Капиллярно трофическая недостаточность


Нарушение реологических свойств крови. К важнейшим внутрисосудистым нарушениям относятся нарушения реологии крови, обусловленные изменением суспензионной стабильности клеток крови и ее вязкости. С ними частично связаны нарушения свертывания крови и образование гемокоагуляционных микротромбов, а также нарушение перфузии крови через микроциркуляторное русло вследствие изменения скорости кровотока.

В нормальных условиях кровь характеризуется суспензионной стабильностью, которая обеспечивается величиной отрицательного заряда эритроцитов и тромбоцитов, определенным соотношением белковых фракций плазмы (альбумина — с одной стороны, глобулинов и фибриногена — с другой), а также достаточной скоростью кровотока.

Наружная поверхность эритроцитов имеет отрицательный заряд, обусловленный сиаловыми кислотами, входящими в состав клеточных мембран. Это обеспечивает взаимоотталкивание эритроцитов и пребывание их во взвешенном состоянии.


еньшение величины отрицательного заряда эритроцитов, причиной которого чаще всего служит абсолютное или относительное увеличение количества положительно заряженных макромолекул глобулинов и/или фибриногена и их адсорбция на поверхности эритроцитов, приводит к снижению суспензионной стабильности крови, агрегации эритроцитов и других клеток крови. Снижение скорости кровотока усиливает этот процесс. Описанный феномен получил название “сладж” (от англ. sludge — густая грязь, тина, ил). Основными особенностями сладжированной крови являются прилипание друг к другу эритроцитов, лейкоцитов и тромбоцитов и повышение вязкости крови, что затрудняет ее перфузию через микрососуды. Внутрисосудистое образование агрегатов эритроцитов и других клеток крови наблюдается при: повышении проницаемости стенки капилляров для отрицательно заряженных молекул альбуминов под влиянием БАБ; перевязке сосудов; повреждении тканей; внутривенном введении высокомолекулярных веществ (декстрана, метилцеллюлозы); отравлении мышьяком, кадмием, бензолом, толуолом, анилином; при различных видах шока, олигурии, острой сосудистой недостаточности; экстракорпоральном кровообращении; гипотермии; заболеваниях, сопровождающихся повышением уровня фибриногена и глобулинов и снижением концентрации альбумина (множественная миелома, макроглобулинемия и др.) в крови.

В зависимости от характера действия сладж может быть обратимым (при наличии только агрегации эритроцитов) и необратимым. В последнем случае наблюдается агглютинация эритроцитов. Размеры агрегатов при сладже варьируют от 10×10 до 100×200 мкм и более.


Процесс формирования агрегатов клеток крови имеет определенную последовательность. В первые минуты после повреждения, преимущественно в капиллярах и венулах, образуются агрегаты из тромбоцитов и хиломикронов (крупные липидные частички размером 0,1-1,0 мкм, которые содержат в основном триглицериды, поступают в кровь из лимфы кишечника и циркулируют в форме стабильной эмульсии). Они плотно фиксируются к стенке микрососудов, образуя “белый” тромб, или уносятся в другие отделы сосудистой системы к новым очагам тромбообразования.

Агрегаты эритроцитов образуются в первые часы после повреждения, сначала в венулах, а затем — в артериолах. Это обусловлено снижением скорости кровотока. Через 12—18 ч указанные нарушения прогрессируют как по выраженности проявлений, так и по распространенности. Возможно и обратное развитие процесса (дезагрегация).

Патофизиологические последствия агрегации эритроцитов проявляются нарушением микроциркуляции и вызванными им изменениями метаболизма и функций органов и систем.

Нарушения микроциркуляции обусловлены:

1) частичной (парциальной) обтурацией микрососудов вследствие оседания на их внутренней оболочке агрегатов эритроцитов, которые имеют большую массу, чем отдельные эритроциты. Снижение скорости кровотока, увеличение размеров агрегатов, прилипание эритроцитов к стенке сосудов, повышение вязкости крови — факторы, ускоряющие процесс оседания агрегатных комплексов на внутренней оболочке микрососудов;


2) полной обтурацией микрососудов агрегатами тромбоцитов и эритроцитов. При этом большие агрегаты, состоящие из нескольких десятков и сотен эритроцитов, могут полностью перекрывать просвет артериол и венул. Агрегаты меньших размеров достигают более мелких сосудов, вплоть до капилляров, вызывая их эмболию;

3) резким замедлением кровотока, сепарацией (отделением) плазмы от эритроцитов, маятникообразным движением плазмы с зависшими в ней агрегатами, стазом. В связи с закупоркой терминальных артериол большим количеством агрегатов эритроцитов капилляры пропускают только плазму. При этом повреждается стенка микрососудов (набухание и десквамация эндотелия). Усиливают этот процесс кислая реакция среды, накопление местных метаболитов, БАВ (серотонин, гистамин, гепарин), поступающих в кровь в результате массовой дегрануляции тучных клеток близлежащей соединительной ткани. Возникающее вследствие этого повышение проницаемости венул и капилляров способствует выходу альбуминов и жидкости за их пределы, сгущению крови, повышению ее вязкости. Создаются условия (повреждение сосудистой стенки, агрегация тромбоцитов и их повреждение, замедление кровотока) для образования множественных гемокоагуляционных микротромбов с последующим нарастанием тяжести микроциркуляторных расстройств.

Комплекс описанных выше патофизиологических нарушений микроциркуляции на завершающем этапе развития сладжа, который характеризуется выраженными нарушениями метаболизма и функций органов и тканей, а также недостаточным уровнем трофического обеспечения, называют капиллярно-трофической недостаточностью.


Таким образом, сладж-феномен, возникающий вначале как местная реакция ткани на повреждение, в дальнейшем может приобрести характер системной реакции, генерализованного ответа организма. В этом заключается его общепатологическое значение.

Нарушение проницаемости обменных сосудов. Обменные сосуды, или капилляры, выполняют две основные функции: осуществление движения крови и способность пропускать в направлении кровь—ткань и обратно воду, растворенные газы, кристаллогидраты и крупномолекулярные (белковые) вещества.

Регуляция кровообращения в обменных сосудах полностью подчинена закономерностям пре- и посткапиллярного кровотока, а также местным гуморальным воздействиям.

Фильтрация воды и диффузия веществ. В норме фильтрация воды и растворенных в плазме низкомолекулярных веществ осуществляется в капиллярах, главным образом через функциональные микропоры в стенке сосудов, диаметр которых составляет около 6—8 нм. На самом деле эти поры являются межклеточными промежутками между соседними эндотелиоцитами. В капиллярах головного мозга они очень плотные и пропускают только воду, кислород и углекислый газ. В капиллярах печени поры большие и способны пропускать все компоненты плазмы. В большинстве органов поры имеют средние размеры. Каждый день через эти капиллярные поры фильтруется и поступает в ткани около 20 л жидкости. Около 18 л возвращаются из тканей в капилляры путем резорбции, а еще приблизительно 2 л — в систему кровообращения через лимфатическую систему.


Скорость фильтрации зависит от фильтрационного давления (ФД) и коэффициента фильтрации; последний показатель в разных органах отличается и определяется размером пор, их количеством, числом функционирующих капилляров и проницаемостью мембраны эндотелиоцитов для воды и других веществ.

Согласно классической теории Старлинга, ФД определяется по следующей формуле:

где ФД — фильтрационное давление; ГДК — гидростатическое давление крови на стенку капилляра (в артериальном участке капилляра ГДК составляет около 30— 35 мм рт. ст.); ОДТ — онкотическое давление ткани (4—7 мм рт. ст.); ГДТ — гидростатическое давление ткани (± 6 мм рт. ст., т. е. ~ 0 мм рт. ст.); ОДК — онкотическое давление крови (~ 28 мм рт. ст.). Онкотическое давление практически не изменяется в артериальном и венозном участках капилляра и зависит от концентрации белков в сыворотке крови, которая в норме составляет 60—70 г/л.

Согласно приведенной формуле, в артериальном участке капилляров эффективное ФД составляет около 10 мм рт. ст., что и определяет переход жидкости из крови в ткани.

В венозном участке капилляров и в венулах гидродинамическое давление крови снижается до 15 мм рт. ст. В результате этого ФД становится отрицательным и составляет около —7 мм рт. ст., что и обусловливает частичную резорбцию жидкости из ткани в кровь. Кроме того, резорбция части интерстициальной жидкости осуществляется лимфатическими сосудами; по ним жидкость возвращается в сосудистое русло.


Диффузия газов в капиллярах происходит за счет разницы уровней парциального давления в крови и тканях. Парциальное давление кислорода в артериальной крови составляет около 85—100 мм рт. ст., а в тканях — около 10—20 мм рт. ст. В связи с этим кислород очень активно переходит в ткани и в венозном отрезке капилляра его парциальное давление снижается до 40—50 мм рт. ст. В отличие от кислорода углекислый газ, образующийся в тканях, диффундирует в кровь, вследствие чего ткани освобождаются от его избыточного количества, а рСО2 с 40 мм рт. ст. в артериальном участке капилляра повышается до 46—48 мм рт. ст. в венозном участке.

Микровезикулярный транспорт — активный транспорт макромолекул через цитоплазму эндотелиоцитов, который нуждается в затратах энергии. Открытие элементов везикул в цитоплазме эндотелиальных клеток, выяснение механизмов их образования из поверхностной оболочки, доказательность участия их в трансэндотелиальном переносе веществ связаны с именем американского исследователя G. Palade. В 1953 г. он первым описал ультраструктуру кровеносных капилляров и наличие в эндотелиоцитах везикул, функция которых заключается в трансмембранном переносе веществ. Эти микропиноцитозные везикулы способны захватывать жидкость с растворенными в ней веществами на одной стороне клетки и перемещаться в другую. Несколько таких везикул могут образовывать везикулярный канал. Тем не менее в настоящее время считается, что в количественном отношении везикулярный транспорт в нормальных условиях функционирования клетки не имеет большого значения.


Повышение или снижение интенсивности перехода веществ через сосудистую стенку при патологии часто возникает не только вследствие изменения скорости кровотока, но и в результате истинного нарушения проницаемости капилляров, сопровождающегося нарушением структуры их стенки. В морфологическом отношении повышение проницаемости капилляров характеризуется увеличением промежутков между эндотелиоцитами вследствие их сокращения и усилением образования транспортных везикул (рис. 27), в функциональном — интенсивным переходом высокомолекулярных веществ (белков) через стенку капилляра.

В механизме повышения проницаемости капилляров при травме, ожоге, воспалении, аллергии большое значение имеют кислородное голодание тканей, ацидотический сдвиг реакции среды, накопление местных метаболитов, образование БАВ, наличие активных глобулинов плазмы крови (α-, β-глобулины), катионных белков и нейтрофильных лизосомальных ферментов гранулоцитов. При шоке различной этиологии возможно и генерализованное нарушение проницаемости капилляров.

Согласно современным представлениям, биологически активные амины (гистамин, серотонин) и их природные либераторы, а также брадикинин, факторы комплемента и эйкозаноиды (простагландины и лейкотриены) оказывают кратковременное действие на проницаемость сосудистой стенки посредством влияния на контрактильные элементы эндотелия сосудов, преимущественно венул, что приводит к их округлению и увеличению межклеточных промежутков между ними.
и различных патологических процессах, особенно при воспалении, вызванном слабыми повреждающими факторами (тепло, ультрафиолетовое излучение, некоторые химические вещества), эти механизмы реализуют раннюю фазу повышения проницаемости (10—60 мин). Более поздние нарушения проницаемости сосудистой стенки (от 60 мин до нескольких суток) обусловлены и усилением трансцитоза, и протеиназами, лизосомальными гидролазами, катионными белками нейтрофильных гранулоцитов, действие которых направлено на стенку капилляров (межклеточные связи эндотелия и базальную мембрану) и состоит в физико-химических изменениях (в частности деполимеризации) сложных белково-полисахаридных комплексов. При сильном повреждении тканей повышение проницаемости капилляров носит монофазный характер и обусловлено влиянием протеиназ и кининов.

При некоторых патологических процессах (феномены Шварцмана, Артюса) и заболеваниях инфекционной этиологии (корь, скарлатина, грипп и др.), в случае действия сильных повреждающих факторов (термических, ионизирующего излучения и др.) вместе с признаками повышенной проницаемости сосудов в виде интенсивного выхода макромолекулярных веществ можно наблюдать диапедез эритроцитов и даже микрокровоизлияния. Предполагается, что диапедез эритроцитов в периваскулярную ткань осуществляется пассивно через межэндотелиальные промежутки под давлением крови. Микрокровоизлияния являются следствием выраженных структурных нарушений целостности сосудистой стенки, повышающих ее ломкость.


Источник: sunmuseum.ru

of various genesis (literary review)
N.D. Kriger
Russian State Medical University, Moscow
Literary review is devoted to the problems of development of glaucoma optic neuropathy (GON). At the present time there are 2 known theories of GON development: mechanical and vascular. But glaucoma also develops as neurodegenerative disease. That’s why neuroprotective treatment should be used both in combination with hypotensive and as monotherapy.

В настоящее время известны две основные теории патогенеза глаукоматозной оптической нейропатии (ГОН): механическая и сосудистая. Обе были неоднократно доказаны различными группами исследователей на протяжении 150 лет.
Согласно механической теории повышение внутриглазного давления (ВГД) приводит к прогибу решетчатой пластинки и повреждению аксонов ганглионарных клеток сетчатки. Однако достаточное количество наблюдений доказывает существование глаукомы нормального давления, что, по мнению авторов, исключает главенствующую роль ВГД в развитии оптической нейропатии.
r /> Сосудистая теория рассматривает ГОН, как результат недостаточного кровоснабжения вследствие повышенного ВГД или действия других факторов риска, приводящих к снижению кровотока в головке зрительного нерва (ГЗН). Ухудшение кровоснабжения ГЗН у больных глаукомой может говорить о возможной первичности гемодинамических нарушений. Главная причина плохого кровоснабжения ГЗН – не атеросклероз, а скорее, нарушение сосудистой регуляции, которое вызывает снижение перфузии сетчатки глаза и нарушение местной саморегуляции, что ведет к повышению чувствительности зрительного нерва к колебаниям офтальмотонуса [11].
Механические и сосудистые факторы взаимодействуют таким образом, что перфузия сетчатки и ГЗН зависит от ВГД. Ночью, когда уменьшается скорость тока крови в артериях и снижается артериальное давление, у больных глаукомой риск прогрессирования оптической нейропатии увеличивается.
Прогрессирование оптической нейропатии у больных глаукомой на фоне ночной гипотензии позволяет предположить наличие какого–либо дефекта в системе сосудистой ауторегуляции у этих больных. Доказано, что увеличенный ретробульбарный кровоток способствует восстановлению зрительных функций, нарушенных вследствие глазной ишемии, а в условиях вазодилатации происходит нормализация давления в ретробульбарных сосудах, что предполагает возможную обратимость недостаточности кровообращения при глаукоме. Все сказанное доказывает необходимость коррекции лечения в направлении улучшения глазного кровотока с целью профилактики прогрессирования процесса [10].
Поскольку ишемия сетчатки и ГЗН – частая причина снижения зрения у пожилых людей, прослеживается прямая связь с имеющимся у них атеросклерозом. Однако исследования [13] показали, что при атеросклерозе возникает вазоспазм ЦАС и/или цилиоретинальной артерии, а не спазм мелких артерий сетчатки. Спазм ЦАС может привести или к преходящей ишемии сетчатки или к полному прекращению кровотока в сосудах, питающих ее.
Вазоспазм в большей степени, нежели атеросклероз, способствует развитию оптической нейропатии. Сосудистая эпителиопатия, по всей видимости, развивается в ответ на стрессовые ситуации, что, в свою очередь, ведет к нарушению саморегуляции и таким образом влияет на глаз, чувствительный к изменениям офтальмотонуса или снижению сосудистого давления. Изменение перфузии глаза может привести к увеличению свободных радикалов кислорода, что в результате приводит к апоптозу нервных клеток.
При сравнительной оценке значения гемодинамических показателей обнаружено, что наиболее значимыми из них оказались давление в ЦАС и перфузионное внутриглазное давление, а не скорость кровотока. Ведущим фактором, указывающим на риск прогрессирования оптической нейропатии при первичной глаукоме, можно считать перфузионное глазное давление.
По мнению Flammer J., можно определить глаукоматозную оптическую нейропатию, как результат нарушения реперфузии [12]. Им были систематизированы все известные факторы риска развития ГОН и результаты экспериментальных исследований: 1) колебания ВГД наносят больший вред, чем его стойкое повышение; 2) снижение кровообращения в ГЗН вследствие атеросклероза менее вредно, чем вследствие сосудистой дисрегуляции; 3) глаукоматозное поражение ЗН отличается от ишемического. Если высокое ВГД может привести к механическому повреждению ГЗН, то колебания ВГД и снижение уровня АД ведут к кратковременной ишемии, сопровождаемой нарушением перфузии [7].
Значительная распространенность первичной открытоугольной глаукомы, трудности ранней диагностики и серьезный прогноз определяют постоянный интерес исследователей и практических врачей к данному заболеванию.
Нормализация офтальмотонуса [1] зачастую является ошибочным критерием для определения благоприятного прогноза течения глаукомы. До настоящего времени остается неясной причина стабилизации глаукомного процесса в одних случаях и прогрессирование его в других. Активно изучается патогенез развития атрофии сетчатки и зрительного нерва.
В таком многофакторном явлении, как оптическая нейропатия, среди других факторов риска возраст и сердечно–сосудистая недостаточность, а также ночная гипотония могут играть важную роль в развитии и прогрессировании ОН независимо от изменения офтальмотонуса. Ночная артериальная гипотония у больных, применяющих гипотензивную терапию, может быть важным фактором риска развития ОН.
Исследовано влияние b–блокатора у пациентов с ночной артериальной гипотонией на ухудшение ППЗ. Проведение суточного мониторинга АД, ВГД и детальное исследование глазного дна подтвердило, что использование b–блокаторов усиливает ночную гипотензию, что может служить дополнительным фактором риска прогрессирования оптической нейропатии различного генеза на фоне естественного колебания (повышения) офтальмотонуса в ночные часы [6].
Ночная гипотензия, возникающая у пациентов, страдающих артериальной гипертонией на фоне приема других пероральных гипотензивных препаратов, служит также фактором риска развития и прогрессирования ГОН и ишемической нейропатии у восприимчивых пациентов. Поэтому необходима коррекция схем гипотензивной терапии в ночные часы во избежание излишнего снижения артериального давления.
Одна из концепций патогенеза и комплексной оценки роли иммунной системы в развитии ПОУГ заключается в наличии вторичной иммунологической недостаточности, возникновении глубоких структурных изменений как в клеточных, так и во внеклеточных элементах дренажной системы. Это влечет за собой изменение антигенного состава, появление антител и иммунных комплексов.
Биологически активные соединения (фактор некроза опухолей, интерлейкин–1 и 6, нитросоединения и др.), вырабатываемые гиперактивированными макрофагами, вызывают метаболические нарушения в клетках, микроциркуляторные нарушения, усиливают гипоксию тканей, ускоряя процесс перекисного окисления липидов, активации фосфолипаз, высвобождения арахидоновой кислоты, синтеза простагландинов и инозитолфосфатного цикла. В клетках накапливается Са+ и цГМФ, изменяется проницаемость мембран. Кроме этого, усиливается продукция сосудосуживающего вещества – полипептида эндотелина–1. Эндотелин–1 снижает кровоток в диске зрительного нерва.
В эксперименте путем непрерывного введения эндотелина–1 в ретробульбарное пространство можно вызвать дефицит в кровоснабжении ДЗН вследствие сужения сосудов, питающих зрительный нерв. При введении эндотелина–1 в стекловидное тело обнаружено снижение капиллярного кровотока головки ЗН во время всего исследования до 80% нормального уровня, при этом размер экскавации к диску (Э/Д) превышал норму. Гистологически выявлена аксональная потеря и демиелинизация волокон в преламинарной части ГЗН. ВГД от группы контроля не отличалось. Полученные результаты позволили сделать вывод, что ишемия головки ЗН приводит к развитию оптической нейропатии по типу глаукоматозной вне зависимости от уровня офтальмотонуса.
Нейропротекция, т.е. защита неповрежденных нейронов от вторичного вырождения, направлена на нейтрализацию внеклеточных элементов, связанных с вторичным повреждением. В эксперименте при частичном повреждении оптического нерва взрослой крысы [18] количественно определили степень первичного повреждения и продемонстрировали вторичное его вырождение. Повреждение, причиненное непосредственно волокнам зрительного нерва, неизбежно ведет к их вырождению и возможной гибели их тел (ганглионарных клеток). Через какое–то время нейроны, которые первоначально избежали повреждения, подвергаются прогрессивному вторичному вырождению, степень которого прямо пропорциональна силе первичного повреждения. Подобный механизм может лежать в основе повреждения нервных структур сетчатки при глаукоме после ликвидации первопричины – нормализации ВГД, и объясняет прогрессивное ухудшение зрительных функций после нормализации офтальмотонуса, несмотря на то, что гипотензивное лечение было начато на стадии отсутствия дефектов зрительных функций.
Глаукоматозная нейродегенерация, как известно – это прогрессирующее состояние, морфологически характеризующееся гибелью ганглиозных клеток сетчатки, приводящее к ухудшению зрительных функций [9]. Потеря трофической поддержки и выход цитотоксинов остается общей причиной в патогенезе повреждения нервной клетки и возможной смерти ее через апоптоз. Распространение этого повреждения обусловлено вторичными факторами, заключающимися в том, что поврежденные первично клетки выделяют вредные вещества, воздействующие на еще здоровые ганглиозные клетки. Вторичное вырождение представляет собой распространение гибели нейронов, которые избежали первичной травмы, но имеют связь с поврежденными клетками и таким образом подвергаются дегенерации.
По мнению Анисимовой С.Ю. (2000 г.), причиной этому являются поврежденные волокна, которые действуют одновременно как прямой, так и непрямой источник токсических медиаторов. Путем значительного повышения токсичности межклеточного пространства они вызывают вторичную дегенерацию близкорасположенных нейронов. Такая дегенерация в дальнейшем выглядит как самоуничтожение, даже если ВГД сохраняется на нормальном уровне.
Смерть ганглиозной клетки сетчатки – обычный исход всех заболеваний зрительного нерва, включая глаукомную оптическую нейропатию. Движущие силы смерти ганглиозной клетки отражают время и степень повреждения аксона, а не ее характер (природу). Ишемия, приводящая к соответствующим изменениям показателей перипапиллярного кровообращения или сжатие (изменения ретроградного транспорта), вызванное увеличенным ВГД, приводят в результате к ряду изменений на уровне аксона, что впоследствии приводит к необратимым изменениям соответствующих ганглиозных клеток [16].
Как было сказано выше, основными причинами прогрессирования нейропатии при глаукоме с нормальным ВГД являются хроническая ишемия и гипоксия, связанные с дефицитом гемодинамики и реологическими нарушениями крови регионального и системного характера. Ишемия зрительного нерва при глаукоме приводит к потере клетками питательных веществ, накоплению свободных радикалов, активации некоторых ферментов и накоплению продуктов метаболизма [2,8]. Первопричиной ишемического повреждения нервных волокон является избыточный приток внеклеточного кальция внутрь клетки. Экспериментально доказано, что в результате ишемического повреждения в первую очередь погибают нейроны сетчатки. Прогрессирование глаукоматозной нейропатии может зависеть от таких факторов, как цитотоксические аминоациды (глютамат), свободные радикалы и высокий уровень калия. Это объясняет дальнейшую потерю зрения, которая часто наблюдается в глазах после нормализации ВГД и может быть продолжением процесса гибели нервных волокон сетчатки и зрительного нерва.
Изменения при этом развиваются одновременно в переднем и заднем отрезках глаза и соответствуют современным представлениям о сосудисто–метаболической теории развития глаукомы: склеротические процессы и повреждение коллагена способствуют нарушению оттока водянистой влаги из передней камеры глаза. При этом уже имеются изменения в ганглиозном слое сетчатки (атрофия диффузных клеток и аксонов) и развивается демиелинизация волокон зрительного нерва.
С учетом всех существующих факторов риска [2] и результатов морфологических исследований ученые обосновали необходимость включения в схему лечения глаукомы не только гипотензивных препаратов, но и нейропротекторов.
Чувствительность и устойчивость различных тканей к ишемии и гипоксии в значительной степени определяется конституциональными метаболическими особенностями организма, которые оказывают определенное влияние на развитие сосудистых патологических процессов (атеросклероз, ИБС) и определяют предрасположенности к возникновению заболевании воспалительного, дистрофического, аутоиммунного характера, объективным маркером которых является генетически детерминированный фенотип ацетилирования.
В зависимости от скорости ацетилирования вся популяция здоровых людей делится на «медленных» (МА) и «быстрых» ацетиляторов (БА), соотношение которых составляет соответственно 47 и 53%. Путем ацетилирования в организме осуществляются биохимические реакции, связанные с процессами окислительного декарбоксилирования, образованием АТФ, синтезом холестерина, ацетилхолина, тироксина, гемоглобина, ядерных и рибосомальных белков, стероидов, синтезом и распадом жиров, а также метаболическая регуляция гемодинамики и микроциркуляции [5].
В.В. Егоров с соавт. [5] изучали особенности течения ПОУГ с нормализованным ВГД у пациентов с различными конституциональными типами метаболического статуса.
Определение типа метаболизма организма осуществлялось путем изучения сосудистого гомеостаза. Исследовалась линейная скорость кровотока в надглазничной артерии методом допплерографии, оценивалось состояние микроциркуляции бульбарной конъюнктивы с помощью фото–биомикроскопии, а также производилась фотосъемка диска зрительного нерва (цвет ДЗН, число сосудов в месте перехода через край ДЗН, форма и размеры его экскавации). Одновременно оценивалась гидродинамика глаза методом тонографии и реологические показатели крови. Результаты проведенных исследований показали наличие различных патогенетических механизмов прогрессирования глаукоматозной нейропатии у пациентов с неоднородными конституциональными типами метаболизма организма с характерными клинико–патогенетическими особенностями прогрессирования глаукоматозной нейропатии.
В норме поддержание энергетического гомеостаза происходит при участии ряда саморегулирующихся систем.
При развитии ОН в зависимости от конституционального типа метаболизма организма целесообразно назначение специфической терапии. Так, у больных – БА (с капиллярно–трофической недостаточностью по ишемическому типу) в основе нарушений лежит склонность к ангиоспазмам с уменьшением числа функционирующих капилляров в микроциркуляторном русле ДЗН и бульбарной конъюнктивы, снижение уровня гемодинамики в глазничной артерии. Данные патологические факторы вызывают трофические расстройства зрительного нерва, преимущественно по ишемическому типу.
Основу лечебного комплекса поэтому должны составлять:
• антагонисты кальциевых каналов (циннаризин), уменьшающие чувствительность адренорецепторов к избытку симпатических влияний;
• препараты, улучшающие энергетические показатели деятельности сердца и повышающие устойчивость эндотелия артериальных сосудов к повреждающему действию токсических метаболитов перекисного окисления липидов (рибоксин);
• для коррекции дисбаланса симпато–адреналовой системы, повышения антиоксидантной активности рекомендуется назначение биорегулятора эпиталамина;
• для восстановления нормальной реактивной способности адренорецепторов рекомендуется назначение магнито–лазерной стимуляции шейных и каротидных симпатических ганглиев.
У пациентов – МЛ (с капиллярно–трофической недостаточностью по застойному типу) в основе гемомикроциркуляторных нарушений, напротив, лежат явления застойной венозной флебопатии с выраженными реологическими расстройствами, формирующие состояние капиллярно–трофической недостаточности ДЗН. В лечебный комплекс этой группы должны быть включены:
• препараты, повышающие интенсивность ацетилирования организма (кальция пантотенат) и обладающие венотоническими свойствами (эндотенон);
• полезно применение пищевой добавки «эйконол», нормализующей липидный обмен и реологические свойства крови;
• для уменьшения явлений венозного стаза и повышения кислородной перфузии тканей глаза назначают малые режимы гипербарической оксигенации;
• для нормализации нарушений регуляторных, метаболических и гемодинамических функций симпато–адреналовой системы, коры надпочечников и антиоксидатной защиты назначается пептидный биорегулятор эпиталамин.
Широко известны также препараты со свойствами антигипоксантов: аскорбиновая кислота, церулоплазмин, витамин Е, каротин, убихинон, эмоксипин.
Выявленные особенности позволяют прогнозировать варианты течения глаукомного процесса и корректировать схему лечения.
Нейропротекция, т.е. общий терапевтический принцип лечения оптической нейропатии, заключается в том, чтобы обеспечить устойчивость неповрежденных нейронов, предотвратить или задержать прогрессивную гибель большого количества нервных элементов сетчатки. В настоящее время возможности нейропротекторной терапии продолжают изучаться и отличаются разнообразием подходов [14].
У больных глаукомой прямое нейропротекторное действие, наряду с гипотензивным, оказывают препараты местного применения бетаксолол [3] и супероксидисмутаза (СОД). По данным компьютерной периметрии бетаксолол (селективный нейроблокатор) приводит к повышению средней чувствительности сетчатки. Нейропротекторное действие его связано со снижением сосудистого сопротивления в артериях сетчатки и повышением устойчивости нейронов сетчатки к ишемии. Этот эффект обусловлен тем, что у бетаксолола присутствуют свойства блокатора кальциевых каналов. Супероксидисмутаза (СОД) – фермент, входящий в антиоксидантную природную ферментативную систему организма, катализирует захват супероксидного анион–радикала с образованием кислорода и перекиси водорода, что и обусловливает его выраженный нейропротекторный эффект [10].
В условиях ишемического поражения проявляет широкий спектр воздействия на различные механизмы регуляции метаболической активности клеток, являясь антиоксидантом, ингибитором свободных радикалов, мембранопротектором, препарат Мексидол (2–этил–б–метил–З–оксипиридин сукцинат). По своей структуре он является солью янтарной кислоты [4]. Препарат уменьшает активацию перекисного окисления липидов, повышает активность физиологической антиоксидантной системы в целом. Мексидол является и антигипоксантом прямого энергизирующего действия, активируя функции митохондрий, улучшает энергетический объем в клетке, способствует синтезу и внутриклеточному накоплению АТФ (сниженный синтез которой в условиях ишемии и гипоксии является пусковым механизмом патоморфологических изменений в нервных клетках), а также обладает гиполипидемическим действием, уменьшая уровень общего холестерина и липопротеинов низкой плотности.
В настоящее время терапия глаукомы преимущественно направлена на снижение внутриглазного давления, чтобы уменьшить вероятность прогрессирования болезни. Однако необходимо учитывать, что глаукома развивается как нейродегенеративное заболевание. Таким образом, нейропротекция зрительного нерва должна быть использована как совместно с гипотензивным лечением, так и в качестве монотерапии [12,15,17].

Статья принята в печать 5 декабря 2006 г.

Литература
1. Алексеев В.Н, Мартынова Е.Б., Усачев В.В., Садков В.И. «Эффективность, безопасность и нейропротекторный эффект гипотензивных препаратов при лечении открытоугольной глаукомы» Сб. научных статей юб. конфер., посвящ. 80–летию В.В.Волкова 2001, стр.129–130
2. Алексеевым В.Н., Мартыновой Е.Б., Самусенко И.А. «Морфологический взгляд на роль метаболических факторов в развитии глаукомы», Сб. научн. статей юб. научн. конфер., посвящ. 80–летию В.В.Волкова 2001, стр. 128–129
3. Астахов Ю.С., Соколов В.О., Бутин Е.В. «К вопросу о нейропротекторном влиянии Бетаксолола у больных с первичной открытоугольной глаукомой при нормализованном внутриглазном давлении», Клиническая офтальмология, т.4, №3, 2003
4. Егоров А.Е, Обруч Б.В., Касимов Э.М. «Применение Мексидола у больных с оптическими нейропатиями», Клиническая офтальмология, т.3, №2, 2002, стр. 81–84.
5. Егоров В.В., ЕЛ. Сорокин, Г.П. Смолякова « Система патогенетически дифференцированных подходов к лечению нестабилизированного течения глаукомы со стойко нормализованным ВГД», Сб. научных статей юб. конфер., посвящ. 80–летию В.В.Волкова, 2001, 153–154
6. Егоров В.В., Сорокин Е.Л. «Влияние соматической сосудистой патологии на характер течения глаукоматозного процесса после нормализации ВГД», Сб. научных статей юб. конфер., посвящ. 80–летию В.В.Волкова, 2001, стр. 151–153
7. Захарова И.А., Кулькова С.В., Приставка В.А. «Состояние ауторегуляции офтальмотонуса у больных гипертонической болезнью», Сб. научных статей юб. конфер., посвящ. 80–летию В.В.Волкова, 2001, стр. 163–164
8. Baptiste D.C., Hartwick A.T.E., Jollimore C.A.B., Baldridge W.H. «Сравнение нейропротекторного действия адренотропных препаратов в культуре ретинальных клеток и на интактной сетчатке»,
Investigative Ophthalmology and Visual Science, 2002, т. 43, стр. 2666–2676
9. Bautista R.D. «Glaucomatous neurodegeneration and the concept of neuroprotection», Int–Ophthalmol–Clin., 1999, т. 39, №3, стр. 57–70
10. Chung H.S., Harris A., Evans D.W., Kagemann L., Garzozi H.J., Martin B. «Vascular aspects in the pathophysiology of glaucomatous optic neuropathy», Surv–Ophthalmol, 1999, т.43, стр.43–50
11. Flammer J., Orgul S., Costa V.P., Orzalesi N., Krieglstein G.K., Serra L.M., Renard J.P., Stefansson E. «The impact of ocular blood flow in glaucoma», Prog–Retin–Eye–Res., 2002, т. 21, №4, стр. 359–393
12. Flammer J. «Glaucomatous optic neuropathy: a reperfusion injury», Klin–Monatsbl–Augenheilkd., 2001, т. 218, №5, стр. 290–291
13. Hayreh S.S. «Retinal and optic nerve head ischemic disorders and atherosclerosis: role of serotonin», Prog–Retin–Eye–Res., 1999, т. 18, №2, стр. 191–221
14. Hayreh S.S. «The role of age and cardiovascular disease in glaucomatous optic neuropathy», Surv–Ophthalmol., 1999, т. 43, стр. 27–42
15. Hayreh S.S. «Role of nocturnal arterial hypotension in the development of ocular manifestations of systemic arterial hypertension», Curr–Opin–Ophthalmol., 1999, т. 10, №6, стр. 474–482
16. Levin L.A. «Direct and indirect approaches to neuroprotective therapy of glaucomatous optic neuropathy» Surv–Ophthalmol., 1999, т.43, стр. 98–101
17. Wang L., Cioffi G.A., Van–Buskirk E.M. «The vascular pattern of the optic nerve and its potential relevance in glaucoma», Curr–Opin–Ophthalmol., 1998, т. 9, №2, стр. 24–29
18. Yoles E., Schwartz M. «Potential neuroprotective therapy for glaucomatous optic neuropathy», Surv–Ophthalmol., 1998, т. 42, №4, стр. 367–372

Источник: www.rmj.ru

Капилляро-трофическая недостаточность: состояние, характеризующееся: – нарушением крово‑ и лимфообращения в сосудах микроциркуляторного русла, – расстройствами транспорта жидкости и/или перемещения форменных элементов крови через стенки микрососудов, – замедлением оттока межклеточной жидкости, – нарушениями обмена веществ в тканях и органах(рис. 23–54).

Ы Вёрстка Файл «ПФ Рис 22 55 Основные проявления капилляротрофической недостаточности»

Капиллярно трофическая недостаточность

Рис. 23–54. Признаки капилляро-трофической недостаточности.

Последствия капилляро-трофической недостаточности.

В результате описанных выше расстройств микроциркуляции крови и лимфы в тканях и органах развиваются:

– дистрофии;

– расстройства пластических процессов;

– нарушения жизнедеятельность органов и организма в целом.

Сладж

Сладж: феномен, характеризующийся адгезией, агрегацией и агглютинацией форменных элементов крови. Это обусловливает сепарацию её на конгломераты из эритроцитов, лейкоцитов, тромбоцитов и плазму, а также – нарушение микрогемоциркуляции.

Причины сладжа:

Нарушения центральной гемодинамики (при сердечной недостаточности, венозном застое, ишемии, патологических формах артериальной гиперемии).

Повышение вязкости крови (например, в условиях гемоконцентрации, гиперпротеинемии, полицитемии).

Повреждение стенок микрососудов (при местных патологических процессах: воспалении, аллергических реакциях, опухолях и др.).

• Механизмы развития сладжа представлены на рис. 23–55.

Ы Вёрстка Файл «ПФ Рис 22 56 Механизмы развития сладжа»

Капиллярно трофическая недостаточность

Рис. 23–55. Механизмы сладжа.

ФЭК — форменные элементы крови.

• Последствия сладжа.

Нарушение тока крови внутри сосудов (замедление, вплоть до стаза; турбулентный ток крови; включение артериоловенулярных шунтов), расстройство процессов транскапиллярного тока форменных элементов крови.

Нарушение метаболизма в тканях и органах с развитием дистрофий и расстройством пластических процессов в них.

Причины: нарушения обмена O2 и CO2 в связи с адгезией и агрегацией эритроцитов и развитие васкулопатий в результате прекращения или значительного уменьшения ангиотрофической функции тромбоцитов (они находятся в конгломератах форменных элементов крови).

Развитие гипоксии и ацидоза в тканях и органах.

В целом совокупность указанных изменений приводит к развитию капилляро-трофической недостаточности. Отсюда следует важный вывод: феномен сладжа является причиной расстройств микроциркуляции (в тех случаях, когда он развивается первично) или следствием внутрисосудистых нарушений микрогемоциркуляции (при их первичном развитии).

ГЛАВА 24.

Источник: helpiks.org

Микроциркуляция — упорядоченное движение крови и лимфы по микрососудам, транскапиллярный перенос плазмы и форменных элементов крови, перемещение жидкости во внесосудистом пространстве.

Совокупность артериол, капилляров и венул составляет структурно-функциональную единицу сердечно-сосудистой системы — микроциркуляторное (терминальное) русло. Терминальное русло организовано следующим образом: от терминальной артериолы отходит метартериола, распадающаяся на образующие сеть анастомозирующие истинные капилляры; венозная часть капилляров открывается в посткапиллярные венулы. В месте отделения капилляра от артериол имеется прекапиллярный сфинктер — скопление циркулярно ориентированных ГМК. Сфинктеры контролируют локальный объём крови, проходящий через истинные капилляры; объём же крови, проходящей через терминальное сосудистое русло в целом, определяется тонусом ГМК артериол. В микроциркуляторном русле присутствуют артериоловенулярные анастомозы, связывающие артериолы непосредственно с венулами или мелкие артерии с мелкими венами (юкстакапиллярный кровоток). Стенка сосудов анастомоза содержит много ГМК. Артериовенозные анастомозы в большом количестве присутствуют в некоторых участках кожи, где они играют важную роль в терморегуляции (мочка уха, пальцы). К микроциркуляторному руслу относят также мелкие лимфатические сосуды и межклеточное пространство.

Многочисленные причины, вызывающие разнообразные нарушения микроциркуляции, объединяют в три группы.

• Расстройства центрального и регионарного кровообращения. К наиболее значимым относят сердечную недостаточность, патологические формы артериальной гиперемии, венозную гиперемию, ишемию.

• Изменения вязкости и объёма крови и лимфы. Развиваются вследствие гемоконцентрации и гемодилюции.

† Гемо(лимфо)концентрация. Причины: гипогидратация организма с развитием полицитемической гиповолемии, полицитемия, гиперпротеинемия (преимущественно гиперфибриногенемия).

† Гемо(лимфо)дилюция. Причины: гипергидратация организма с развитием олигоцитемической гиперволемии, панцитопения (уменьшение количества всех форменных элементов крови), повышенная агрегация и агглютинация форменных элементов крови (приводит к значительному повышению вязкости крови), ДВС–синдром.

• Повреждение стенок сосудов микроциркуляторного русла. Обычно наблюдается при атеросклерозе, воспалении, циррозах, опухолях и др.

Типовые формы нарушения микроциркуляции

Выделено три группы типовых форм нарушения микроциркуляции: внутрисосудистые (интраваскулярные), чресстеночные (трансмуральные) и внесосудистые (экстраваскулярные). Расстройства микроциркуляции приводят к капилляро-трофической недостаточности.

Внутрисосудистые нарушения микроциркуляции

• Замедление (вплоть до стаза) тока крови и/или лимфы.

† Наиболее частые причины.

‡ Расстройства гемо‑ и лимфодинамики (например, при сердечной недостаточности, венозной гиперемии, ишемии).

‡ Увеличение вязкости крови и лимфы (в результате гемо[лимфо]концентрации при длительной рвоте, диарее, плазморрагии при ожогах, полицитемии, гиперпротеинемии, агрегации клеток крови, внутрисосудистом её свёртывании, микротромбозе).

‡ Значительное сужение просвета микрососудов (вследствие сдавления их опухолью, отёчной тканью, образования в них тромбов, попадания эмбола, набухания или гиперплазии эндотелиальных клеток, образования атеросклеротической бляшки и т.п.).

† Проявления. Сходны с наблюдающимися в сосудах микроциркуляторного русла при венозной гиперемии, ишемии или стазе.

• Ускорение кровотока.

† Основные причины.

‡ Нарушения гемодинамики (например, при артериальной гипертензии, патологической артериальной гиперемии или сбросе артериальной крови в венозное русло через артериоловенулярные шунты).

‡ Снижение вязкости крови вследствие гемодилюции (при водном отравлении), гипопротеинемии, почечной недостаточности (при олигурической или анурической стадии), панцитопении.

• Нарушение ламинарности (турбулентность) тока крови и/или лимфы.

† Наиболее частые причины.

‡ Изменения вязкости и агрегатного состояния крови (в результате образования агрегатов клеток крови при полицитемии, значительном увеличении числа форменных элементов крови выше нормы или гиперфибриногенемии; при формировании микротромбов).

‡ Повреждение стенок микрососудов или нарушение гладкости их (при васкулитах, гиперплазии клеток эндотелия, артериосклерозе, фиброзных изменениях в различных слоях сосудистых стенок, развитии в них опухолей и т.п.).

• Увеличение юкстакапиллярного тока крови. Происходит вследствие открытия артериоловенулярных шунтов и сброса крови из артериол в венулы, минуя капиллярную сеть микроциркуляторного русла.

† Причина: спазм ГМК артериол и закрытие прекапиллярных сфинктеров при значительном увеличении уровня катехоламинов в крови (например, при гиперкатехоламиновом кризе у пациентов с феохромоцитомой), чрезмерном повышении тонуса симпатической нервной системы (например, в условиях стресса), гипертензивном кризе (например, у пациентов с гипертонической болезнью).

† Проявления: ишемия в регионе сброса крови из артериол в венулы, открытие и/или увеличение диаметра артериоловенулярных шунтов, Турбулентный характер тока крови в местах ответвлений и входов в венулы шунтирующих сосудов (обусловлен тем, что артериоловенулярные шунты отходят от артериол и впадают в венулы, как правило, под значительным углом; это сопровождается соударением форменных элементов крови друг с другом и стенкой сосуда, что приводит к выделению проагрегантов и прокоагулянтов, к образованию агрегатов и тромбов).

Трансмуральные нарушения микроциркуляции

Перемещение через стенку микрососуда может относиться либо к жидкой части крови (в этом случае говорят о проницаемости), либо к клеточным элементам (в этом случае говорят об эмиграции). В соответствии с преобладанием проницаемости или эмиграции трансмуральные нарушения микроциркуляции подразделяют на две категории: нарушения проницаемости и нарушения эмиграции.

• Нарушения проницаемости. При различных патологических состояниях объём перемещения плазмы крови и/или лимфы через стенку сосуда может возрастать либо уменьшаться.

† Увеличение проницаемости.

‡ Последствия. Повышение проницаемости сосудистой стенки потенцирует механизмы перемещения жидкости: фильтрацию (транспорт жидкости по градиенту гидростатического давления), трансцитоз (энергозависимый пиноцитоз), диффузию (перенос жидкости без затрат энергии), осмос (направленную диффузию жидкости по градиенту осмотического давления).

† Уменьшение проницаемости.

‡ Причины: утолщение и/или уплотнение стенок сосудов, либо нарушение энергообеспечения внутриклеточных процессов.

‡ Последствия. Снижение эффективности механизмов перемещения жидкости: фильтрация, диффузия, трансцитоз, осмос.

• Нарушения эмиграции. При различных патологических состояниях перемещение форменных элементов крови через стенку сосуда может возрастать либо уменьшаться.

Эмиграция лейкоцитов через стенку микрососудов осуществляется и в норме. К патологии же относят чрезмерную эмиграцию лейкоцитов, а также выход из крови тромбоцитов и эритроцитов с последующим развитием микрогеморрагий.

Экстраваскулярные нарушения микроциркуляции

Внесосудистые (экстраваскулярные) нарушения микроциркуляции сопровождаются увеличением или уменьшением объёма межклеточной жидкости, что приводит к замедлению оттока её в сосуды микроциркуляторного русла.

• Увеличение объёма межклеточной жидкости, сочетающееся с замедлением её оттока из интерстициального пространства.

† Причина: местные патологические процессы (воспаление, аллергические реакции, рост новообразований, склеротические процессы, венозная гиперемия и/или стаз).

† Последствия.

‡ Увеличение содержания в интерстициальной жидкости продуктов нормального и нарушенного метаболизма. Они могут оказывать цитотоксическое и цитолитическое действие.

‡ Дисбаланс ионов (что способствует отёку ткани, нарушает формирование МП и ПД).

‡ Образование избытка и/или активация БАВ (например, ФНО, прокоагулянтов, мембраноатакующего комплекса), способных усугубить повреждение клеток, потенцировать расстройства крово‑ и лимфообращения, пластических процессов.

‡ Нарушение обмена O2, CO2, субстратов и продуктов обмена веществ.

‡ Сдавление клеток избытком интерстициальной жидкости.

• Уменьшение объёма межклеточной жидкости, сопровождающееся нарушением её оттока из интерстициального пространства.

† Причины.

‡ Гипогидратация организма, тканей и органов (например, в результате длительной диареи, плазморрагии, при интенсивном потоотделении).

‡ Снижение лимфообразования (например, при ишемии ткани или гиповолемии).

‡ Уменьшение эффективности фильтрации жидкости в артериолах и прекапиллярах и/или увеличение реабсорбции её в посткапиллярах и венулах (например, при дистрофических и склеротических процессах в тканях).

† Последствия. Сходны с наблюдающимися при увеличении объёма интерстициальной жидкости, сочетающемся с замедлением её оттока.

Капилляро-трофическая недостаточность — состояние, характеризующееся нарушением крово‑ и лимфообращения в сосудах микроциркуляторного русла, расстройствами транспорта жидкости и форменных элементов крови через стенки микрососудов, замедлением оттока межклеточной жидкости и нарушениями обмена веществ в тканях и органах

Источник: studopedia.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.