая альбуминам. Глобулины имеют более высокую молекулярную массу, чем альбумины. Глобулины слабокислые или нейтральные белки.

Глобулины растворимы в слабых солевых растворах, не растворимы в дистиллированной воде и выпадают в осадок при 50% и более насыщении растворов сернокислым аммонием, при нагревании свертываются.

К глобулинам относятся сывороточный, молочный, яичный, мышечный и другие глобулины.

Глобулинов много в пищевых продуктах. В горохе содержится белок легумин, в сое  глиципин, в семенах фасоли — фазеолин, в картофеле — туберин, в крови — фибриноген, в молоке — лактоглобулин, в яйцах — яичный глобулин, в конопле – эдестин.

Глобулины в организме выполняют питательную, защитную, транспортную функции.

В крови глобулины транспортируют холестерин, фосфолипиды, триглицериды, ионы железа (Fe2+), меди (Cu2+), витамин В12. В молоке лактоглобулины и лактальбумины также выполняют транспортную функцию.

Глобулины вырабатываются печенью и иммунной системой.

Протамины

Протамины – низкомолекулярные положительно заряженные ядерные белки с резко выраженными основными свойствами (щелочные белки), с низкой молекулярной массой  400012000, содержат 60-85% аргинина.

Протамины являются составной частью многих важных сложных белков (нуклеопротеидов), входящих в состав клеточных ядер. В ядрах клеток они находятся в комплексе с ДНК.

Протамины хорошо растворяются в воде, кислой и нейтральной среде и осаждаются в щелочных средах, не осаждаются при кипячении.

Протамины обнаружены в ядрах сперматозоидов у рыб. Составляют фракцию основного белка в зрелой сперме рыб.

Протамины содержатся в сперме некоторых видов рыб (сальмин – семга, клупеин – сельдь), скумбрин – скумбрия.

Выполняют главным образом структурную функцию, поэтому и присутствуют в клетках не способных к делению.

Гистоны

Гистоны представляют собой низкомолекулярные (1100022000) белки с третичной структурой, обладают выраженными основными (щелочными) свойствами, т.к. содержат большое количество аргинина и лизина.

Гистоны содержатся в ядрах клеток высших организмов в соединении с нуклеиновыми кислотами, образуя нуклеопротеиды.

Гистоны играют важную роль в регуляции генной ак­тивности. Это белки хромосом, они входят в структуру хроматина. В клетках положительно заряженные гистоны связаны с отрицательно заряженными ДНК в составе хроматина. Гистоны в хроматине формируют остов, на который накручивается молекула ДНК.

Это очень стабильные белки, молекулы которых могут сохраняться в течение всей жизни клетки.

Гистоны находятся в виде нуклеопротеидов в лейкоцитах и красных кровяных шариках (гемоглобин).

Гистоны по своим свойствам близки к протаминам, растворимы в воде и разбавленных кислотах, нерастворимы в водном аммиаке и не свертываются при нагревании. Молекулы гистонов полярны, очень гидрофильны, поэтому они с трудом высаливаются из растворов.

Основные функции гистонов – структурная и регуляторная.

Структурная – гистоны участвуют в стабилизации пространственной структуры ДНК, а следовательно хроматина, хромосом и нуклеосом.

Регуляторная – заключается в способности блокировать передачу генетической информации от ДНК к РНК.

Проламины

Проламины – белки растительного происхождения, содержатся в клейковине семян злаковых растений, где выполняют роль запасных белков.  В их состав входит большое количество глутаминовой кислоты и  пролина (отсюда название проламин).

Проламины почти не содержат глицина и лизина, что делает невысокой их пищевую ценность.

Характерной особенностью проламинов является то, что они не растворимы в воде, солевых растворах, щелочах, хорошо растворимы в 60-80% растворе этилового спирта (это связано с наличием большого количества неполярной аминокислоты пролина), в то время как все другие белки денатурируют и выпадают в осадок.

К ним относятся глиадин (белок пшеницы, ржи), гордеин (белок ячменя), зеин (белок кукурузы), авенин (белокян овса), эдестин (белок конопли).

Проламины практически отсутствуют в бобовых и масличных культурах.

Глютелины

Глютелины – белки растительного происхождения, характеризующиеся высоким содержанием аминокислот пролина и глутаминовой кислоты.

Глютелины играют важную роль в питании человека, т. к. их питательная ценность высока. Они присутствуют в семенах злаковых культур вместе с проламинами.

Глютелины занимают промежуточное положение между проламинами и глобулинами.

Глютелины растворяются в разбавленных кислотах и щелочах, не растворяются в воде, спирте и разбавленных солевых растворах.

Представителями данного класса простых белков является оризенин (белок риса), глютелин (белок кукурузы) и глютенин (белок пшеницы).

У риса 80% всего белка приходится на глютелины (оризенин), этим можно объяснить высокое содержание лизина в белке рисового зерна.

Эти белки в ржаной муке не образуют клейковины, что обусловлено качественным различием белков ржи и пшеницы.

Протеиноиды

Протеиноиды – фибриллярные белки, их молекулы образуют многомолекулярные нитевидные комплексы – фибриллы.

Протеиноиды  – белки животного происхождения, богаты глицином, пролином, цистином. Они могут иметь третичную и четвертичную структуры.

Протеиноиды – белки опорных тканей (костей, хрящей, сухожилий, связок). Они представлены коллагеном, эластином и кератином.

Протеиноиды не растворяются в воде, солевых растворах, разведенных кислотах и щелочах. Не перевариваются в желудочно-кишечном тракте большинства животных и человека и поэтому не могут выполнять питательную функцию. Однако, некоторые членистоногие приспособились к питанию фибриллярными белками кожи, перьев птиц, шерсти (например, моль).

К протеиноидам относятся коллаген – основной белок кожи, костей и хрящей, эластин – белок сухожилий и соединительной ткани, кератин – белок волос, шерсти, копыт, рогов и фиброин шелка.

Коллаген

Коллаген – основной белок соединительной ткани животных и человека, состоящий из трех белковых нитей, закрученных в спираль. Коллаген защищает ткани от механических воздействий, поддерживая прочность кожного покрова.

Коллаген – широко распространённый в организме белок, составляет около трети всех белков организма. Более 80% всего коллагена организма находится в межклеточном веществе соединительной ткани кожи, костей, связок, сухожилий, хрящей. Эти ткани обладают малой растяжимостью и высокой прочностью.

Альбумины и глобулины биохимия

К особенностям аминокислотного состава коллагена относится, прежде всего, высокое содержание глицина, пролина. Полипептидные цепи коллагена содержит около 1000 аминокислот.

Альбумины и глобулины биохимия

Коллаген, долго нагреваемый в воде при 56-1000С, переходит в растворимый клей, или глютин (желатин), который охлаждаясь, застывает и образует студень. На этом свойстве желатина основано приготовление заливных блюд.

Эластин

Эластин – основной белок эластических волокон, которые в больших количествах содержатся в межклеточном веществе таких тканей, как кожа, стенки кровеносных сосудов, связки, лёгкие. Эти ткани обладают очень важными свойствами: они могут растягиваться в несколько раз по сравнению с исходной длиной, сохраняя при этом высокую прочность на разрыв, и возвращаться в первоначальное состояние после снятия нагрузки.

Эластичность связана с присутствием в эластине большого количества межцепочечных сшивок при участии аминокислоты лизина.

Альбумины и глобулины биохимия

Эластин не растворим в воде, не способен к набуханию. В составе эластина содержится много гидрофобных аминокислот — глицина, валина, аланина, лейцина, пролина.

Альбумины и глобулины биохимия

Кератин 

Кератины — семейство фибриллярных белков, обладающих механической прочностью, которая среди материалов биологического происхождения уступает лишь хитину.

Волосы (шерсть), ногти, перья, иглы, когти, рога и копыта животных состоят главным образом из кератина.

Кератины могут иметь α-структуру и β-структуру.

α-Кератин — структурный белок, построенный преимущественно в виде α-спирали.

В α-кератинах три α-спирали объединяются в суперспираль. Молекулы α-кератина ориентированы параллельно и соединены дисульфидными связями (содержат много цистеина), что придает прочность структуре.

Альбумины и глобулины биохимия

Примером β-кератинов является фиброин шелка.

Кератины не растворимы в растворах солей, кислот, щелочей. Их молекулярная масса очень высока.

Фиброин шелка 

Фиброин шелка –   фибриллярный белок, выделяемый паукообразными и некоторыми насекомыми и составляющий основу нитей паутины и коконов насекомых, в частности, шёлка тутового шелкопряда.

Его β-структура состоит из антипараллельных полипептидных цепей, связанных между собой водородными связями. Фиброин состоит в основном из глицина, аланина, серина, тирозина.

Альбумины и глобулины биохимия

Альбумины и глобулины биохимия

Сложные белки

Фосфопротеины

Фосфопротеины – это сложные белки, простетической группой которых является остаток фосфорной кислоты. Она связывается с пептидной цепью через остатки тирозина, серина и треонина, т.е. тех аминокислот, которые содержат ОН-группу.

Альбумины и глобулины биохимия

К белкам этого класса относятся:

  • казеин молока, в котором содержание фосфорной кислоты достигает 1%;
  • вителлин, вителлинин и фосвитин, выделенные из желтка куриного яйца;
  • овальбумин, открытый в белке куриного яйца;
  • ихтулин, обнаруженный в икре рыб и, который играет немаловажную роль в развитии эмбриона рыб.

Биологическая роль фосфопротеинов заключается в том, что они являются питательными веществами необходимыми для растущих организмов.

Фосфопротеины это ценный источник энергетического и пластического материала для развития зародыша и дальнейшего роста и развития организма.

Например, казеин (казеиноген) молока содержит все незаменимые аминокислоты и фосфорную кислоту. В его состав также входят ионы кальция.

Фосфор и кальций необходимы растущему организму в больших количествах для формирования скелета.

Гликопротеины

Гликопротеины (гликоконъюгаты) – это сложные белки, которые содержат в качестве простетической группы углеводный компонент.

У некоторых гликопротеидов углеводная часть непрочно связана с белком и может легко от него отделяться. Простетические группы некоторых гликопротеидов могут встречаться в тканях и в свободном состоянии.

Гликопротеины широко распространены в природе. Они встречаются в секретах (слюне и т.д.), в составе клеточных мембран, клеточных стенок, межклеточного вещества, соединительной ткани. Многие ферменты и транспортные белки являются гликопротеинами.

Гликопротеины разделяют на истинные гликопротеины и протеогликаны.

Истинные гликопротеины

Углеводная часть гликопротеинов представлена небольшими гетерополисахаридами или олигосахаридами нерегулярного строения и содержит маннозу, галактозу, глюкозу, и их аминопроизводные. Белок в них составляет 80-85% массы макромолекулы.

Для гликопротеинов характерна ковалентная гликозидная связь. N-гликозидная связь возникает между углеводным компонентом и амидной группой аспарагина в белках. Например, в иммуноглобулинах, ферментах и гормонах).

О-гликозидная связь моносахарид связан с ОН-группой серина или треонина (в муцинах), а иногда с ОН-группой гидроксилизина или гидроксипролина (коллагены).

Альбумины и глобулины биохимия

К типичным гликопротеинам относят большинство белковых гормонов, секретируемые в жидкие среды организма вещества, мембранные сложные белки, все антитела (иммуноглобулины), белки плазмы крови, молока, интерфероны, группы крови.

Функциии гликопротеинов

  1. Структурная – коллаген, эластин.
  2. Защитная – антитела (иммуноглобулины), интерферон, факторы свертывания крови (протромбин, фибриноген).
  3. Рецепторная – присоединение эффектора приводит к изменению конформации белка-рецептора, что вызывает внутриклеточный ответ.
  4. Гормональная – гонадотропный, адренокортикотропный и тиреотропный гормоны.
  5. Ферментативная – ферменты: холинэстераза, нуклеаза.
  6. Транспортная – перенос веществ в крови и через мембраны (трансферрин, транскортин, альбумин, Na++-АТФаза).

Протеогликаны

Особую группу гликопротеинов составляют протеогликаны, в составе которых углеводный компонент преобладает и на его долю приходится от 90% и выше. Более того, эти вещества по своим свойствам более сходны с полисахаридами, чем с белками.

Простетическая группа протеогликанов представлена гетерополисахаридами, имеющими регулярное строение.

Углеводная часть, аналогично с гликопротеинами, связывается с белком через остатки серина и аспарагина.

Углеводные фрагменты усиливают гидрофильные свойства белка за счёт большого количества ОН-групп и кислотных группировок. Цепи последних недостаточно гибкие и стремятся принять конформацию очень рыхлого случайного клубка, занимая огромный объём.

Будучи гидрофильными, они притягивают много воды и даже в низких концентрациях образуют гидратированные гели. Подобная способность создаёт во внеклеточном пространстве – тургор.

Протеогликаны образуют основное вещество межклеточного матрикса (межклеточного пространства).

Протеогликаны хрящевого матрикса содержат гиалуроновую кислоту, образующую студенистый гель, выполняющий роль амортизатора в хрящах и суставных поверхностях.

Альбумины и глобулины биохимия

По функции протеогликаны значимы для межклеточного пространства, особенно соединительной ткани, в которое погружены коллагеновые волокна. Они имеют древовидную структуру, в центре находится гиалуроновая кислота.

Т.к. их молекулы гидрофильны, они создают сетчатый желеподобный матрикс и заполняют пространство между клетками, являясь преградой для крупных молекул и микроорганизмов.

Альбумины и глобулины биохимия

В межклеточном матриксе присутствуют разные протеогликаны. Среди них есть очень крупные – например агрекан и ворсикан.

В межклеточном пространстве имеется также целый набор так называемых малых протеогликанов, которые широко распространены в разных видах соединительной ткани и выполняют там разнообразные функции.

Альбумины и глобулины биохимия

По соотношению белковой и углеводной частей гликопротеины подразделяются на нейтральные и кислые.

К нейтральным гликопротеинам относятся яичный белок (овальбумин), гликопротеины плазмы крови, белок щитовидной железы (тиреоглобулин).

К кислым гликопротеинам относятся – муцины и мукоиды.

Муцины являются основой слизей организма (слюны, желудоч­ного и кишечного сока). Выполняют защитную функцию — предохраняют стенки пищеварительного тракта от механических, химических повреждений. Муцины устойчивы к действию ферментов, которые гидролизуют белок.

Мукоиды – это белки синовиальной жидкости суставов, хрящей, жидкости глазного яблока. Выполняют защитную функцию, явля­ются смазочным материалом в аппарате движения.

В состав кислых гликопротеинов входит уроновая кислота, которая принимает участие в обезвреживании билирубина и лекарственных средств.

Нуклеопротеины

Нуклеопротеины (ДНП и РНП) – это сложные белки, простетической группой которых являются нуклеиновые кислоты (РНК и ДНК).

В природе обнаружено 2 типа нуклеопротеинов – дезоксирибонуклеопротеины (ДНП) – комплексы белков с дезоксирибонуклеиновой кислотой (ДНК) и рибонуклеопротеиды (РНП) – комплексы белков с рибонуклеиновой кислотой (РНК).

ДНП преимущественно локализованы в ядре, митохондриях, а РНП – в цитоплазме, а в ядре (ядрышке) обнаружены также высокомолекулярные РНП.

Выделяют два вида нуклеиновых кислот в зависимости от пентозы, входящей в их состав – рибонуклеиновая кислота (РНК), если в ее состав входит рибоза и дезоксирибонуклеиновая кислота (ДНК), если в ее состав входит дезоксирибоза.

Отличия между РНК и ДНК

  • количество цепей: в РНК одна цепь, в ДНК две цепи;
  • размеры: ДНК намного крупнее;
  • локализация в клетке: ДНК находится в ядре, почти все РНК – вне ядра;
  • вид моносахарида: в ДНК – дезоксирибоза, в РНК – рибоза;
  • азотистые основания: в ДНК имеется тимин, в РНК – урацил;
  • функция: ДНК отвечает за хранение наследственной информации, РНК – за ее реализацию.

Альбумины и глобулины биохимия

Альбумины и глобулины биохимия

ДНК преимущественно сосредоточена в ядре клеток в составе хромосом, митохондриях и хлоропластах.

Функции ДНК

Хранение, воспроизводство и передача по наследству генетического материала, экспрессия генов.

Различают три главных вида РНК:

  • матричная (информационная) – мРНК (иРНК) содержится в ядре и цитоплазме.
  • транспортная – тРНК в основном содержится в цитоплазме клетки.
  • рибосомная – рРНК составляет существенную часть рибосомы.

Функции РНК

мРНК (иРНК) – считывает информацию с участка ДНК о первичной структуре белка и несет эту информацию к рибосомам (несет информацию из ядра в цитоплазму).

тРНК – транспортирует аминокислоты к месту синтеза белка (из цитоплазмы к рибосомам).

рРНК – входит в состав рибосом (из нее построен каркас рибосом), участвует в синтезе белковой (полипептидной) цепи.

РНК в некоторых вирусах является носителем генетической информации вместо ДНК.

Видеофильм «Нуклеиновые кислоты в биосинтезе белка»

Липопротеины

Липопротеины сложные белки, простетическая группа которых представлена каким-либо липидом.

Липиды играют важную роль в организме человека. Они содержатся во всех клетках и тканях и участвуют во многих обменных процессах.

Они составляют структурную основу всех биологических мембран, в свободном состоянии присутствуют в основном в плазме крови и лимфе.

Липопротеины плазмы, сыворотки крови растворимы в воде. Липопротеины мембранных стенок клеток, нервных волокон нерастворимы в воде.

В состав липопротеинов могут одновременно входить свободные триглицериды, жирные кислоты, нейтральные жиры, фосфолипиды и холестерин (холестерол).

Альбумины и глобулины биохимия

Все типы липопротеинов имеют сходное строение: гидрофобное ядро и гидрофильный слой на поверхности. Гидрофильный слой образован белками (апопротеинами), фосфолипидами и холестеролом. Триацилглицеролы (ТАГ) и эфиры холестерола составляют гидрофобное ядро.

Альбумины и глобулины биохимия

Гидрофильные группы этих молекул ориентированы в водную фазу, а гидрофобные части – к гидрофобному ядру липопротеина, в котором находятся транспортируемые липиды.

Липиды не растворяются в воде, потому не могут переноситься кровью в чистом виде. Поэтому для транспорта липидов кровью в организме образуются комплексы липидов с белками – липопротеины.

В организме синтезируются следующие типы липопротеинов: хиломикроны (ХМ), липопротеины очень низкой плотности (ЛПОНП), липопротеины промежуточной плотности (ЛППП), липопротеины низкой плотности (ЛПНП) и липопротеины высокой плотности (ЛПВП).

Каждый из типов ЛП образуется в разных тканях и транспортирует определенные липиды.

Общая функция всех липопротеинов – это транспорт липидов.

Липопротеины хорошо растворимы в крови, так как имеют небольшой размер и отрицательный заряд на поверхности. Некоторые липопротеины легко проходят через стенки капилляров кровеносных сосудов и доставляют липиды к клеткам.

Большой размер хиломикронов не позволяет им проникать через стенки капилляров, поэтому из клеток кишечника они сначала попадают в лимфатическую систему и потом через главный грудной проток вливаются в кровь вместе с лимфой.

Липопротеины очень низкой и низкой плотности вызывают при повышении их концентрации в крови атеросклероз.

При нарушениях транспорта липидов и липидного обмена снижается энергетический потенциал организма, ухудшается передача нервных импульсов, снижается скорость ферментивных реакций. Без участия липопротеинов невозможен транспорт жирорастворимых витаминов: витаминов групп А, Е, К, D.

Хромопротеины

Хромопротеины («цветные белки») – сложные белки, содержащие в качестве простетической группы окрашенный компонент.

Хромопротеины участвуют в таких процессах жизнедеятельности, как фотосинтез, дыхание, транспорт кислорода и диоксида углерода, окислительно-восстановительные реакции, свето- и цветовосприятие и др.

В зависимости от их строения различают гемопротеины, флавопротеины, родопсин.

Гемопротеины (красные) – сложные белки, простетической группой которых служит гем.

К группе гемопротеинов относятся гемоглобин, миоглобин, хлорофиллсодержащие белки и ферменты (цитохромы, каталаза и пероксидаза). Все они содержат в качестве небелкового компонента железо- (или магний) порфирины, но различные по составу и структуре белки, и выполняют разнообразные биологические функции.

Хлорофилл (магнийпорфирин) вместе с белком обеспечивает фотосинтетическую активность растений, катализируя расщепление молекулы воды на водород и кислород (поглощением солнечной энергии). Гемопротеины (железопорфирины), напротив, катализируют обратную реакцию — образование молекулы воды, связанное с освобождением энергии.

Гемоглобин – главный компонент эритроцита и основной дыхательный пигмент, обеспечивает перенос кислорода (О2) из легких в ткани и углекислого газа (СО2) из тканей в легкие. Поддерживает кислотно-основное равновесие крови.

У гемоглобина белковый компонент представлен глобином, а небелковым компонентом является  гем – пигмент. Ион железа расположен в центре гема-пигмента, придающего крови характерный красный цвет. Гем представлен порфирином, состоящим из 4-х пиррольных колец. Каждая из 4 молекул гема «обернута» одной полипептидной цепью.

Альбумины и глобулины биохимия

Гем является простетической группой и у миоглобина, каталазы, пероксидазы, цитохромов. Гем встречается также в растительных гемопротеинах и участвует в процессе фотосинтеза.

Миоглобин (белок мышц) – небольшой глобулярный белок, молекула его состоит из одной полипептидной цепи и одного гема. Миоглобин создает в мышцах резерв кислорода, используемый мышечными волокнами.

К хромопротеинам относятся и флавопротеиды, простетическими группами у которых являются изоаллоксазиновые производные. Флавопротеиды входят в состав оксидоредуктаз – ферментов, катализирующих окислительно-восстановительные реакции в клетке. В некоторые флавоноиды включены ионы металлов и молекула гема.

Родопсин   это белок, простетической группой которого служит активная форма витамина А – ретиналь. Родопсин — основное светочувствительное вещество палочек сетчатки глаза. Его функция состоит в восприятии света в сумерках, т.е. отвечает за сумеречное зрение.

Металлопротеины

Металлопротеины – сложные белки, где роль небелкового компонента выполняют ионы металлов.

К числу металлопротеинов относятся около сотни ферментов.

Важная функция металлопротеинов связана с транспортированием металлов и их хранением в организме.

Типичными металлопротеинами являются белки, содержащие негемовое железо – трансферрин, ферритин, гемосидерин, имеющие важное значение в обмене железа в организме.

Трансферрин – растворимый в воде железопротеин, содержащийся в сыворотке крови в составе β-глобулинов. Молекула трансферрина содержит два иона Fe3+. Этот белок служит переносчиком железа в организме. Трансферрин синтезируется в печени.

Ферритин – внутриклеточный глобулярный белок, содержится главным образом в селезенке, печени, костном мозге, выполняя роль депо железа в организме. Благодаря ферритину цитозольные запасы железа поддерживаются в растворимой и нетоксичной форме.

Гемосидерин, в отличие от ферритина и трансферрина, является водонерастворимым железосодержащим белковым комплексом. Он содержится главным образом в клетках печени и селезенки, накапливается при избытке железа в организме, например, при частых переливаниях крови.

Церулоплазмин – сывороточный белок, содержащий медь и принимающий участие в ее метаболизме, а также обменных процессах железа. Относится к α-2-глобулинам.

Альбумины и глобулины биохимия

Каталаза — обезвреживает перекись водорода.

Цитохромоксидаза — в комплексе с другими ферментами дыхательной цепи митохондрий участвует в синтезе АТФ.

Алкогольдегидрогеназа — обеспечивает метаболизм этанола и других спиртов

Лактатдегидрогеназа — участвует в метаболизме молочной кислоты

Карбоангидраза — образует угольную кислоту из CO2 и H2O.

Ксантиноксидаза — отвечает за последние реакции катаболизма пуриновых оснований.

Тиреопероксидаза — участвует в синтезе гормонов щитовидной железы.

Глутатионпероксидаза — антиоксидантный фермент.

Уреаза — отвечает за распад мочевины.

Альбумины и глобулины биохимия

2.По форме молекул (фибриллярные и глобулярные)

Белки можно классифицировать по форме молекул и некоторым физически свойствам на два больших класса: фибриллярные и глобулярные белки.

Фибриллярные белки представляют собой длинные нитевидные молекулы, полипептидные цепи которых расположены параллельно друг другу вдоль одной оси и образуют длинные волокна (фибриллы) или слои.

Наиболее важна вторичная структура (третичная почти совсем не выражена).

Большинство фибриллярных белков не растворяется в воде, имеет большую молекулярную массу.

Эти белки отличаются высокой механической прочностью, выполняют структурную функцию.

К фибриллярным белкам относятся  кератины (волосы, шерсть, рога, копыта, ногти, перья), миозин (мышцы), коллаген (сухожилия и хрящи), фиброин (шелк, паутина).

Альбумины и глобулины биохимия

Глобулярные белки характеризуются компактной трехмерной укладкой полипептидных цепей, их молекулы имеют форму глобулы.

Наиболее важна третичная структура.

Глобулярные белки растворяются в воде или в разбавленных солевых растворах. Из-за большого размера молекул эти растворы – коллоидные.

Глобулярные белки выполняют функции ферментов, антител (глобулины сыворотки крови определяют иммунологическую активность) и в некоторых случаев гормонов (инсулин).

Они играют важную роль в протоплазме, удерживая в ней воду и некоторые другие вещества, способствуют поддержанию молекулярной организации.

Глобулярные белки  встречаются в физиологических жидкостях (сыворотке крови, молоке, пищеварительных жидкостях), в тканях организма.

Альбумины и глобулины биохимия

Альбумины и глобулины биохимия

Существуют также и промежуточные белки фибриллярной природы, но растворимые. Примером служит фибриноген, превращающийся в нерастворимый фибрин при свертывании крови.

3.По растворимости в отдельных растворителях

Альбумины и глобулины биохимия

Классификация простых белков основана преимущественно на растворимости в воде, спирте, солевых растворах, растворах щелочей и кислот.

Альбумины и глобулины биохимия

Источник: himija-online.ru


Leave a Comment

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.