Оцк в медицине


Значение цифр при измерении артериального давления

Значение показателей при измерении давления

Раньше считалось, что проблемы с давлением всегда начинаются у людей преклонного возраста. Однако в наше время все чаще молодые люди страдают плохим самочувствием из-за повышенного или пониженного АД. Такие изменения в организме происходят из-за быстрого темпа жизни и перенапряжения. Сегодня практически в каждом доме есть тонометр, который качественно выполняет свои задачи. Измерив личное давление, человек может понять, какой препарат ему необходимо принять, чтобы улучшить самочувствие. К сожалению, мало кто знает (исключением являются медики), что означают цифры при измерении артериального давления. Именно об этих показателях и пойдет речь в данной статье.

  • Что такое АД и его виды
  • Допустимые изменения показателей
  • О чем говорят отклонения систолического давления
  • Отклонение значение диастолического показателя

Как быстро поднять давление домашними методами?
  • Давление 100 на 50: что делать и как повысить?
  • Резкое снижение артериального давления: причины и симптомы
  • Препараты для снижения артериального давления: список
  • Правила измерения артериального давления по методу Короткова
  • Что такое АД и его виды

    Организм человека имеет богатую систему кровоснабжения, которая состоит из множества кровеносных сосудов, вен, артерий и капилляров. Артериальное давление – это показатель, который определяет давление передвигающейся крови на стенки сосудов. Кровеносные сосуды, находящиеся ближе к сердцу, покажут более высокий показатель, а те, что расположены ближе к периферии, имеют низкое значение. Специалисты рекомендуют измерять АД на предплечье левой руки – такие данные будут наиболее точно отражать состояние человека. Плечевая артерия позволяет определить средний показатель, по которому и будет оказываться необходимая помощь больному.

    Измерить АД можно тонометром. Прибор выдаст определенные цифры, которые являются показателем состояния человека. Что означают эти показатели?

    В медицине установлено два вида давления:


    • систолическое (верхнее) – оно позволяет определить интенсивность сокращения сердца в тот момент, когда оно пропускает кровь через клапан и желудочек в кровеносные каналы. Как правило, этот показатель напрямую зависит от силы и частоты выброса крови. При повышении АД учащается пульс, болит голова, чувствуется тошнота, которая может сопровождаться рвотой;
    • диастолическое (нижнее). Эта цифра артериального давления означает состояние артерий в период полного расслабления сердечной мышцы. Этот показатель напрямую зависит от тонуса и общего состояния сосудов. На их работу влияет такое вещество как ренин. Его вырабатывают почки и если этот орган имеет проблемы, то образование ренина нарушается, что и вызывает дисфункции в организме.

    Значение цифр при измерении АД

    С помощью этих основных понятий специалисты вычисляют степень работы сердца и силу воздействия крови на стенки сосудов. В совокупности эти данные дают возможность определить работу сердечно-сосудистой системы и при необходимости выписать правильное лечение. Значение нормального артериального давления составляет 120/80 – при таких показателях сердце способно работать в нормальном режиме. Однако цифры могут немного отклоняться в большую или меньшую сторону, так как у всех людей разный организм.


    Допустимые изменения показателей

    У совершенно здорового человека на протяжении дня цифры артериального давления как верхнего, так и нижнего, могут изменяться. Такое явление является нормальным и неотъемлемым процессом в организме. Например, после физических нагрузок давление повышается, так как в организме увеличивается приток крови. В жаркую погоду уровень АД падает, так как количество кислорода в воздухе уменьшается, что стимулирует уменьшение сосудов и накопление углекислого газа в организме. С годами уровень давления в организме изменяется в большую сторону, так как у человека появляются много заболевание, в том числе и гипертония.

    Если цифры артериального давления в течение дня колеблются в допустимых нормах, то это является безопасным процессом:

    • верхняя отметка может изменяться от 90 до 140 мм рт. ст.;
    • нижний показатель может иметь отклонения от 60 до 90 мм рт. ст.

    Нормы АД

    О чем говорят отклонения систолического давления

    Верхний показатель зависит от работы сердечной мышцы, поэтому на него необходимо в первую очередь обращать внимание. Именно эти данные говорит о появлении такой неприятной болезни, как гипертония. Заболевание имеет несколько стадий:

    • начальная (140–160 мм рт. ст.);
    • умеренная (160–180 мм рт. ст.);
    • тяжелая (выше 180 мм рт. ст.).

    Если человек наблюдает в своем организме изменения, то необходимо обратиться к доктору. Специалист осмотрит больного, при необходимости назначит дополнительное обследование и анализы, а также выберет правильное комплексное лечение. Гипертония не лечится, однако это заболевание требует регулярного наблюдения и медикаментозного сопровождения.

    Человек может наблюдать у себя и пониженное верхнее АД (ниже 120 мм рт. ст.), что свидетельствует о проблеме в организме. Это значит, что через сердце проходит недостаточное количество крови для нормальной работы всех органов. Показатель давления необходимо повышать, для чего можно использовать крепкий черный чай или кофе, а также кусочек черного шоколада. Если не удается поднять АД домашними методами, то необходимо обратиться к доктору.

    Отклонение значение диастолического показателя

    Нижние цифры артериального давления полностью зависят от верхних, поэтому, чем больший кровоток, тем выше этот показатель. Повышенное нижнее АД не обязательно говорит о гипертонии. Такое отклонение может свидетельствовать и о других недугах в организме, например, почечных заболеваниях или атеросклерозе. Нормальные цифры диастолического артериального давления колеблются от 70 до 90 мм рт. ст. в зависимости от возраста и индивидуальных особенностей человека.


    Цифры при измерении давления

    Важно регулярно следить за показателями АД, так как любые его изменения говорят о проблемах в организме, которые необходимо решать. Не стоит заниматься самолечением. Лучше обратиться к доктору, который сможет назначить правильную схему лечения.

    Оцк в медицине

    Плазма крови: составные элементы (вещества, белки), функции в организме, использование

    Плазма крови – первая (жидкая) составляющая ценнейшей биологической среды под названием кровь. Плазма крови забирает на себя до 60% всего объема крови. Вторую часть (40 – 45 %) циркулирующей по кровеносному руслу жидкости берут на себя форменные элементы: эритроциты, лейкоциты, тромбоциты.

    Состав плазмы крови – уникальный. Чего там только нет? Различные белки, витамины, гормоны, ферменты – в общем, все, что каждую секунду обеспечивает жизнь человеческого организма.

    Состав плазмы крови

    Желтоватая прозрачная жидкость, выделенная при образовании свертка в пробирке – и есть плазма? Нет – это сыворотка крови, в которой нет коагулируемого белка фибриногена (фактора I), он ушел в сгусток.  Однако, если взять кровь в пробирку с антикоагулянтом, то он не позволит ей (крови) свернуться, а тяжелые форменные элементы через некоторое время опустятся на дно, сверху же останется также желтоватая, но несколько мутноватая, в отличие от сыворотки, жидкость, вот она и есть плазма крови, мутность которой придают содержащиеся в ней белки, в частности, фибриноген (FI).


    Состав плазмы крови поражает своим многообразием. В ней, кроме воды, которая составляет 90 – 93 %, присутствуют компоненты белковой и небелковой природы (до 10%):

    • Белки, которые забирают на себя 7 – 8 % от всего объема жидкой части крови (в 1 литре плазмы содержится от 65 до 85 граммов белков, норма общего белка в крови в биохимическом анализе: 65 – 85 г/л). Основными плазменными белками признаны альбумины (до 50% от всех белков или 40 – 50 г/л), глобулины (≈ 2,7%) и фибриноген;
    • Другие вещества белковой природы (компоненты комплемента, липопротеиды, углеводно-белковые комплексы и пр.);
    • Биологически активные вещества (ферменты, гемопоэтические факторы — гемоцитокины, гормоны, витамины);
    • Низкомолекулярные пептиды – цитокины, которые, в принципе, белки, но с низкой молекулярной массой, они продуцируются преимущественно лимфоцитами, хотя другие клетки крови также к этому причастны. Не глядя на свой «малый рост», цитокины наделены важнейшими функциями, они осуществляют взаимодействие системы иммунитета с другими системами при запуске иммунного ответа;

    • Углеводы, липиды, которые участвуют в обменных процессах, постоянно протекающих в живом организме;
    • Продукты, полученные в результате этих обменных процессов, которые впоследствии будут удалены почками (билирубин, мочевина, креатинин, мочевая кислота и др.);
    • В плазме крови собрано подавляющее большинство элементов таблицы Д. И. Менделеева. Правда, одни представители неорганической природы (натрий, хлор, калий, магний, фосфор, йод, кальций, сера и др.) в виде циркулирующих катионов и анионов легко поддаются подсчету, другие (ванадий, кобальт, германий, титан, мышьяк и пр.) – по причине мизерного количества, рассчитываются с трудом. Между тем, на долю всех присутствующих в плазме химических элементов приходится от 0,85 до 0,9%.

    Таким образом, плазма — это очень сложная коллоидная система, в которой «плавает» все, что содержится в организме человека и млекопитающих и все, что готовится к удалению из него.

    Вода – источник Н2О для всех клеток и тканей, присутствуя в плазме в столь значительных количествах, она обеспечивает нормальный уровень артериального давления (АД), поддерживает в более-менее постоянном режиме объем циркулирующей крови (ОЦК).

    Различаясь аминокислотными остатками, физико-химическими свойствами и другими характеристиками, белки создают основу организма, обеспечивая ему жизнь. Разделив плазменные белки на фракции, можно узнать содержание отдельных протеинов, в частности, альбуминов и глобулинов, в плазме крови. Так делают с диагностической целью в лабораториях, так делают в промышленных масштабах для получения очень ценных лечебных препаратов.


    Среди минеральных соединений наибольшая доля в составе плазмы крови принадлежит натрию и хлору (Na и Cl). Эти два элемента занимают ≈ по 0,3% минерального состава плазмы, то есть, они как бы являются основными, что нередко используется для восполнения объема циркулирующей крови (ОЦК) при кровопотерях. В подобных случаях готовится и переливается доступное и дешевое лекарственное средство — изотонический раствор хлорида натрия. При этом 0,9% р-р NaCl называют физиологическим, что не совсем верно: физиологический раствор должен, кроме натрия и хлора, содержать и другие макро- и микроэлементы (соответствовать минеральному составу плазмы).

    468686846

    Видео: что такое плазма крови

    Функции плазмы крови обеспечивают белки

    Функции плазмы крови определяются ее составом, преимущественно, белковым. Более детально этот вопрос будет рассмотрен в разделах ниже, посвященных основным белкам плазмы , однако кратко отметить важнейшие задачи, которые решает этот биологический материал, не помешает. Итак, главные функции плазмы крови:

    1. Транспортная (альбумин, глобулины);
    2. Дезинтоксикационная (альбумин);
    3. Защитная (глобулины — иммуноглобулины);
    4. Коагуляционная (фибриноген, глобулины: альфа-1-глобулин — протромбин);
    5. Регуляторная и координационная (альбумин, глобулины);

    Это коротко о функциональном назначении жидкости, которая в составе крови постоянно движется по кровеносным сосудам, обеспечивая нормальную жизнедеятельность организма. Но все же некоторым ее компонентам следовало бы уделить больше внимания, к примеру, что читатель узнал о белках плазмы крови, получив столь мало сведений? А ведь именно они, главным, образом, решают перечисленные задачи (функции плазмы крови).

    Безусловно, дать полнейший объем информации, затрагивая все особенности белков, присутствующих в плазме, в небольшой статье, посвященной жидкой части крови, наверное, сделать трудновато. Между тем, вполне возможно познакомить читателя с характеристиками основных протеинов (альбумины, глобулины, фибриноген – их считают главными белками плазмы) и упомянуть о свойствах некоторых других веществ белковой природы. Тем более что (как указывалось выше) они обеспечивают качественное выполнение своих функциональных обязанностей этой ценной жидкостью.

    Несколько ниже будут рассмотрены основные белки плазмы, однако вниманию читателя хотелось бы представить таблицу, которая показывает, какими протеинами представлены основные белки крови, а также их главное предназначение.

    Таблица 1. Основные белки плазмы крови

    Основные белки плазмы

    Содержание в плазме (норма), г/л

    Главные представители и их функциональное назначение


    Альбумины 35 — 55 «Строительный материал», катализатор иммунологических реакций, функции: транспорт, обезвреживание, регуляция, защита.
    Альфа Глобулин α-1 1,4 – 3,0 α1-антитрипсин, α-кислый протеин, протромбин, транскортин, переносящий кортизол, тироксинсвязывающий белок, α1-липопротеин, транспортирующий жиры к органам.
    Альфа Глобулин α-2 5,6 – 9,1 α-2-макроглобулин (главный в группе протеин) — участник иммунного ответа, гаптоглобин — образует комплекс со свободным гемоглобином, церулоплазмин – переносит медь, аполипопротеин В – транспортирует липопротеиды низкой плотности («плохой» холестерин»).
    Бета Глобулины: β1+β2 5,4 – 9,1 Гемопексин (связывает гем гемоглобина, чем предотвращает удаление железа из организма), β-трансферрин (переносит Fe), компонент комплемента (участвует в иммунологических процессах), β-липопротеиды – «транспортное средство» для холестеринов и фосфолипидов.
    Гамма глобулин γ 8,1 – 17,0 Естественные и приобретенные антитела (иммуноглобулины 5 классов – IgG, IgA, IgM, IgE, IgD), осуществляющие, главным образом, иммунную защиту на уровне гуморального иммунитета и создающие аллергостатус организма.
    Фибриноген 2,0 – 4,0 Первый фактор свертывающей системы крови – FI.

    Альбумины

    Альбумины — это простые белки, которые по сравнению с другими протеинами:

    • Проявляют самую высокую устойчивость в растворах, но при этом хорошо растворяются в воде;
    • Неплохо переносят минусовые температуры, не особо повреждаясь при повторном замораживании;
    • Не разрушаются при высушивании;
    • Пребывая в течение 10 часов при довольно высокой для других белков температуре (60ᵒС), не теряют своих свойств.

    Способности этих важных белков обусловлены наличием в молекуле альбумина очень большого количества полярных распадающихся боковых цепей, что определяет главные функциональные обязанности белков — участие в обмене и осуществление антитоксического эффекта. Функции альбуминов в плазме крови можно представить следующим образом:

    1. Участие в водном обмене (за счет альбуминов поддерживается необходимый объем жидкости, поскольку они обеспечивают до 80% суммарного коллоидно-осмотического давления крови);
    2. Участие в транспортировке различных продуктов и, особенно, тех, которые с большим трудом поддаются растворению в воде, например, жиров и желчного пигмента – билирубина (билирубин, связавшись с молекулами альбумина, становится безвредным для организма и в таком состоянии переносится в печень);
    3. Взаимодействие с макро- и микроэлементами, поступающими в плазму (кальций, магний, цинк и др.), а также со многими лекарственными препаратами;
    4. Связывание токсических продуктов в тканях, куда данные белки беспрепятственно проникают;
    5. Перенос углеводов;
    6. Связывание и перенос свободных жирных кислот — ЖК (до 80%), направляющихся в печень и другие органы из жировых депо и, наоборот, при этом, ЖК не проявляют агрессии в отношении красных клеток крови (эритроцитов) и гемолиза не происходит;
    7. Защита от жирового гепатоза клеток печеночной паренхимы и перерождения (жирового) других паренхиматозных органов, а, кроме этого, препятствие на пути образования атеросклеротических бляшек;
    8. Регуляция «поведения» некоторых веществ в организме человека (поскольку активность ферментов, гормонов, антибактериальных препаратов в связанном виде падает, данные белки помогают направить их действие в нужное русло);
    9. Обеспечение оптимального уровня катионов и анионом в плазме, защита от негативного воздействия случайно попавших в организм солей тяжелых металлов (комплексируются с ними с помощью тиоловых групп), нейтрализация вредных веществ;
    10. Катализ иммунологических реакций (антиген→антитело);
    11. Поддержание постоянства рН крови (четвертый компонент буферной системы – плазменные белки);
    12. Помощь в «строительстве» тканевых протеинов (альбумины совместно с другими белками составляют резерв «стройматериалов» для столь важного дела).

    Синтезируется альбумин в печени. Средний период полужизни данного белка составляет 2 – 2,5 недели, хотя одни «проживают» неделю, а другие – «работают» до 3 – 3,5 недель. Путем фракционирования белков из плазмы доноров получают ценнейший лечебный препарат (5%, 10% и 20% раствор), имеющий аналогичное название. Альбумин является последней фракцией в процессе, поэтому его производство требует немалых трудовых и материальных затрат, отсюда и стоимость лечебного средства.

    Показаниями к использованию донорского альбумина являются различные (в большинстве случаев довольно тяжелые) состояния: большая, создающая угрозу жизни, потеря крови, падение уровня альбумина и снижение коллоидно-осмотического давления по причине различных заболеваний.

    Глобулины

    Эти белки забирают меньшую долю по сравнению с альбумином, однако довольно ощутимую среди других протеинов. В лабораторных условиях глобулины разделяют на пять фракций: α-1, α-2, β-1, β-2 и γ-глобулины. В условиях производства для получения препаратов из фракции II + III выделяют гамма-глобулины, которые впоследствии будут использованы для лечения различных болезней, сопровождающихся нарушением в системе иммунитета.

    В отличие от альбуминов, вода для растворения глобулинов не подходит, поскольку в ней они не растворяются, зато нейтральные соли и слабые основания вполне подойдут для приготовления раствора данного белка.

    Глобулины — весьма значимые плазменные протеины, в большинстве случаев – это белки острой фазы. Не глядя на то, что их содержание находится в пределах 3% от всех плазменных белков, они решают важнейшие для организма человека задачи:

    • Альфа-глобулины участвуют во всех воспалительных реакциях (в биохимическом анализе крови отмечается повышение α-фракции);
    • Альфа- и бета-глобулины, находясь в составе липопротеинов, осуществляют транспортные функции (жиры в свободном состоянии в плазме появляются очень редко, разве что после нездоровой жирной трапезы, а в нормальных условиях холестерин и другие липиды связаны с глобулинами и образуют растворимую в воде форму, которая легко транспортируется из одного органа в другой);
    • α- и β-глобулины участвуют в холестериновом обмене (см. выше), что определяет их роль в развитии атеросклероза, поэтому неудивительно, что при патологии, протекающей с накоплением липидов, в сторону увеличения изменяются значения бета-фракции;
    • Глобулины (фракция альфа-1) переносят витамин В12 и отдельные гормоны;
    • Альфа-2-глобулин находится в составе принимающего очень активное участие в окислительно-восстановительных процессах гаптоглобина – этот острофазный белок связывает свободный гемоглобин и, таким образом, препятствует выведению железа из организма;
    • Часть бета-глобулинов совместно с гамма-глобулинами решает задачи иммунной защиты организма, то есть, является иммуноглобулинами;
    • Представители альфа, бета-1 и бета-2-фракций переносят стероидные гормоны, витамин А (каротин), железо (трансферрин), медь (церулоплазмин).

    Очевидно, что внутри своей группы глобулины несколько отличаются друг от друга (прежде всего, своим функциональным назначением).

    Следует заметить, что с возрастом или при отдельных заболеваниях печень может начать производить не совсем нормальные глобулины альфа и бета, при этом, измененная пространственная структура макромолекулы белков не лучшим образом отразится на функциональных способностях глобулинов.

    Гамма-глобулины

    Гамма-глобулины – белки плазмы крови, обладающие наименьшей электрофоретической подвижностью, эти протеины составляют основную массу естественных и приобретенных (иммунных) антител (АТ). Гамма-глобулины, образованные в организме после встречи с чужеродным антигеном, называют иммуноглобулинами (Ig). В настоящее время с приходом в лабораторную службу цитохимических методов стало возможным исследование сыворотки с целью определения в ней иммунных белков и их концентраций. Не все иммуноглобулины, а их известно 5 классов, имеют одинаковую клиническую значимость, кроме того, их содержание в плазме зависит от возраста и меняется при различных ситуациях (воспалительные заболевания, аллергические реакции).

    Таблица 2. Классы иммуноглобулинов и их характеристика

    Класс иммуноглобулинов (Ig)

    Содержание в плазме (сыворотке), %

    Основное функциональное назначение

    G Ок. 75 Антитоксины, антитела, направленные против вирусов и грамположительных микробов;
    A Ок. 13 Антиинсулярные АТ при сахарном диабете, антитела, направленные против капсульных микроорганизмов;
    M Ок. 12 Направление – вирусы, грамотрицательные бактерии, форсмановские и вассермановские антитела.
    E 0,0… Реагины, специфические АТ против различных (определенных) аллергенов.
    D У эмбриона, у детей и взрослых, возможно, обнаружение следов Не учитываются, поскольку клинической значимости не имеют.

    Концентрация иммуноглобулинов разных групп имеет заметные колебания у детей младшей и средней возрастной категории (преимущественно за счет иммуноглобулинов класса G, где отмечаются довольно высокие показатели — до 16 г/л). Однако приблизительно после 10-летнего возраста, когда прививки сделаны и основные детские инфекции перенесены, содержание Ig (в том числе, IgG) снижается и устанавливается на уровне взрослых:

    IgM – 0,55 – 3,5 г/л;

    IgA – 0,7 – 3,15 г/л;

    IgG – 0,7 – 3,5 г/л;

    Фибриноген

    Первый фактор свертывания (FI — фибриноген), который при образовании сгустка переходит в фибрин, формирующий сверток (наличие в плазме фибриногена отличает ее от сыворотки), по сути, относится к глобулинам.

    5468864486

    Фибриноген с легкостью осаждается 5% этанолом, что используется при фракционировании белков, а также полунасыщенным раствором хлорида натрия, обработкой плазмы эфиром и повторным замораживанием. Фибриноген термолабилен и полностью сворачивается при температуре 56 градусов.

    Без фибриногена не образуется фибрин, без него не останавливается кровотечение. Переход данного белка и образование фибрина осуществляется с участием тромбина (фибриноген → промежуточный продукт – фибриноген В → агрегация тромбоцитов → фибрин). Начальные стадии полимеризации фактора свертывания можно повернуть вспять, однако под влиянием фибринстабилизирующего фермента (фибриназа) происходит стабилизация и течение обратной реакции исключается.

    Участие в реакции свертывания крови – главное функциональное назначение фибриногена, но он имеет и другие полезные свойства, например, по ходу выполнения своих обязанностей, укрепляет сосудистую стенку, производит небольшой «ремонт», прилипая к эндотелию и закрывая тем самым маленькие дефекты, которые то и дело возникают в процессе жизни человека.

    Белки плазмы в качестве лабораторных показателей

    В лабораторных условиях для определения концентрации плазменных белков можно работать с плазмой (кровь берут в пробирку с антикоагулянтом) или проводить исследование сыворотки, отобранной в сухую посуду. Белки сыворотки крови ничем не отличаются от плазменных протеинов, за исключением фибриногена, который, как известно, в сыворотке крови отсутствует и который без антикоагулянта уходит на образование сгустка. Основные протеины меняют свои цифровые значения в крови при различных патологических процессах.

    5468488644864

    Повышение концентрации альбумина в сыворотке (плазме) – редчайшее явление, которое случается при обезвоживании либо при чрезмерном поступлении (внутривенное введение) альбумина высоких концентраций. Снижение уровня альбумина может указывать на истощение функциональных возможностей печени, на проблемы с почками либо на нарушения в желудочно-кишечном тракте.

    Увеличение или снижение белковых фракций характерно ряду патологических процессов, например, острофазные протеины альфа-1- и альфа-2-глобулины, повышая свои значения, могут свидетельствовать об остром воспалительном процессе, локализованном в органах дыхания (бронхи, легкие), затрагивающем выделительную систему (почки) либо сердечную мышцу (инфаркт миокарда).

    Особенное место в диагностике различных состояний отводится фракции гамма-глобулинов (иммуноглобулинов). Определение антител помогает распознать не только инфекционное заболевание, но и дифференцировать его стадию. Более подробные сведения об изменении значений различных белков (протеинограмма) читатель может почерпнуть в отдельном материале по глобулинам.

    Отклонения от нормы фибриногена проявляют себя нарушениями в системе гемокоагуляции, поэтому данный белок является важнейшим лабораторным показателем свертывающих способностей крови (коагулограмма, гемостазиограмма).

    Что касается других важных для организма человека белков, то при исследовании сыворотки, используя определенные методики, можно найти практически любые, которые интересны для диагностики заболеваний. Например, рассчитывая концентрацию трансферрина (бета-глобулин, острофазный белок) в пробе и рассматривая его не только в качестве «транспортного средства» (хотя это, наверное, в первую очередь), врач узнает степень связывания протеином трехвалентного железа, высвобождаемого красными кровяными тельцами, ведь Fe3+, как известно, присутствуя в свободном состоянии в организме, дает выраженный токсический эффект.

    Исследование сыворотки с целью определения содержания церулоплазмина (острофазный белок, металлогликопротеин, переносчик меди) помогает диагностировать такую тяжелую патологию, как болезнь Коновалова-Вильсона (гепатоцеребральная дегенерация).

    Таким образом, исследуя плазму (сыворотку), можно определить в ней содержание и тех белков, которые жизненно необходимы, и тех, которые появляются в анализе крови, как показатель патологического процесса (например, С-реактивный белок).

    Плазма крови – лечебное средство

    Заготовка плазмы в качестве лечебного средства началась еще в 30 годах прошлого столетия. Сейчас нативную плазму, полученную путем спонтанного оседания форменных элементов в течение 2 суток, уже давно не используют. На смену устаревшим пришли новые методы разделения крови (центрифугирование, плазмаферез). Кровь после заготовки подвергается центрифугированию и разделяется на компоненты (плазма + форменные элементы). Жидкая часть крови, полученная подобным образом, обычно замораживается (свежезамороженная плазма) и, во избежание заражения гепатитами, в частности, гепатитом С, который имеет довольно длинный инкубационный период, направляется на карантинное хранение. Замораживание данной биологической среды при ультранизких температурах позволяет хранить ее год и более, чтобы потом использовать для приготовления препаратов (криопреципитат, альбумин, гамма-глобулин, фибриноген, тромбин и др.).

    5468864468

    В настоящее время жидкая часть крови для переливаний все чаще заготавливается методом плазмафереза, который наиболее безопасен для здоровья доноров. Форменные элементы после центрифугирования возвращаются путем внутривенного введения, а потерянные с плазмой белки в организме сдавшего кровь человека быстро регенерируются, приходят в физиологическую норму, при этом, не нарушая функции самого организма.

    Кроме свежезамороженной плазмы, переливаемой при многих патологических состояниях, в качестве лечебного средства используют иммунную плазму, полученную после иммунизации донора определенной вакциной, например, стафилококковым анатоксином. Такую плазму, имеющую высокий титр антистафилококковых антител, используют также для приготовления антистафилококкового гамма-глобулина (иммуноглобулин человека антистафилококковый) – препарат довольно дорогостоящий, поскольку его производство (фракционирование белков) требует немалых трудовых и материальных затрат. И сырьем для него служит – плазма крови иммунизированных доноров.

    Своего рода иммунной средой является и плазма антиожоговая. Давно замечено, что кровь людей, переживших подобный ужас вначале несет токсические свойства, однако спустя месяц в ней начинают обнаруживаться ожоговые антитоксины (бета- и гамма-глобулины), которые могут помочь «друзьям по несчастью» в остром периоде ожоговой болезни.

    Разумеется, получение подобного лечебного средства сопровождается определенными трудностями, не глядя на то, что в период выздоровления потерянная жидкая часть крови восполняется донорской плазмой, поскольку организм обожженных людей испытывает белковое истощение. Однако донор должен быть взрослым и в другом отношении — здоровым, а его плазма должна иметь определенный титр антител (не менее 1 : 16). Иммунная активность плазмы реконвалесцентов сохраняется около двух лет и через месяц после выздоровления ее можно забирать у доноров-реконвалесцентов уже без компенсации.

    Из плазмы донорской крови для людей, страдающих гемофилией или другой патологией свертывания, которая сопровождается снижением антигемофильного фактора (FVIII), фактора фон Виллебранда (ФВ, VWF) и фибриназы (фактор XIII, FXIII), готовится гемостатическое средство, называемое криопреципитатом. Его действующее вещество – фактор свертывания VIII.

    Видео: о сборе и использовании плазмы крови

    Фракционирование белков плазмы в промышленных масштабах

    Между тем, использование цельной плазмы в современных условиях далеко не всегда оправдано. Причем, как с терапевтических, так и с экономических точек зрения. Каждый из плазменных белков несет свои, присущие только ему, физико-химические и биологические свойства. И вливать бездумно столь ценный продукт человеку, которому нужен конкретный белок плазмы, а не вся плазма, нет никакого смысла, к тому же – дорого в материальном плане. То есть, одна и та же доза жидкой части крови, разделенная на составляющие, может принести пользу нескольким пациентам, а не одному больному, нуждающемуся в отдельном препарате.

    32111254

    Промышленный выпуск препаратов был признан в мире после разработок в этом направлении ученых Гарвардского университета (1943 год). В основу фракционирования белков плазмы лег метод Кона, суть которого – осаждение фракций протеинов ступенчатым добавлением этилового спирта (концентрация на первом этапе – 8%, на завершающем – 40%) в условиях низких температур (-3ºС – I стадия, -5ºС – последняя). Безусловно, метод несколько раз модифицировался, однако и теперь (в разных модификациях) его используют для получения препаратов крови на всей планете. Вот его краткая схема:

    • На первой стадии осаждается белок фибриноген (осадок I) – данный продукт после специальной обработки пойдет в лечебную сеть под собственным названием или войдет в набор для остановки кровотечений, называемый «Фибриностатом»);
    • Вторую стадию процесса представляет супернатант II + III (протромбин, бета- и гамма-глобулины) – эта фракция пойдет на производство препарата, который называется гамма-глобулин человека нормальный, либо будет выпущена, как лечебное средство под названием антистафилококковый гамма-глобулин. В любом случае, из супернатанта, полученного на второй стадии, можно приготовить препарат, содержащий большое количество антимикробных и антивирусных антител;
    • Третья, четвертая стадии процесса нужны для того, чтобы добраться до осадка V (альбумин + примесь глобулинов);
    • 97 – 100% альбумин выходит лишь на завершающей стадии, после чего с альбумином еще долго придется работать, пока он не поступит в лечебные учреждения (5, 10, 20% альбумин).

    Но это – всего лишь краткая схема, подобное производство на самом деле занимает много времени и требует участия многочисленного персонала разной степени квалификации. На всех этапах процесса будущее ценнейшее лекарство находится под постоянным контролем различных лабораторий (клинической, бактериологической, аналитической), ведь все параметры препарата крови на выходе должны строго соответствовать всем характеристикам трансфузионных сред.

    Таким образом, плазма, помимо того, что в составе крови она обеспечивает нормальную жизнедеятельность организма, может быть еще важным диагностическим критерием, показывающим состояние здоровья, или же спасать жизнь других людей, используя свои уникальные свойства. И это не все о плазме крови. Мы не стали давать полнейшую характеристику всем ее белкам, макро- и микроэлементам, досконально описывать ее функции, ведь все ответы на оставшиеся вопросы можно найти на страницах СосудИнфо.

    Источник: holesterin.lechenie-gipertoniya.ru

    Изменения объема циркулирующей крови (оцк) и соотношений между оцк и количеством форменных элементов крови.

    ОЦК взрослого человека — достаточно постоянная величина, составляет 7-8% от массы тела, зависит от пола, возраста и содержания в организме жировой ткани. Соотношение объемов форменных элементов и жидкой части крови называется гематокритом. В норме гематокрит мужчины равен 0,41—0,53, женщины — 0,36—0,46. У новорождённых гематокрит примерно на 20 % выше, у маленьких детей — примерно на 10 % ниже, чем у взрослого. Гематокрит повышен при эритроцитозах, снижен при анемиях.

    Нормоволемия — (ОЦК) в норме.

    Нормоволемия олигоцитемическая (нормальный ОЦК c уменьшенным количеством форменных элементов) – характерна для различных по происхождению анемий, сопровождается снижением гематокрита.

    Нормоволемия полицитемическая (нормальный ОЦК с увеличенным количеством клеток, гематокрит повышен) развивается вследствие избыточной инфузии эритроцитарной массы; активации эритропоэза при хронической гипоксии; опухолевом размножении клеток эритроидного ряда.

    Гиперволемия – ОЦК превышает среднестатистические нормы.

    Гиперволемия олигоцитемическая (гидремия, гемодилюция) — возрастание объема плазмы, разведение клеток жидкостью, развивается при почечной недостаточности, гиперсекреции антидиуретического гормона, сопровождается развитием отеков. В норме олигоцитемическая гиперволемия развивается во второй половине беременности, когда гематокрит снижается до 28-36%. Такое изменение повышает скорость плацентарного кровотока, эффективность трансплацентарного обмена (это особенно существенно для поступления СО2 из крови плода в кровь матери, так как разность концентраций этого газа очень небольшая).

    Гиперволемия полицитемическая – увеличение объема крови главным образом из-за повышения числа форменных элементов крови, поэтому гематокрит повышен.

    Гиперволемия приводит к увеличению нагрузки на сердце, увеличению сердечного выброса, повышению артериального давления.

    Гиповолемия – ОЦК меньше среднестатистических норм.

    Гиповолемия нормоцитемическая – уменьшение объема крови с сохранением объема клеточной массы, наблюдается в течение первых 3-5 часов после массивной кровопотери.

    Гиповолемия полицитемическая – снижение ОЦК за счет потери жидкости (дегидратация) при диарее, рвоте, обширных ожогах. Артериальное давление при гиповолемической полицитемии снижается, массивная потеря жидкости (крови) может привести к развитию шока.

    Кровь состоит из форменных элементов (эритроцитов, тромбоцитов, лейкоцитов) и плазмы. Гемограмма (греч. haima кровь + gramma запись) — клинический анализ крови, включает данные о количестве всех форменных элементов крови, их морфологических особенностях, скорости оседания эритроцитов (СОЭ), содержании гемоглобина, цветном показателе, гематокрите, среднем объеме эритроцитов (MCV), среднем содержании гемоглобина в эритроците (MCH), средней концентрации гемоглобина в эритроците (MCHC).

    Гемопоэз (кроветворение)у млекопитающих осуществляется кроветворными органами, прежде всегокрасным костным мозгом. Некоторая часть лимфоцитов развивается в лимфатических узлах, селезёнке, вилочковой железе (тимусе).

    Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.

    В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток. Всего в схеме кроветворения различают VI классов клеток: I – стволовые кроветворные клетки (СКК); II – полустволовые; III – унипотентные; IV – бластные; V – созревающие; VI – зрелые форменные элементы.

    Характеристика клеток различных классов схемы кроветворения

    Класс I – Предшественниками всех клеток являются плюрипотентные гемопоэтическиестволовые клетки костного мозга. Содержание стволовых клеток не превышает в кроветворной ткани долей процента. Стволовые клетки дифференцируются по всем росткам кроветворения (это и означает плюрипотентность); они способны к самоподдержанию, пролиферации, циркуляции в крови, миграции в другие органы кроветворения.

    Класс II – полустволовые,ограниченно полипотентные клетки– предшественницы: а) миелопоэза; б) лимфоцитопоэза. Каждая из них дает клон клеток, но только миелоидных или лимфоидных. В процессе миелопоэза образуются все форменные элементы крови, кроме лимфоцитов — эритроциты, гранулоциты, моноциты и тромбоциты. Миелопоэз происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Ткань, в которой происходит миелопоэз, называется миелоидной. Лимфопоэз происходит в лимфатических узлах, селезёнке,тимусеи костном мозге.

    Класс III унипотентные клетки-предшественницы, они могут дифференцироваться только в одном направлении, при культивировании этих клеток на питательных средах они образуют колонии клеток одной линии, поэтому их называют также колониеобразующими единицами(КОЕ).Частота деления этих клеток и способность дифференцироваться дальше зависят от содержания в крови особых биологически активных веществ – поэтинов, специфичных для каждого ряда кроветворения. Эритропоэтин – регулятор эритропоэза, гранулоцитарно-моноцитарный колониестимулирующий фактор (ГМ-КСФ) регулируют продукцию нейтрофилов и моноцитов, гранулоцитарный КСФ (Г-КСФ) регулирует образование нейтрофилов.

    В этом классе клеток существует предшественник В-лимфоцитов, предшественник Т-лимфоцитов.

    Клетки трех названных классов схемы кроветворения, морфологически нераспознаваемые, существуют в двух формах: бластной и лимфоцитоподобной. Бластную форму приобретают делящиеся клетки, находящиеся в фазе синтеза ДНК.

    Класс IV – морфологически распознаваемых пролиферирующихбластных клеток, начинающих отдельные клеточные линии: эритробласты, мегакариобласты, миелобласты, монобласты, лимфобласты. Эти клетки крупные, имеют большое рыхлое ядро с 2–4 ядрышками, цитоплазма базофильная. Часто делятся, дочерние клетки все вступают на путь дальнейшей дифференцировки.

    Класс V – класссозревающих(дифференцирующихся) клеток, характерных для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток – от одной (пролимфоцит, промоноцит) до пяти – в эритроцитарном ряду.

    Класс VI зрелые форменные элементы кровис ограниченным жизненным циклом. Только эритроциты, тромбоциты и сегментоядерные гранулоциты являются зрелыми конечными дифференцированными клетками. Моноциты – не окончательно дифференцированные клетки. Покидая кровеносное русло, они дифференцируются в тканях в конечные клетки – макрофаги. Лимфоциты при встрече с антигенами превращаются в бласты и снова делятся.

    Гемопоэз на ранних стадиях развития эмбрионов млекопитающих начинается в желточном мешке, продуцирующем эритроидные клетки примерно с 16—19 дня развития, и прекращается после 60-го дня развития, после чего функция кроветворения переходит к печении начинается лимфопоэз в тимусе. Последним из кроветворных органов в онтогенезе развивается красный костный мозг, играющий главную роль в гемопоэзе взрослых особей. После окончательного формирования костного мозга гемопоэтическая функция печени угасает.

    Большинство циркулирующих форменных элементов крови составляют эритроциты – красные безъядерные клетки, их в 1000 раз больше, чем лейкоцитов; поэтому: 1) гематокрит зависит от количества эритроцитов; 2)СОЭ зависит от количества эритроцитов, их величины, способности к образованию агломератов, от температуры окружающей среды, количества белков плазмы крови и соотношения их фракций. Повышенное значение СОЭ может быть при инфекционных, иммунопатологических, воспалительных, некротических и опухолевых процессах.

    ВОцк в медициненорме количество эритроцитов в 1л крови у мужчин — 4,0—5,01012, у женщин —3,7—4,71012.У здорового человека эритроциты в 85% имеют форму диска с двояковогнутыми стенками, в 15% — другие формы. Диаметр эритроцита 7-8мкм. Наружная поверхность клеточной мембраны содержит молекулы, определяющие группу крови, и другие антигены. Содержание гемоглобина в крови у женщин составляет 120—140г/л, у мужчин — 130—160г/л. Уменьшение числа эритроцитов характерно для анемий, увеличение — называется эритроцитозом (полицитемией). В крови взрослых содержится 0,2-1,0% ретикулоцитов.

    Ретикулоциты — это молодые эритроциты с остатками РНК, рибосом и других органелл, выявляемых при специ­альной (суправитальной) окраске в виде гранул, сетки или нитей. Ретикулоциты образуются из нормоцитов в костном моз­ге, после чего поступают в перифе­рическую кровь.

    При ускорении эритропоэза доля ретикулоцитов возраста­ет, а при замедлении снижается. В случае усиленного разрушения эритроцитов доля ре­тикулоцитов может превышать 50%. Резкое увеличение эритропоэза сопровождается появлением в крови ядерных эритроидных клеток (эритрокариоцитов) – нормоцитов, иногда даже эритробластов.

    Оцк в медицине

    Рис. 1. Ретикулоциты в мазке крови.

     

    Основная функция эритроцита состоит в транспорте кислорода от легочных альвеол к тканям и двуокиси углерода (СО2) – обратно из тканей к легочным альвеолам. Двояковогнутая форма клетки обеспечивает наибольшую площадь поверхности газообмена, позволяет ей значительно деформироваться и проходить через капилляры с просветом 2-3 мкм. Такая способность к деформации обеспечивается за счет взаимодействия между белками мембраны (сегмент 3 и гликофорин) и цитоплазмы (спектрин, анкирин и белок 4.1). Дефекты этих белков ведут к морфологическим и функциональным нарушениям эритроцитов. Зрелый эритроцит не имеет цитоплазматических органелл и ядра и поэтому не способен к синтезу белков и липидов, окислительному фосфорилированию и поддержанию реакций цикла трикарбоновых кислот. Он получает большую часть энергии через анаэробный путь гликолиза и сохраняет ее в виде АТФ. Приблизительно 98% массы белков цитоплазмы эритроцита составляет гемоглобин (Hb), молекула которого связывает и транспортирует кислород. Длительность жизни эритроцитов 120 дней. Наиболее устойчивы к воздействиям молодые клетки. Постепенное старение клетки или ее повреждение приводит к появлению на ее поверхности «белка старения» — своеобразной метки для макрофагов селезенки и печени.

    ПАТОЛОГИЯ «КРАСНОЙ» КРОВИ

    АНЕМИИ

    Анемия — это снижение концентрации гемоглобина в единице объема крови, чаще всего при одновременном уменьшении числа эритроцитов.

    Различные виды анемий выявляются у 10-20% населения, в большинстве случаев у женщин. Наиболее часто встречаются анемии, связанные с дефицитом железа (около 90% всех анемий), реже анемии при хронических заболеваниях, еще реже анемии, связанные с дефицитом витамина В12 или фолиевой кислоты, гемолитические и апластические.

    Общие признаки анемий являются следствием гипоксии: бледность, одышка, сердцебиение, общая слабость, быстрая утомляемость, снижение работоспособности. Снижение вязкости крови объясняет возрастание СОЭ. Появляются функциональные шумы в сердце вследствие турбулентного тока крови в крупных сосудах.

    В зависимости от выраженности снижения уровня гемоглобина выделяют три степени тяжести анемии: легкая— уровень гемоглобина выше 90 г/л;средняя— гемоглобин в пределах 90-70 г/л;тяжелая— уровень гемоглобина менее 70 г/л.

    Источник: StudFiles.net

    Главная • Библиотека • Общая хирургия • Признаки острой кровопотери

    Острая кровопотеря ведет к обескровливанию организма за счет уменьшения объема циркулирующей крови. Это в первую очередь отражается на деятельности сердца и головного мозга.

    Вследствие острой кровопотери у больного появляются головокружение, слабость, шум в ушах, сонливость, жажда, потемнение в глазах, беспокойство и чувство страха, черты лица заостряются, может развиться обморок и потеря сознания.

    С уменьшением объема циркулирующей крови тесно связана потеря артериального давления; организм реагирует на это включением защитных механизмов, о которых говорилось выше.

    Поэтому вслед за падением артериального давления появляются:

    • резкая бледность кожи и слизистых (это спазм периферических сосудов);
    • тахикардия (компенсаторная реакция сердца);
    • одышка (дыхательная система борется с недостатком кислорода).

    Все эти симптомы говорят о кровопотере, но чтобы судить о ее величине, недостаточно гемодинамических показаний (данных пульса и артериального давления), необходимы клинические данные крови (количество эритроцитов, величина гемоглобина и гематокрита).

    ОЦК — это объем форменных элементов крови и плазмы.

    Количество эритроцитов при острой кровопотере компенсируется выходом в кровеносное русло не циркулирующих до этого эритроцитов, находящихся в депо.

    Но еще быстрее происходит разбавление крови за счет увеличения количества плазмы (гемодилюция).

    Простая формула определения ОЦК:

    ОЦК = масса тела в кг, умноженная на 50 мл.

    Точнее определить ОЦК можно с учетом пола, массы тела и конституции человека, так как мышцы являются одним из самых больших депо крови в организме человека.

    На величину ОЦК влияет и активный образ жизни. Если здорового человека поместить на 2 недели на постельный режим, его ОЦК снижается на 10 %. Длительно болеющие люди теряют до 40 % ОЦК.

    Гематокрит — это отношение объема форменных элементов крови к ее общему объему.

    В первые сутки после кровопотери оценивать ее величину по гематокриту нельзя, так как больной пропорционально теряет как плазму, так и эритроциты.

    А через сутки после гемодилюции показатель гематокрита очень информативен.

    Шоковый индекс Алговера — это соотношение пульса к систолическому артериальному давлению. В норме он равен 0,5. При 1,0 наступает угрожающее состояние. При 1,5 — явный шок.

    Геморрагический шок характеризуется показателями пульса и артериального давления в зависимости от степени шока.

    Говоря о кровопотере и потере ОЦК, нужно знать, что организму небезразлично, какую он теряет кровь: артериальную или венозную. 75 % крови в организме находится в венах (система низкого давления); 20 % — в артериях (система высокого давления); 5 % — в капиллярах.

    Кровопотеря в 300 мл из артерии существенно уменьшает объем артериальной крови в русле, изменяются и показатели гемодинамики. А 300 мл венозной кровопотери большого изменения показателей не вызовут. Организм донора потерю 400 мл венозной крови компенсирует самостоятельно.

    Особенно плохо переносят кровопотерю дети и старики, организм женщины справляется с кровопотерей легче.

    В.Дмитриева, А.Кошелев, А.Теплова

    «Признаки острой кровопотери» и другие статьи из раздела Общая хирургия

    Читайте также:

    • Классификация кровотечений
    • Обморок, симптомы, первая помощь
    • Вся информация по этому вопросу

    Источник: www.rostmaster.ru

    Оценка тяжести состояния пациента при кровотечениях традиционно и, вполне оправданно с патофизиологических позиций, связывается с определением степени кровопотери. Именно острая, подчас – массивная, кровопотеря выделяет патологические процессы, осложненную геморрагией, из череды нозологических форм острой абдоминальной хирургической патологии, требуя проведения максимально быстрых лечебных мероприятий, направленных на спасение жизни больного. Cтепень нарушений гомеостаза, вызванных геморрагией, и адекватность их коррекции определяет принципиальную возможность, сроки и характер неотложного оперативного вмешательства. Диагностика степени кровопотери и определение индивидуальной стратегии заместительной терапии должны решаться хирургами совместно с врачами-реаниматологам, поскольку именно тяжесть постгеморрагического состояния организма является главным фактором, определяющим все дальнейшие лечебно-диагностические мероприятия. Выбор рациональной тактики лечения является прерогативной хирургов с учетом того, что тяжесть кровопотери служит важнейшим прогностическим признаком возникновения летальных исходов.

    Так, летальность среди больных, поступивших в состоянии геморрагического шока в стационар с клинической картиной гастродуоденального кровотечения колеблется от 17, 1 до 28, 5% (Schiller et al. , 1970; C. Sugawa et al. , 1990). Кроме того определение тяжести кровотечения имеет важное прогностическое значение в возникновении рецидива гастродуоденального кровотечения: На Согласительной конференции Института Здоровья США (1989) единодушно признано, что ведущим фактором в возникновении рецидива язвенного гастродуоденального кровотечения является именно величина кровопотери до поступления, по мнению X. Mueller et al. (1994) шок является наиболее информативным признаком в прогнозе рецидива кровотечения и превосходит эндоскопические критерии.

    В настоящее время известно более 70 классификаций степени тяжести кровопотери, что само по себе свидетельствует об отсутствии единой концепции в столь актуальном вопросе. На протяжении десятилетий менялись приоритеты в отношении маркеров тяжести кровопотери, что во многом свидетельствует об эволюции взглядов на патогенез постгеморрагических нарушений гомеостаза. Все подходы к оценке тяжести постгеморрагических расстройств, лежащие в основе классификаций тяжести острой кровопотери разделяют на четыре группы: 1) оценка объема циркулирующей крови (ОЦК) и его дефицита по гематологическим параметрам или прямыми методами, 2) инвазивный мониторинг центральной гемодинамики, 3) оценка транспорта кислорода, 4) клиническая оценка тяжести кровопотери.

    Оценка объема циркулирующей крови (ОЦК) и его дефицита по гематологическим параметрам или прямыми методами используются для количественной оценки гиповолемии и качества ее коррекции. Многим авторам представлялось особенно важным дифференцированное определение дефицита циркулирующей плазмы и дефицита циркулирующих эритроцитов. При этом на основании дефицита объема циркулирующих эритроцитов (т. н. «истинная анемия») проводилось точное замещение недостающего объема эритроцитов гемотрансфузиями.

    А. И. Горбашко (1974, 1982) использовал определение дефицита ОЦК по данным дефицита глобулярного объёма (ГО), выявляемого полиглюкиновым методом, что позволило выделить 3 степени кровопотери:

    I степень (легкая) — при дефиците ГО до 20%,

    II степень (средняя) – при дефиците ГО от 20 до 30%,

    III степень (тяжелая) – при дефиците ГО 30% и более.

    Определение глобулярного объёма в свою очередь проводилось по формуле:

    ГО = (ОЦП – Ht) / (100-Ht), ОЦП=М х 100/С ,

    где М — количество сухого полиглюкина в мг (в 40 мл 6% раствора полиглюкина — 2400 мг сухого вещества), С – концентрация полиглюкина в плазме в мг%, ОЦП — объем циркулирующей плазмы.

    П. Г. Брюсов (1997) предлагает свой метод расчета степени кровопотери по дефициту глобулярного объёма в виде формулы:

    Vкп=ОЦКд х (ГОд-ГОф) / Год ,

    где Vкп – объем кровопотери, ОЦКд – должный ОЦК, Год – глобулярный объем должный, ГОф – глобулярный объем фактический.

    Исследование гематокритного числа в динамике позволяет судить о степени постгеморрагической аутогемодилюции, адекватности проведения инфузионной и трансфузионной терапии. Считается, что потеря каждых 500 мл крови сопровождается снижением гематокрита на 5 — 6%, равно как переливание крови пропорционально повышает этот показатель. В качестве одного из быстрых и достоверных методов определения объёма кровопотери на основании показателей гематокрита может быть использован метод Мура (1956):

    Объем кровопотери = ОЦКд х ( (Htд – Htф) / Htд,

    где Htд — должный гематокрит, Htф-гематокрит фактический.

    Тем не менее, абсолютное значение кровопотери и дефицита ОЦК при остром гастродуоденальном кровотечении выявить не удается. Это связано с несколькими факторами. Во-первых, крайне затруднительно установить исходный показатель ОЦК. Формулы теоретического расчета ОЦК по номограммам (Lorenz, Nadler, Allen, Hooper) дают лишь приблизительные значения, не учитывая конституциональных особенностей данного индивида, степени исходной гиповолемии, возрастных изменений ОЦК (у стариков его значение может варьировать в пределах 10-20% от должного). Во-вторых, перераспределение крови с секвестрацией ее на периферии и параллельно развивающаяся гидремическая реакция, а также начатая на догоспитальном этапе и продолжающаяся в стационаре инфузионная терапия делают ОЦК у каждого конкретного больного величиной весьма вариабельной.

    Широко известны (но не широко применяемы в клинике) прямые методы определения ОЦК, основанные на принципах: 1) плазменных индикаторов – красителей, альбумина I131, полиглюкина (Gregersen, 1938; Е. Д. Черникова, 1967; В. Н. Липатов, 1969) ; 2) глобулярных индикаторов – эритроцитов, меченых Cr51, Fe59 и другими изотопами (Н. Н. Чернышева, 1962; А. Г. Караванов, 1969) ; 3) плазменного и глобулярного индикаторов одновременно (Н. А. Яицкий, 2002). Теоретически рассчитаны должные показатели ОЦК, объёма циркулирующей плазмы и эритроцитов, созданы номограммы для определения волемии по гематокриту и массе тела (Жизневский Я. А. , 1994). Используемые лабораторные методы определения величины ОЦК или даже более точный метод интегральной реографии, отражают величину ОЦК лишь в данный момент времени, тогда как достоверно установить истинную величину и, соответственно, объем кровопотери не представляется возможным. Поэтому методы оценки ОЦК и его дефицита в абсолютных значениях в настоящее время представляют интерес скорее для экспериментальной, нежели для клинической медицины.

    Инвазивный мониторинг центральной гемодинамики. Простейшим методом инвазивной оценки степени гиповолемии является измерение величины центрального венозного давления (ЦВД). ЦВД отражает взаимодействие между венозным возвратом и насосной функцией правого желудочка. Указывая на адекватность наполнения полостей правого сердца, ЦВД косвенно отражает волемию организма. Следует принимать во внимание то, что на величину ЦВД оказывают влияние не только ОЦК, но и венозный тонус, контрактильность желудочков, функция предсердно-желудочковых клапанов, объем проводимой инфузии. Поэтому, строго говоря, показатель ЦВД не равнозначен показателю венозного возврата, но в большинстве случаев коррелирует с ним.

    Тем не менее, по величине ЦВД можно получить ориентировочное представление о кровопотере: при уменьшении ОЦК на 10% ЦВД (в норме 2 – 12 мм водн. ст. ) может не измениться; кровопотеря более 20% ОЦК сопровождается снижением ЦВД на 7 мм водн. ст. Для выявления скрытой гиповолемии при нормальном ЦВД используют измерение при вертикальном положении пациента; снижение ЦВД на 4 – 6 мм водн. ст. указывает на факт гиповолемии.

    Показателем, с большей степенью объективности отражающем преднагрузку левого желудочка, а значит, и венозный возврат, является давление заклинивания в легочных капиллярах (ДЗЛК), в норме составляющее 10+4 мм рт. ст. Во многих современных публикация ДЗЛК считается отражением волемии и является обязательной составляющей исследования называемого гемодинамического профиля. Измерение ДЗЛК оказывается незаменимым при необходимости высокой скорости заместительной инфузионной терапии на фоне левожелудочковой недостаточности (например, при кровопотере у стариков). Измерение ДЗЛК проводится прямым методом посредством установки в ветвь легочной артерии через центральный венозный доступ и полости правого сердца катетера Swan-Ganz и соединением его с регистрирующей аппаратурой. Катетер Swan-Ganz может быть использован для измерения сердечного выброса (СВ) по методу болюсной термодилюции. Некоторые современные мониторы (Baxter Vigilance) выполняют автоматическое непрерывное измерение сердечного выброса. Ряд катетеров снабжен оксиметрами, что позволяет осуществлять постоянный мониторинг кислородной сатурации смешанной венозной крови. Наряду с этим, катетеризация легочной артерии позволяет рассчитать индексы, отражающие работу миокарда, транспорт и потребление кислорода (Malbrain M. et al. , 2005).

    Идея комплексной оценки гемодинамического профиля пациента и конечной цели гемодинамики – кислородного транспорта – нашла свое отражение в так называемом структурном подходе к проблеме шока. Предлагаемый подход основан на анализе показателей, представленных в виде двух групп: «давление / кровоток» — ДЗЛК, сердечный выброс (СВ), общее периферическое сосудистое сопротивление (ОПСС) и «транспорт кислорода» — DO2 (доставка кислорода), VO2 (потребление кислорода), концентрация лактата в сыворотке крови. Показатели первой группы описывают ведущие нарушения центральной гемодинамики в данный момент времени в виде так называемых малых гемодинамических профилей. В случае гиповолемического шока определяющим в нарушении центральной гемодинамики будет снижение наполнения желудочков (низкое ДЗЛК), приводящее к уменьшению СВ, что в свою очередь вызывает вазоконстрикцию и увеличение ОПСС (см. табл. ).

    Таблица. Динамика основных показателей инвазивного мониторинга гемодинамики при критических состояниях.

    Нормальное значение

    Острая массивная кровопотеря

    Кардиогенный шок

    Септический, травматический, панкреатогенный шок

    Давление заклинивание в легочных капиллярах (ДЗЛК)

    15 / 9 мм рт. ст.

    Низкое

    Высокое

    Низкое

    Сердечный выброс (СВ)

    5 – 5, 5 л/мин

    Низкий

    Низкий

    Высокий

    Общее периферическое сосудистое сопротивление (ОПСС)

    1 200 — 1 600 дин. с. см-5

    Высокое

    Высокое

    Низкое

    Структурный подход в оценке гемодинамики является не только высоко информативным, но и позволяет контролируемо корригировать обусловленные кровопотерей волемические расстройства. Степень и компенсированность гиповолемии в данном случае показывают ДЗЛК и СВ, периферическую вазоконстрикцию – ОПСС.

    Оценка транспорта кислорода. Современная концепция геморрагического шока, рассматривающая его как нарушение системного транспорта кислорода, потребовала разработки новых критериев динамической оценки статуса пациента. Традиционный анализ газов крови позволяет максимально быстро получать информацию о рО2, рСО2, рН крови. Более совершенные методы, например программный пакет «Deep picture», делает возможным автоматическое определение оксигенации крови в легких, транспорт кислорода на периферию, его потребление в тканях по уровню Р50, характеризующему положение кривой диссоциации HbO2 и сродство гемоглобина данной крови к кислороду. По последнему показателю рассчитывается способность кислородного обеспечения тканей при оптимальном содержании гемоглобина. Однако сдвиг кривой диссоциации оксигемоглобина определяется помимо учитываемых рН крови, раСО2, 2, 3-ДГФ еще и качественными особенностями самого гемоглобина (доля метгемоглобина, глюкозированного гемоглобина), а также циркулирующими среднемолекулярными пептидами, продуктами ПОЛ. Влияние компенсаторного сдвига кривой диссоциации оксигемоглобина может быть настолько велико, что возможна компенсация гипоксемии при раО2 40 – 50 торр и ниже. Постоянное неинвазивное измерение уровня периферического насыщения гемоглобина кислородом SaO2 как критерия кислородного транспорта стало возможным с практически повсеместным внедрением в клинику пульсоксиметрии. Тем не менее, в случае геморрагического шока показания пульсоксиметра могут быть весьма недостоверными вследствие снижения пульсового объема крови в периферических тканях на месте установки датчика в результате вазоконстрикции и артерио-венозного шунтирования. Кроме того, показания будут практически одинаковыми при раО2 80 и 200 торр по причине нелинейности кривой диссоциации HbO2. Полной информации об изменениях перфузии и органного транспорта кислорода не дает также изолированное применение метода транскутанного определения рО2, поскольку на величину последнего оказывают влияние не столько изменения гемоциркуляции, сколько адекватность внешнего дыхания.

    Недостаточная объективность оценки транспорта кислорода на основании изолированного анализа одного или нескольких показателей, а также рассмотрение аэробного метаболизма как конечной цели многоуровневой саморегулирующейся системы поддержания гомеостаза привели к разработке и использованию интегральных величин, включающих параметры гемоциркуляции, количества и качества кислородоносителя, тканевого метаболизма. Такими интегральными величинами являются:

    1) доставка кислорода, отражающая скорость транспорта О2 артериальной кровью (DO2 = x СаО2 = x (1, 34 х Hb x SaO2 ) x 10) , норма — 520—720 мл/ (мин-м),

    2) потребление кислорода, представляющее собой кислородное обеспечение тканевого метаболизма (VO2 = СИ x (CaO2 – CvO2) = x (1, 34 x Hb) x (SaO2 – SvO2) , норма110 до 160 мл/ (мин-м),

    3) коэффициент утилизации кислорода, отражающий долю кислорода, поглощенного тканями из капиллярного русла (КУО2 = VO2 / DO2), норма – 22 – 32%,

    где DO2 – доставка кислорода, VO2 – потребление кислорода, КУO2 – коэффициент утилизации кислорода, СИ – сердечный индекс (сердечный выброс/площадь поверхности тела), Hb – гемоглобин крови, SaO2 – сатурация артериальной крови, SvO2 – сатурация венозной крови, СаО2 – концентрация кислорода в артериальной крови, CvO2 – концентрация кислорода венозной крови.

    Параметры «транспорта кислорода» оценивают эффективность центральной гемодинамики в отношении оксигенации тканей. Именно показатели DO2 и VO2 определяют эффективность механизмов доставки кислорода тканям по величине СВ, содержания кислорода в артериальной и смешанной венозной крови. Дополнительным маркером адекватности оксигенации тканей или их ишемии с преобладанием анаэробного метаболизма служит повышение концентрации лактата сыворотки крови. На основании показателей транспорта кислорода можно определить, что является предпочтительным для ликвидации тканевой ишемии у больного в данный момент времени: повышение сердечного выброса или (и) возмещение недостатка кислородоносителя. Однако как бы ни была заманчива идея (кстати, уже воплощенная в жизнь) динамической оценки кровообращения структурным подходом по гемодинамическим формулам и транспорту кислорода, в силу печально известных объективных и субъективных факторов ее широкого применения в отечественной клинической практике ожидать приходиться не скоро.

    Источник: volynka.ru


    Leave a Comment

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.