Роль лейкоцитов при воспалении


В процессе острого воспаления важную роль в течение воспаления и его исходов имеет процесс выхода лейкоцитов из кровеносного русла –эмиграция. Лейкоциты – в очаге воспаления выполняют несколько важнейших функций. 1 – защитную; 2 – регуляторную; 3 – очищение зоны повреждения и подготовку к пролиферации.     Эмиграция лейкоцитов при воспалении проходит в несколько этапов: адгезия лейкоцитов к эндотелию сосуда; прохождение лейкоцита через сосудистую стенку; движение лейкоцита в очаг воспаления.

Адгезия лейкоцитов к эндотелию сосуда. Под влиянием медиаторов воспаления происходит активация эндотелия и стимуляция синтеза адгезивных молекул. Быстрее всех молекул адгезии (в течение нескольких мин) на эндотелии начинает функционировать Р-селектин, который исходно содержится в эндотелиальных клетках. Остальные эндотелиальные молекулы адгезии появляются последовательно в течение нескольких часов, поскольку требуется время для их синтеза эндотелием.

 В результате активации эндотелия и экспрессии на мембране Р-селектина возникает слабое взаимодействие лейкоцитов и эндотелиоцитов, что сопровождается «прокатыванием» (роллинг) лейкоцитов вдоль сосудистой стенки под действием тока крови. Выделение Е-селектина замедляет роллинг лейкоцитов, а после появления на эндотелиоцитах молекул адгезии ICAM-1 и VCAM-1 клетки закрепляются непосредственно на поверхности эндотелия для последующего выхода из сосудов в очаг воспаления.


Клетки крови эмигрируют в очаг воспаления в определенной последовательности: сначала идут нейтрофильные гранулоциты, затем моноциты и наконец, лимфоциты. Очередность эмиграции клеток крови обусловлена последовательностью синтеза и экспрессии молекул адгезии на эндотелии. Для эмиграции нейтрофильных лейкоцитов достаточно их взаимодействия только с Е-селектином, максимальная экспрессия которого происходит через 1-4 ч от начала воспаления. Для эмиграции моноцитов и лимфоцитов, а также для усиления адгезии нейтрофилов уже требуется взаимодействие с молекулами ICAM-1 и VCAM-1. Максимальная экспрессия этих молекул адгезии происходит через 12-24 ч. Поэтому выход моноцитов и лимфоцитов из сосудов отсрочен по сравнению с нейтрофилами, которые начинают эмигрировать в очаг воспаления практически сразу после его возникновения. При развитии аллергического воспаления в большом количестве могут эмигрировать эозинофильные лейкоциты.

Многоступенчатый и сложный механизм взаимодействия лейкоцитов и клеток эндотелия позволяет очень точно регулировать процесс эмиграции лейкоцитов. Адгезия лейкоцитов обеспечивается взаимодействием молекул адгезии на лейкоцитах с молекулами адгезии на эндотелиальных клетках венозных сосудов, поэтому выход лейкоцитов происходит только на уровне венул.


    Прохождение лейкоцита через сосудистую стенку. Все сегментоядерные гранулоциты проходят между эндотелиальными клетками, поскольку их ядро, способно изменять формы, что позволяет им проходить через узкие щели. Мононуклеарные клетки (моноциты и лимфоциты) также способны проникать между эндотелиальными клетками, но для этого требуется выраженная активация эндотелия и изменение его формы под влиянием воспалении. Эти клетки могут проходить через эндотелиальные клетки, образуя трансэндотелиальный канал.

Прохождение лейкоцитов через базальную мембрану затруднено связи с плотностью ее структуры. Однако, известно, что лейкоциты имеют рецепторы к элементам базальной мембраны, что обеспечивает их взаимодействие с сосудистой оболочкой. Кроме того, лейкоциты способны выделять протеолитические ферменты, в частности коллагеназу, которые разрушают элементы базальной мембраны, облегчая проход лейкоцитов через нее.

    Движение лейкоцита к очагу воспаления. Процесс движения лейкоцитов (микрофагов, макрофагов) в очаг воспаления называется хемотаксисом, а вещества, вызывающие направленное движение клеток — хемоаттрактантами.  Хемоаттрактанты по происхождению бывают  экзогенными и эндогенными. К экзогенным хемоаттрактантам относятся продукты жизнедеятельности или структурные элементы микроорганизмов, а также другие чужеродные вещества.


Основная же роль в стимуляции хемотаксиса лейкоцитов принадлежит эндогенным хемоаттрактантам. Эндогенные хемоаттрактанты бывают неспецифическими и специфическими. В качестве неспецифических хемоаттрактантов выступают большинство биологически активных веществ, а также продукты повреждения клеток и медиаторы воспаления (гистамин, серотонин, АТФ, ДНК, продукты деградации фибрина (ПДФ), продукты деградации коллагена, фибронектин, тромбин).

Некоторые вещества имеют принципиальное значение для хемотаксиса, а нарушение их образования существенно влияет на выход лейкоцитов из сосудов. Эти вещества получили название специфических хемоаттрактантов. К ним относятся: лейкотриен В4 и комплемент (С5а, С3а) (они определяют хемотаксис нейтрофилов, эозинофилов и моноцитов); фактор активации тромбоцитов (влияет на хемотаксис нейтрофилов и эозинофилов)

 Специфичность лейкотриена В4, комплемента и ФАТ достаточно условна, т.к. эти вещества имеют много других эффектов, из которых стимуляция хемотаксиса – одна из важнейших. При воспалении они образуются в большом количестве и привлекают в очаг воспаления преимущественно нейтрофильные лейкоциты.

Важная роль в регуляции хемотаксиса принадлежит хемокинам – цитокинам, которые образуются для регуляции хемотаксиса. Наиболее важными химокинами для привлечения лейкоцитов в очаг воспаления являются: интерлейкин-8 (хемотаксис нейтрофилов); эотаксин (хемотаксис эозинофилов); моноцитарный хемотаксический протеин-1 (MCP-1) (хемотаксис моноцитов и Т-лимфоцитов). Хемокины отвечают за более точную регуляцию выхода из сосудов различных лейкоцитов, что способствует правильной последовательности эмиграции лейкоцитов.


Точная регуляция последовательности выхода лейкоцитов из сосудов имеет важное биологическое значение. Первой линией защиты при любом воспалении выступают нейтрофильные лейкоциты, которые относятся к неспецифическому иммунитету. При невозможности быстрого уничтожения антигена происходит активное подключение специфического иммунитета, и в очаг воспаления выходят сначала антигенпрезентирующие клетки (моноциты крови), а затем лимфоциты. 

    Механизмы фагоцитоза. Лейкоциты, выходящие из сосудистого русла, выполняют различные функции (защитная, регулирующая). Наибольшее значение при остром воспалении имеет защитная функция, которая преимущественно обеспечивается нейтрофильными лейкоцитами и моноцитами-макрофагами. Защитная функция этих клеток связана с их способностью к фагоцитозу.

Фагоцито́з (Фаго – пожирать и цитос – клетка) – процесс захвата клеткой путем рецепторного эндоцитоза частиц (в том числе и микроорганизмов). Максимальная активность фагоцитов наблюдается в отношении частиц диаметром более 1 мкм. Однако, возможен фагоцитоз и более мелких частиц, диаметром до 100 нм. В роли фагоцитов выступают гранулоциты крови, преимущественно нейтрофилы, а также макрофаги (тканевые макрофаги и моноциты крови).


Фагоцитоз протекает в несколько стадий:

1. Приближение лейкоцита к объекту фагоцитоза. Эта стадия определяется хемоаттрактантами, которые образуются в большом количестве в очаге воспаления и функциональной активностью лейкоцитов.

    2. Прилипание лейкоцита к объекту фагоцитоза. Прилипание лейкоцита – рецепторопосредованный процесс. На мембране лейкоцитов можно обнаружить рецепторы ко многим антигенам микроорганизмов, которые относятся к рецепторам «первичного иммунитета». Однако,  такой механизм связывания лейкоцита с антигеном ограничен и не позволяет осуществить полноценный иммунный ответ. Поэтому, в большинстве случаев прилипание лейкоцита к объекту фагоцитоза осуществляется с помощью универсальных «посредников», в качестве которых выступают иммуноглобулины (преимущественно IgG) и система комплемента (C3b).

    Процесс связывания объекта фагоцитоза с такими белками для последующего фагоцитоза называется опсонизацией, а сами белки, выполняющие эту функцию – опсонинами. После опсонизации объекта фагоцитоза лейкоцит взаимодействует не с антигеном микроорганизма, а иммуноглобулином через соответствующий рецептор к Fc-фрагменту IgG или через рецептор к С3b.

    Исходно в организме имеется недостаточное количество иммуноглобулинов, способных связаться с конкретным антигеном микроорганизма, поэтому максимальная активность фагоцитоза невозможна без образования достаточного количества специфических к данному антигену иммуноглобулинов. После распознавания антигена и наработки антиген-специфичных иммуноглобулинов (см. главу патология  иммунитета) процесс опсонизации усиливается, чем достигается уничтожение микроорганизма, в том числе с помощью фагоцитоза.


    3. Стадия погружения объекта фагоцитоза завершается образованием фагосомы. Этот процесс энергозависимый, связан с работой сократительных белков фагоцита и происходит после взаимодействия опсонизированного микроорганизма с соответствующими рецепторами на мембране фагоцита.

     4. Стадия переваривания. После погружения фагосомы внутрь лейкоцита образуется фаголизосома. Одновременно с этим происходит разрушение (киллинг) микроорганизма с помощью разнообразных механизмов. Они подразделяются на кислород-зависимые и кислород-независимые.

Активация лейкоцитарных кислород-зависимых механизмов сопровождается возникновением т.н. «кислородного взрыва», а потребление кислорода клеткой резко возрастает. В результате происходит импульсная генерация активных форм кислорода (О2-, ‘О2, ОН-, Н2О2) и других продуктов перекисного окисления. После гибели микроорганизма происходит окончательное переваривание его структур ферментами фагоцита.

К кислород-независимым механизмам относится воздействие таких веществ, как лизоцим, эластаза, коллагеназа, катепсины, лактоферрин, катионные белки (дефенсины, протегрины). Фагоцитоз, который завершился уничтожением микроорганизма и перевариванием объекта фагоцитоза называется завершенным. Фагоцитоз, при котором микроорганизм не погибает, и нередко продолжает жить внутри фагоцита, называется незавершенным. 


Пролиферация

    Пролиферация – процесс размножения клеток в очаге повреждения, направленный на восстановление целостности тканей. Процесс восстановления структуры поврежденной ткани начинается через несколько часов после повреждения. Однако, цель пролиферации – восстановление целостности ткани, может быть достигнута только при условии, что дальнейшего разрушения клеток не происходит, в противном случае вновь образующиеся клетки будут также гибнуть под действием повреждающих факторов. Таким образом, процесс пролиферации и восстановления поврежденной ткани становится значимым лишь к моменту, когда основные процессы первичного и вторичного повреждения завершены.

    В процессе пролиферации выделяют 3 этапа: 1) очищение ткани от поврежденных клеточных элементов, микроорганизмов и других чужеродных элементов 2) стимуляция роста сосудов в поврежденной ткани 3) непосредственное восстановление дефекта ткани.

    Очищение ткани от поврежденных клеток и микроорганизмов осуществляют нейтрофильные лейкоциты и макрофаги, которые являются основными клетками острого воспаления. Нейтрофильные лейкоциты окружают очаг воспаления, создавая барьер между зоной повреждения и здоровой тканью. Схожую функцию выполняют венозный застой и стаз, которые препятствуют распространению инфекции по сосудам.  


    Рост сосудов в очаге повреждения (т.н. «неоангиогенез») происходит под влиянием факторов роста, которые вырабатываются различными клетками, преимущественно макрофагами и эндотелиальными клетками. Основными факторами роста для новых эндотелиоцитов являются сосудистый эндотелиальный фактор роста (VEGF), фактор роста фибробластов (FGF). Формирование  трубки будущего капилляра происходит из эндотелиоцитов под влиянием факторов роста. Эндотелиальные клетки в образованных вновь микрососудах, исходно функционально несостоятельны, поскольку они обладают очень высокой проницаемостью. Затем эндотелиальные клетки «созревают», происходит формирование базальной мембраны, и новые сосудистые образования приобретают свойства нормальных капилляров.

    Восстановление дефекта ткани происходит за счет роста соединительной ткани и эпителиальной ткани, которые идут одновременно с ростом сосудов.

По своей пролиферативной активности ткани делятся на 3 типа:  с высокой пролиферативной активностью (костный мозг, эпителий кожи, желудочно-кишечного тракта, соединительная ткань); с возможной пролиферативной активностью в условиях повреждения (ткань печени, почки);  и ткани практически с очень ограниченными возможностями для пролиферации клеток (нервная, мышечная). 


Восстановление дефекта ткани происходит преимущественно за счет основных структурных клеточных элементов, например, эпителиальных клеток кожи или кишечника. Параллельно происходит активный рост соединительной ткани, поэтому при значительном объеме повреждения пролиферация завершается восстановлением целостности ткани со значительным изменением ее состава; как правило, с избыточным количеством соединительной ткани. Основой пролиферации являются молодые «камбиальные» клетки, которые присутствуют в большинстве пролиферирующих тканей.

Однако, процессы пролиферации имеют не только механизмы стимулирующей регуляции, но и тормозной регуляции, что также очень важно. Так, фибробласты, участвующие в регенерации ткани, постепенно утрачивают свою пролиферативную активность, что предотвращает их чрезмерную пролиферацию. При этом происходит угнетение экспрессии факторов роста, рецепторов к факторам роста и другие процессы. Одним из механизмов такого угнетения пролиферативной активности достигается с помощью т.н. «контактного торможения», когда при достижении определенной плотности клеточных контактов начинается торможение пролиферативной активности на уровне регуляции генома клетки. Кроме того, меняется микроокружение клетки и  условия метаболизма.

При нарушении механизмов регуляции пролиферации, а именно при увеличении пролиферативной активности фибробластов и недостаточной тормозной регуляции возможна их избыточная пролиферация, что проявляется в виде гипертрофических и келоидных рубцов. Появление таких рубцов отчасти имеет генетическую предрасположенность, связанную с некоторыми генами по системе HLA (HLA BW16, HLA BW21). Доказано, что фибробласты в гипертрофических и келоидных рубцах более активны, вырабатывают больше коллагена, фибронектина и протеогликанов, а также у них нарушена чувствительность к действию регулирующих механизмов.


При недостаточной активности пролиферативных процессов на фоне хронической гипоксии ткани, например, при патологии микрососудов при диабетической микроангиопатии или при хронической венозной недостаточности, процессы пролиферации могут отставать даже от скорости естественной смерти старых клеток (апоптоза) (см. главу патология клетки). Такое несоответствие между естественной убылью клеток и их восстановлением приводит к сохранению или повторному дефекту ткани, образованию язвы.

Источник: studopedia.net

В процессе острого воспаления важную роль в течение воспаления и его исходов имеет процесс выхода лейкоцитов из кровеносного русла –эмиграция. Лейкоциты – в очаге воспаления выполняют несколько важнейших функций. 1 – защитную; 2 – регуляторную; 3 – очищение зоны повреждения и подготовку к пролиферации.     Эмиграция лейкоцитов при воспалении проходит в несколько этапов: адгезия лейкоцитов к эндотелию сосуда; прохождение лейкоцита через сосудистую стенку; движение лейкоцита в очаг воспаления.

Адгезия лейкоцитов к эндотелию сосуда. Под влиянием медиаторов воспаления происходит активация эндотелия и стимуляция синтеза адгезивных молекул. Быстрее всех молекул адгезии (в течение нескольких мин) на эндотелии начинает функционировать Р-селектин, который исходно содержится в эндотелиальных клетках. Остальные эндотелиальные молекулы адгезии появляются последовательно в течение нескольких часов, поскольку требуется время для их синтеза эндотелием.

 В результате активации эндотелия и экспрессии на мембране Р-селектина возникает слабое взаимодействие лейкоцитов и эндотелиоцитов, что сопровождается «прокатыванием» (роллинг) лейкоцитов вдоль сосудистой стенки под действием тока крови. Выделение Е-селектина замедляет роллинг лейкоцитов, а после появления на эндотелиоцитах молекул адгезии ICAM-1 и VCAM-1 клетки закрепляются непосредственно на поверхности эндотелия для последующего выхода из сосудов в очаг воспаления.

Клетки крови эмигрируют в очаг воспаления в определенной последовательности: сначала идут нейтрофильные гранулоциты, затем моноциты и наконец, лимфоциты. Очередность эмиграции клеток крови обусловлена последовательностью синтеза и экспрессии молекул адгезии на эндотелии. Для эмиграции нейтрофильных лейкоцитов достаточно их взаимодействия только с Е-селектином, максимальная экспрессия которого происходит через 1-4 ч от начала воспаления. Для эмиграции моноцитов и лимфоцитов, а также для усиления адгезии нейтрофилов уже требуется взаимодействие с молекулами ICAM-1 и VCAM-1. Максимальная экспрессия этих молекул адгезии происходит через 12-24 ч. Поэтому выход моноцитов и лимфоцитов из сосудов отсрочен по сравнению с нейтрофилами, которые начинают эмигрировать в очаг воспаления практически сразу после его возникновения. При развитии аллергического воспаления в большом количестве могут эмигрировать эозинофильные лейкоциты.

Многоступенчатый и сложный механизм взаимодействия лейкоцитов и клеток эндотелия позволяет очень точно регулировать процесс эмиграции лейкоцитов. Адгезия лейкоцитов обеспечивается взаимодействием молекул адгезии на лейкоцитах с молекулами адгезии на эндотелиальных клетках венозных сосудов, поэтому выход лейкоцитов происходит только на уровне венул.

    Прохождение лейкоцита через сосудистую стенку. Все сегментоядерные гранулоциты проходят между эндотелиальными клетками, поскольку их ядро, способно изменять формы, что позволяет им проходить через узкие щели. Мононуклеарные клетки (моноциты и лимфоциты) также способны проникать между эндотелиальными клетками, но для этого требуется выраженная активация эндотелия и изменение его формы под влиянием воспалении. Эти клетки могут проходить через эндотелиальные клетки, образуя трансэндотелиальный канал.

Прохождение лейкоцитов через базальную мембрану затруднено связи с плотностью ее структуры. Однако, известно, что лейкоциты имеют рецепторы к элементам базальной мембраны, что обеспечивает их взаимодействие с сосудистой оболочкой. Кроме того, лейкоциты способны выделять протеолитические ферменты, в частности коллагеназу, которые разрушают элементы базальной мембраны, облегчая проход лейкоцитов через нее.

    Движение лейкоцита к очагу воспаления. Процесс движения лейкоцитов (микрофагов, макрофагов) в очаг воспаления называется хемотаксисом, а вещества, вызывающие направленное движение клеток — хемоаттрактантами.  Хемоаттрактанты по происхождению бывают  экзогенными и эндогенными. К экзогенным хемоаттрактантам относятся продукты жизнедеятельности или структурные элементы микроорганизмов, а также другие чужеродные вещества.

Основная же роль в стимуляции хемотаксиса лейкоцитов принадлежит эндогенным хемоаттрактантам. Эндогенные хемоаттрактанты бывают неспецифическими и специфическими. В качестве неспецифических хемоаттрактантов выступают большинство биологически активных веществ, а также продукты повреждения клеток и медиаторы воспаления (гистамин, серотонин, АТФ, ДНК, продукты деградации фибрина (ПДФ), продукты деградации коллагена, фибронектин, тромбин).

Некоторые вещества имеют принципиальное значение для хемотаксиса, а нарушение их образования существенно влияет на выход лейкоцитов из сосудов. Эти вещества получили название специфических хемоаттрактантов. К ним относятся: лейкотриен В4 и комплемент (С5а, С3а) (они определяют хемотаксис нейтрофилов, эозинофилов и моноцитов); фактор активации тромбоцитов (влияет на хемотаксис нейтрофилов и эозинофилов)

 Специфичность лейкотриена В4, комплемента и ФАТ достаточно условна, т.к. эти вещества имеют много других эффектов, из которых стимуляция хемотаксиса – одна из важнейших. При воспалении они образуются в большом количестве и привлекают в очаг воспаления преимущественно нейтрофильные лейкоциты.

Важная роль в регуляции хемотаксиса принадлежит хемокинам – цитокинам, которые образуются для регуляции хемотаксиса. Наиболее важными химокинами для привлечения лейкоцитов в очаг воспаления являются: интерлейкин-8 (хемотаксис нейтрофилов); эотаксин (хемотаксис эозинофилов); моноцитарный хемотаксический протеин-1 (MCP-1) (хемотаксис моноцитов и Т-лимфоцитов). Хемокины отвечают за более точную регуляцию выхода из сосудов различных лейкоцитов, что способствует правильной последовательности эмиграции лейкоцитов.

Точная регуляция последовательности выхода лейкоцитов из сосудов имеет важное биологическое значение. Первой линией защиты при любом воспалении выступают нейтрофильные лейкоциты, которые относятся к неспецифическому иммунитету. При невозможности быстрого уничтожения антигена происходит активное подключение специфического иммунитета, и в очаг воспаления выходят сначала антигенпрезентирующие клетки (моноциты крови), а затем лимфоциты. 

    Механизмы фагоцитоза. Лейкоциты, выходящие из сосудистого русла, выполняют различные функции (защитная, регулирующая). Наибольшее значение при остром воспалении имеет защитная функция, которая преимущественно обеспечивается нейтрофильными лейкоцитами и моноцитами-макрофагами. Защитная функция этих клеток связана с их способностью к фагоцитозу.

Фагоцито́з (Фаго – пожирать и цитос – клетка) – процесс захвата клеткой путем рецепторного эндоцитоза частиц (в том числе и микроорганизмов). Максимальная активность фагоцитов наблюдается в отношении частиц диаметром более 1 мкм. Однако, возможен фагоцитоз и более мелких частиц, диаметром до 100 нм. В роли фагоцитов выступают гранулоциты крови, преимущественно нейтрофилы, а также макрофаги (тканевые макрофаги и моноциты крови).

Фагоцитоз протекает в несколько стадий:

1. Приближение лейкоцита к объекту фагоцитоза. Эта стадия определяется хемоаттрактантами, которые образуются в большом количестве в очаге воспаления и функциональной активностью лейкоцитов.

    2. Прилипание лейкоцита к объекту фагоцитоза. Прилипание лейкоцита – рецепторопосредованный процесс. На мембране лейкоцитов можно обнаружить рецепторы ко многим антигенам микроорганизмов, которые относятся к рецепторам «первичного иммунитета». Однако,  такой механизм связывания лейкоцита с антигеном ограничен и не позволяет осуществить полноценный иммунный ответ. Поэтому, в большинстве случаев прилипание лейкоцита к объекту фагоцитоза осуществляется с помощью универсальных «посредников», в качестве которых выступают иммуноглобулины (преимущественно IgG) и система комплемента (C3b).

    Процесс связывания объекта фагоцитоза с такими белками для последующего фагоцитоза называется опсонизацией, а сами белки, выполняющие эту функцию – опсонинами. После опсонизации объекта фагоцитоза лейкоцит взаимодействует не с антигеном микроорганизма, а иммуноглобулином через соответствующий рецептор к Fc-фрагменту IgG или через рецептор к С3b.

    Исходно в организме имеется недостаточное количество иммуноглобулинов, способных связаться с конкретным антигеном микроорганизма, поэтому максимальная активность фагоцитоза невозможна без образования достаточного количества специфических к данному антигену иммуноглобулинов. После распознавания антигена и наработки антиген-специфичных иммуноглобулинов (см. главу патология  иммунитета) процесс опсонизации усиливается, чем достигается уничтожение микроорганизма, в том числе с помощью фагоцитоза.

    3. Стадия погружения объекта фагоцитоза завершается образованием фагосомы. Этот процесс энергозависимый, связан с работой сократительных белков фагоцита и происходит после взаимодействия опсонизированного микроорганизма с соответствующими рецепторами на мембране фагоцита.

     4. Стадия переваривания. После погружения фагосомы внутрь лейкоцита образуется фаголизосома. Одновременно с этим происходит разрушение (киллинг) микроорганизма с помощью разнообразных механизмов. Они подразделяются на кислород-зависимые и кислород-независимые.

Активация лейкоцитарных кислород-зависимых механизмов сопровождается возникновением т.н. «кислородного взрыва», а потребление кислорода клеткой резко возрастает. В результате происходит импульсная генерация активных форм кислорода (О2-, ‘О2, ОН-, Н2О2) и других продуктов перекисного окисления. После гибели микроорганизма происходит окончательное переваривание его структур ферментами фагоцита.

К кислород-независимым механизмам относится воздействие таких веществ, как лизоцим, эластаза, коллагеназа, катепсины, лактоферрин, катионные белки (дефенсины, протегрины). Фагоцитоз, который завершился уничтожением микроорганизма и перевариванием объекта фагоцитоза называется завершенным. Фагоцитоз, при котором микроорганизм не погибает, и нередко продолжает жить внутри фагоцита, называется незавершенным. 

Пролиферация

    Пролиферация – процесс размножения клеток в очаге повреждения, направленный на восстановление целостности тканей. Процесс восстановления структуры поврежденной ткани начинается через несколько часов после повреждения. Однако, цель пролиферации – восстановление целостности ткани, может быть достигнута только при условии, что дальнейшего разрушения клеток не происходит, в противном случае вновь образующиеся клетки будут также гибнуть под действием повреждающих факторов. Таким образом, процесс пролиферации и восстановления поврежденной ткани становится значимым лишь к моменту, когда основные процессы первичного и вторичного повреждения завершены.

    В процессе пролиферации выделяют 3 этапа: 1) очищение ткани от поврежденных клеточных элементов, микроорганизмов и других чужеродных элементов 2) стимуляция роста сосудов в поврежденной ткани 3) непосредственное восстановление дефекта ткани.

    Очищение ткани от поврежденных клеток и микроорганизмов осуществляют нейтрофильные лейкоциты и макрофаги, которые являются основными клетками острого воспаления. Нейтрофильные лейкоциты окружают очаг воспаления, создавая барьер между зоной повреждения и здоровой тканью. Схожую функцию выполняют венозный застой и стаз, которые препятствуют распространению инфекции по сосудам.  

    Рост сосудов в очаге повреждения (т.н. «неоангиогенез») происходит под влиянием факторов роста, которые вырабатываются различными клетками, преимущественно макрофагами и эндотелиальными клетками. Основными факторами роста для новых эндотелиоцитов являются сосудистый эндотелиальный фактор роста (VEGF), фактор роста фибробластов (FGF). Формирование  трубки будущего капилляра происходит из эндотелиоцитов под влиянием факторов роста. Эндотелиальные клетки в образованных вновь микрососудах, исходно функционально несостоятельны, поскольку они обладают очень высокой проницаемостью. Затем эндотелиальные клетки «созревают», происходит формирование базальной мембраны, и новые сосудистые образования приобретают свойства нормальных капилляров.

    Восстановление дефекта ткани происходит за счет роста соединительной ткани и эпителиальной ткани, которые идут одновременно с ростом сосудов.

По своей пролиферативной активности ткани делятся на 3 типа:  с высокой пролиферативной активностью (костный мозг, эпителий кожи, желудочно-кишечного тракта, соединительная ткань); с возможной пролиферативной активностью в условиях повреждения (ткань печени, почки);  и ткани практически с очень ограниченными возможностями для пролиферации клеток (нервная, мышечная). 

Восстановление дефекта ткани происходит преимущественно за счет основных структурных клеточных элементов, например, эпителиальных клеток кожи или кишечника. Параллельно происходит активный рост соединительной ткани, поэтому при значительном объеме повреждения пролиферация завершается восстановлением целостности ткани со значительным изменением ее состава; как правило, с избыточным количеством соединительной ткани. Основой пролиферации являются молодые «камбиальные» клетки, которые присутствуют в большинстве пролиферирующих тканей.

Однако, процессы пролиферации имеют не только механизмы стимулирующей регуляции, но и тормозной регуляции, что также очень важно. Так, фибробласты, участвующие в регенерации ткани, постепенно утрачивают свою пролиферативную активность, что предотвращает их чрезмерную пролиферацию. При этом происходит угнетение экспрессии факторов роста, рецепторов к факторам роста и другие процессы. Одним из механизмов такого угнетения пролиферативной активности достигается с помощью т.н. «контактного торможения», когда при достижении определенной плотности клеточных контактов начинается торможение пролиферативной активности на уровне регуляции генома клетки. Кроме того, меняется микроокружение клетки и  условия метаболизма.

При нарушении механизмов регуляции пролиферации, а именно при увеличении пролиферативной активности фибробластов и недостаточной тормозной регуляции возможна их избыточная пролиферация, что проявляется в виде гипертрофических и келоидных рубцов. Появление таких рубцов отчасти имеет генетическую предрасположенность, связанную с некоторыми генами по системе HLA (HLA BW16, HLA BW21). Доказано, что фибробласты в гипертрофических и келоидных рубцах более активны, вырабатывают больше коллагена, фибронектина и протеогликанов, а также у них нарушена чувствительность к действию регулирующих механизмов.

При недостаточной активности пролиферативных процессов на фоне хронической гипоксии ткани, например, при патологии микрососудов при диабетической микроангиопатии или при хронической венозной недостаточности, процессы пролиферации могут отставать даже от скорости естественной смерти старых клеток (апоптоза) (см. главу патология клетки). Такое несоответствие между естественной убылью клеток и их восстановлением приводит к сохранению или повторному дефекту ткани, образованию язвы.

Источник: lift74.ru

Экссудация и экссудаты. Эмиграция лейкоцитов и их роль в воспалении. Хроническое воспаление

Экссудация и экссудаты. Эмиграция лейкоцитов и их роль в воспалении

Расстройство микроциркуляции всегда сопровождается двумя явлениями:

— экссудацией;

— эмиграцией.

Экссудация – это выпотевание жидкой части крови в воспалённую ткань

Экссудат – вышедшая в ткань жидкость

Механизмы экссудации:

1. Повышение проницаемости сосудов.

2. Увеличение гидростатичности давления в сосудах очага воспаления.

3. Увеличение коллоидно-осмотического давления в очаге воспаления в результате гиперосмии и гиперонкии.

Отличия в механизме образования экссудатов и транссудатов.

Транссудат – это выпотная жидкость, которая образуется при заболеваниях центрального кровообразования.

При транссудации ведущими факторами являются повышение гидростатического давления в венозной части русла

При экссудации ведущими факторами являются:

— повышение проницаемости сосудов;

— увеличение гидростатического давления в сосудах органа;

— увеличение коллоидно-осмотического давления в тканях;

— нарушения лимфооттока.

Экссудаты:

— серозный;

— фибринозный;

— гнойный;

— гнилостный;

— гемморрагический;

— смешанный.

1. Серозный экссудат – прозрачен. Удельный вес 1015 – 1020 (не высок). Белок 3 – 5% (мало), ПЯН и СЯН – мало. Встречается при воспалении серозных оболочек, а именно серозном перикардите, перитоните, плеврите, артрите.

Если серозный экссудат содержит слизь, то такое воспаление называют катаральным.

2. Фибринозный экссудат – содержит фибриноген. Фибриноген появляется в экссудате в результате увеличения проницаемости сосудистой стенки. Фибриноген может превращаться в фибрин и выпадать в осадок. Этот осадок может быть в виде: 

а) ворсинчатых масс – на серозных оболочках;

б) фибринозной плёнки – на слизистых оболочках.

Фибринозное воспаление может быть крупозное и дифтеритическое.

Крупозное фибринозное воспаление – фибринозная плёнка рыхлая, поверхностная, легко отделяется от поверхности. Может быть при воспалении в желудке, трахее, бронхах.

Дифтеритическое фибринозное воспаление – фибринозная плёнка плотная, спаяна с подлежащей тканью, при удалении поверхность повреждается и кровоточит. Может быть при воспалении миндалин, полости рта, пищевода.

Крупозное или дифтеритическое воспаление? На характер фибринозной плёнки влияет характер эпителия слизистой и глубина поражения.

Фибринозные плёнки могут: а) самопроизвольно отторгаться и рассасываться; б) прорастать соединительной тканью и образовывать соединительную ткань сращения- спайки.

Фибринозный экссудат наблюдается при дифтерии, дизентерии, туберкулёзе

3. Гнойный экссудат содержит погибшие лейкоциты, продукты распада тканей, белки, нуклеиновые кислоты, нити фибрина.

Свойства: вязкий, мутный, зеленовато-жёлтый.

Наблюдается при:

а) инфекциях, вызванных кокковой флорой и патогенными грибами.

б) действии химических флогогенов (применение скипидара)

Пример гнойного экссудата:

а) фурункул – воспаление околоволосяного мешочка кожи;

б) карбункул – слияние многих фурункулов в один воспалительный очаг;

в) флегмона – острое разлитое гнойное воспаление подкожной клетчатки.

Результат гнойного воспаления – гнойное расплавление тканей. Продукт гнойного расплавления тканей – гной.

Гной – густая сливкообразная жидкость, желто-зелёная, сладковатая. При центрифугировании делится на 2 части: а) осадок – состоящий из клеток;

б) жидкая часть – гнойная сыворотка.

Клетки осадка (гнойные тельца) это нейтрофилы, моноциты, лимфоциты. Все эти клетки повреждены: вакуолизация цитоплазмы, гликоген и жир в ней, кариорексис и кариолизис.

Гнойная сыворотка – по составу равна плазме крови.

4. Гнилостный экссудат – отличается от гнойного тем, что имеет место при соединении патогенных анаэробов. Имеет грязно-зелёный цвет и дурной запах.

5. Гемморрагический экссудат – содержит эритроциты. Цвет розовый или красный. Характерен для туберкулёза, чумы, сибирской язвы, чёрной оспы, токсического гриппа, аллергических воспалений. Все эти воспаления сопровождаются значительным увеличением проницаемости сосудов.

6. Смешанные экссудаты: — серозно-фибринозный;

— серозно-гнойный;

— серозно-геморрагический;

— гнойно-фибринозный .

Биологическое значение экссудации

1. Обеспечение поставки в ткани плазменных медиаторов воспаления для интенсификации следующих процессов: фагоцитоза и эмиграции лейкоцитов в очаг воспаления.

2. Удаление из крови в очаг продуктов обмена и токсинов (дренажная функция).

3. Усугубление венозного застоя, тромбирование вен и лимфотических сосудов с целью задержки в очаге микробов, токсинов, продуктов обмена веществ.

4. Локализация воспалительного процесса.

Негативные последствия экссудации

1. Поступление экссудата в полости тела с образованием абсцесса, эмпиемы, флегмоны, пиемии или развитием плеврита, перикардита, перитонита.

2. Образование спаек. Может привести к смещению органов и нарушению их функций.

 

Эмиграция лейкоцитов и их роль в воспалении (выход лейкоцитов в воспалённую ткань)

 

Эмиграция лейкоцитов начинается в стадии артериальной гиперемии и достигает максимумв в стадии венозной гиперемии.

Могут быть 3 периода эмиграции лейкоцитов:

— краевое стояние лейкоцитов у поверхности эндотелия капилляров;

— выход лейкоцитов через эндотелиальную стенку;

— движение лейкоцитов в воспалительной ткани.

1. Краевое стояние лейкоцитов у поверхности эндотелия капилляров – нейтрофилы располагаются вдоль стенки капилляра. В норме поверхность эндотелия изнутри покрыта плёнкой фибрина, но лейкоциты с этой плёнкой не соприкасаются, так как поверхность гладкая, неповреждённая.

При повреждении на поверхности эндотелия появляется нежелатинированный фибрин. Это клейкое вещество, его нити перекидываются через просвет капилляра от одной стенки к другой. Лейкоциты захватываются нитями фибрина и удерживаются у сосудистой стенки.

Способствующие факторы:

1. Уменьшение линейной скорости V;

2. Потеря или уменьшение отрицательного заряда мембраны у лейкоцитов при воспалении (причина: действие на лейкоциты Са++ и др. положительных ионов. Они адсорбируются на мембране лейкоцитами и уменьшают его отрицательный заряд)

3. Кальциевые мостики – это химическая связь ионов Cа++, которые адсорбируются на мембране лейкоцитами и клетками эндотелия

2. Выход лейкоцитов через эндотелиальную стенку: Последовательность событий:

— лейкоциты выпускают псевдоподии;

— псевдоподии проникают в межэндотелиальные щели;

— лейкоциты «переливаются» через эндотелиальный слой;

— оказываются между эндотелиальным слоем и базовой мембраной;

— выделяет лизосом. протеиназы и катионные белки;

— изменяет коллоидное состояние базовой мембраны;

— увеличивает её проницаемость;

— увеличивает её проходимость для лейкоцитов.

Эмиграция – активный процесс. Требует ионов Са++, Мg++2.

Источник: megalektsii.ru

Помощничек
Главная | Обратная связь

Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

СОСУДИСТЫЕ РЕАКЦИИ ПРИ ВОСПАЛЕНИИ.

1. Кратковременный спазм сосудов возникает только при механическом, термическом, химическом повреждении, затрагивающем кожные покровы и подлежашие ткани; возникает рефлекторно, а также в результате выделения серотонина или тромбоксана, в случае повреждения сосудов. При попадании бактерий в организм спазм не возникает.

2. Расширение сосудов возникает в результате выделения медиаторов воспаления. Таких, как гистамин, простогландины, брадикинин, приводит к развитию артериальной гиперемии в области повреждения.

3. Повышение проницаемости сосудистой стенки возникает под действием всех медиаторов воспаления может быть за счёт спазма эндотелиоцитов под действием гистамина, серотонина, простогландинов, брадикинина. Из-за увеличения проницаемости сосудистой стенки происходит выход жидкости из сосудов, что приводит к образованию экссудата и формированию воспалительного отёка, который сдавливает сосуды и способствует, на ряду с клеточными реакциями, ограничению очпга воспаления. Т.о по периферии очага воспаления наблюдается артериальная гиперемия, а в центре возникают нарушения микроциркуляции, наблюдается стаз и развивается гипоксическое повреждение.

 

КЛЕТОЧНЫЕ РЕАКЦИИ ПРИ ВОСПАЛЕНИИ.

К клеточным реакциям относятся:

1. Маргинация

2. Адгезия

3. Эмиграция

4. Фагоцитоз

1. Это выпадение лейкоцитов из кровотока и медленное движение их вдоль эндотелия сосудистой стенки. Является пассивным процессом и возникает из-за резкого замедления кровотока в очаге воспаления.

2. Это взаимодействие лейкоцита с эндотелием с помошью специальных комплиментарных молекул, получивших название молекул клеточной адгулы. На лейкоцитах находится лейкоцитарный фактор адгезии ( ЛФА – 1), экспрессия которого на поверхность лейкоцитов происходит под действием С5 1 компонента комплемента. На эндотелии находятся следующие рецепторы: ЭЛАМ – 1 – интегрин, МАК – 1 – селектин. Взаимодействие между этими рецепторами приводит к тому, что лейкоцит прикрепляется к поверхности эндотелия.

3. При взаимодействии лейкоцита с эндотелием на поверхности лейкоцита начинает образовываться выпячивание или псевдоподия, которая проникает в межэндотелиальный промежуток, а дальше лейкоцит с помошью псевдоподии просачивается под эндотелий и распластывается на базальной мембране сосуда, после чего лейкоцит выделяет нейтральные протеазы ( коллагеназу и эластазу, которая образует отверстия в базальной мембране, ч/з которые лейкоцит выходит из сосуда.

ФАГОЦИТОЗ

Выделяют 4 стадии:

1. Хемотаксис

2. Узнавание и прилипание

3. Поглощение

4. Внутриклеточное уничтожение и переваривание.

1. Это направленное движение лейкоцитов по градиенту концентрации специальных веществ – хемоатрактантов. У лейкоцитов имеются рецепторы к хемоатрактантам, и взаимодействие лейкоцита с хемоатрактантом приводит к образованию псевдоподий и движению лейкоцита к очагу воспаления. Чем выше концентрация хемоатрактантов, тем быстрее движется лейкоцит. К хемоатрактантам относятся:1. Продукты жизнедеятельности и распада бактерий ( экзо- и эндотоксины), продукты распада собственных тканей организма, анафилотоксины ( С3а и С5а компоненты комплемента, лейкотриен Б4)

2. В норме бактериальные клетки имеют отрицательный заряд мембраны, поэтому для взаимодействия с ними лейкоцитов необходимы специальные белки, которые получили название ???опсонинов. опсонины прикрепляются к бактериальной стенке, лейкоциты имеют к ним рецепторы, в результате взаимодействия рецепторов лейкоцитов с белками опсонинами, происходит прилипание лейкоцита к бактериальной клетке. К опсанинам относятся: иммуноглобулин G, С- реактивный белок и С3в компонент комплимента.

3. Взаимодействие рецепторов лейкоцитов с опсанинами приводит к образоаанию псевдоподий, с помощью которых лейкоцит обхватывает бактериальную клетку, поглощая её, с образованием фагосомы.

4. После поглощения бактериальной клетки лейкоцит начинает загранулировать, при этом в просвет фагосомы и наружу выделяются медиаторы воспаления, а также факторы бактерицидности. Бактерицидность фагоцитов – внутриклеточное уничтожение поглощённых микроорганизмов.

Выделяют:

1) Кислородзависимые механизмы бактерицидности

2) Кислороднезависимые механизмы

1) — поглощая микроорганизм лейкоцит начинает активно поглощать О2 ( « кислородный взрыв») и из О2 с помощью специальных ферментов синтезировать факторы бактерицидности ( свободные радикалы и соединения хлора с помощью фермента НАДФ Н+ оксидаза превращается в НАДФ затем образуется супероксид О2*

Этот механизм, при котором образуется перекись, гидроксия и супероксид называется миелопероксидаза независимая бактерицидность ( присутствует в зрелых макрофагах, в которых нет фермента миелопероксидазы).

Миелопероксидазазависимая бактерицидность.

Под действием ферментов миелопероксидаза под действием СГ из Н2О2 образуется хлорноватистая кислота и хлорамин.

Более мощный механизм, т.к. соединения Cl- обладают более бактериальной активностью, чем свободные радикалы.

2) Осуществляется катионными белками, которые прикрепляются к бактериальной стенке, образуя в ней ионный канал за счёт смены заряда. Лизоцим, который разрушает поверхностный слой сиаловых кислот, чем тоже увеличивает проницаемость бактериальной клетки. Лактоферрин связывает железо, необходимое бактериями для жизнедеятельности. После внутриклеточного уничтожения микроорганизмов происходит слияние лизосом с фагосомой и внутриклеточное переваривание.

РЕПАРАЦИЯ.

Это восстановление ткани после уничтожения возбудителя и элиминации его из организма. Если очаг повреждения был небольшим, то репарация идёт за счет размножения клеток органа или ткани и восстановление структуры получается полным. Если очаг повреждения был большим, то репарация идёт за счёт размножения соединительной ткани. При этом сначала в очаге образуется сетка из фибрина, в которую потом мигрируют фибробласты и макрофаги и дальше происходит образование соединетельной ткани. Образуется рубец.

Динамика клеточного состава экссудата при воспалении зависит от причин, вызвавших воспаление, например, при гельминтной инвазии первыми появляются эозинофилы, а при классическом остром воспалении динамика выглядит следующим образом:

6 – 24 ч – в очаг приходят сегментарные нейтрофилы,т.к они быстрее движутся, быстрее проходят через базальную мембрану и факторы хемотаксиса для них выделяются первыми.

24 – 36 ч – моноциты, которые превращаются в макрофаги, позже приходят, т.к медленнее движутся и факторы хемотаксиса образуются позже, зато надолго задержиаются в очаге воспаления, нейтрофилы начинают погибать при развитии ацидоза.

36 – 48 ч – лимфоциты запускают иммунные реакции при воспалении и появляются последними, т.к для них образуются макрофаги.

Роль различных лейкоцитов в очаге воспаления.

1) Нейтрофилы – фагоцитоз, выделяются медтаторы воспаления.

2) Эозинофилы осуществляют противогельминтный иммунитет

3) Базофилы выделяют гистамин, гепарин, схожен по функции с тучными клетками.

4) Лимфоциты осуществляют спецефические иммунные реакции

В – лимфоциты превращаются в плазматические клетки, которые синтезируют АТ. Т – хелперы регулируют иммунный ответ, Т – киллеры осуществляют специфическую клеточную цитотоксичность.

 

 

Поиск по сайту:

Источник: studopedya.ru

Эмиграция лейкоцитов

Причины экссудации

КРОВИ В ОЧАГ ВОСПАЛЕНИЯ

ЭКССУДАЦИЯ ЖИДКОСТИ И ВЫХОД ФОРМЕННЫХ ЭЛЕМЕНТОВ

Экссудация(от лат. exsudatum — потеть, пропотевать) — процесс выхода плазмы и форменных элементов крови из сосудов микроциркуляторного русла в ткани и полости тела с образованием экссудата.

Экссудат— жидкость, образующаяся при воспалении и содержащая большое количество белка и форменные элементы крови (в основном лейкоциты).

В организме может образовываться также невоспалительная жидкость- транссудат. Он отличается от экссудата низким содержанием белка, лейкоцитов и других форменных элементов крови.

 

• Основная причина плазморрагии (пассивного выхода плазмы крови в интерстиций) — увеличение сосудистой проницаемости и повышение гидростатического давления крови в сосудах микроциркуляторного русла.

• Основная причина лейкоцитарной инфильтрации ткани — хемо- и электротаксис лейкоцитов.

Виды экссудата.Выделяют несколько видов экссудата: серозный, фибринозный, гнойный, гнилостный, геморрагический и катаральный. Вид экссудата определяет название формы острого экссудативного воспаления.

Значение экссудации.В очаге воспаления процесс экссудации имеет двоякое биологическое значение: адаптивное и патогенное.

Адаптивноезначение заключается в фиксации в очаге воспаления флогогена и создании оптимальных условий его инактивации и элиминации.

Патогенноезначение:

♦ сдавление и смещение органов и тканей экссудатом;

♦ возможно распространение воспалительного процесса в соседние ткани или биологические жидкости (в лимфу, кровь, ликвор и др.);

♦ образование очагов деструкции ткани при гнойном воспалении.

Эмиграция лейкоцитов — активный процесс их выхода из просвета сосудов микроциркуляторного русла в межклеточное пространство. Спустя 1-2 ч после воздействия на ткань флогогенного фактора в очаге воспаления обнаруживается большое число эмигрировавших нейтрофилов и других гранулоцитов, позднее — через 15-20 и более часов — моноцитов, а затем и лимфоцитов.

Процесс эмиграции последовательно проходит этапы роллинга (краевого стояния — «качения») лейкоцитов, их адгезии к эндотелию и проникновения через сосудистую стенку, а также — направленного движения лейкоцитов в очаге воспаления (рис. 5-1).

• Фагоцитоз.

• Синтез и выделение медиаторов воспаления.

 

• Презентация антигена лимфоцитам. Эта функция фагоцитов реализуется за счёт процессинга (поглощение и трансформация антигенных структур) и представления Аг клеткам иммунной системы (передача информации об Аг лимфоцитам).

Роль лейкоцитов при воспалении Рис. 5-1. Этапы миграции лейкоцитов через сосудистую стенку(на примере нейтрофилов). [по 4].



Позднее значительная часть лейкоцитов, мигрировавших в очаг воспаления, подвергается дистрофическим изменениям и превращается в «гнойные тельца» или подвергается апоптозу. Часть лейкоцитов, выполнив свои функции, возвращается в сосудистое русло и циркулирует в крови.

При значительном повышении проницаемости стенок сосудов микроциркуляторного русла в очаг воспаления «пассивно» выходят также эритроциты и тромбоциты.

Источник: studopedia.su


Leave a Comment

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.