Плотность плазмы крови


Плотность плазмы кровиКровь человека представлена 2 составляющими: жидкой основой или плазмой и клеточными элементами. Что такое плазма и каков ее состав? Какое функциональное предназначение имеет плазма? Разберем все по порядку.

Все о плазме

Плазма – это жидкость, образованная водой и сухими веществами. Она составляет основную часть крови – около 60 %. Благодаря плазме кровь имеет состояние жидкости. Хотя по физическим показателям (по плотности) плазма тяжелее воды.

Макроскопически плазма представляет собой прозрачную (иногда мутную) однородную жидкость светло-желтого цвета. Она собирается в верхнем участке сосудов, когда форменные элементы оседают. Гистологический анализ показывает, что плазма – межклеточное вещество жидкой части крови.

Мутной плазма становится после употребления человеком жирных продуктов.

Из чего состоит плазма?

Состав плазмы представлен:

  • Водой,
  • Солями и органическими веществами.

Содержание воды в плазме около 90 %. К солям и органическим соединениям относят:

  • Белки,
  • Аминокислоты,
  • Глюкозу,
  • Гормоны,
  • Ферментные вещества,
  • Жир,
  • Минералы (ионы Na, Cl).

Какой процент от объема плазмы составляет белок?

Это самый многочисленный компонент плазмы, он занимает 8 % всей плазмы. Плазма содержит белок различных фракций.

Основные из них:

  • Альбумины (5 %),
  • Глобулины (3%),
  • Фибриноген (принадлежит глобулинам, 0,4%).

Состав и задачи небелковых соединений в плазме

В плазме содержится:

  • Органические соединения, основу которых составляет азот. Представители: мочевая кислота, билирубин, креатин. Повышение количества азота сигнализирует о развитии азотомии. Это состояние возникает из-за проблем с выведением мочой продуктов обмена либо из-за активного разрушения белка и поступления большого количества азотистых веществ в организм. Последний случай характерен для сахарного диабета, голодания, ожогов.

  • Органические соединения, не содержащие азот. Сюда входит холестерин, глюкоза, молочная кислота. Компанию им составляют еще липиды. Все эти компоненты должны отслеживаться, так как они необходимы для поддержания полноценной жизнедеятельности.
  • Неорганические вещества (Ca, Mg). Ионы Na и Cl отвечают за поддержания постоянного Ph крови. Они также следят за осмотическим давлением. Ионы Ca принимают участие в сокращении мышц и стимулируют чувствительность нервных клеток.

состав плазмы крови

Состав плазмы крови

Альбумин

Альбумин в плазменной крови – основной компонент (более 50% ). Он отличается небольшой молекулярной массой. Местом образования данного белка является печень.

Предназначение альбумина:

  • Переносит жирные кислоты, билирубин, лекарственные средства, гормоны.
  • Берет участие в обмене веществ и образовании белка.
  • Резервирует аминокислоты.
  • Формирует онкотическое давление.

По количеству альбумина медики судят о состоянии печени. Если содержание альбумина в плазме снижено, то это указывает на развитие патологии. Низкое содержание этого белка плазмы у детей увеличивает риск заболеть желтухой.

Глобулины

Глобулины представлены крупными молекулярными соединениями. Они вырабатываются печенью, селезенкой, тимусом.

Выделяют несколько видов глобулинов:

  • α – глобулины. Они взаимодействуют с тироксином и билирубином, связывая их. Катализируют образование белков. Отвечают за транспортировку гормонов, витаминов, липидов.
  • β – глобулины. Эти белки связывают витамины, Fe, холестерол. Переносят катионы Fe, Zn, стероидные гормоны, стерины, фосфолипиды.
  • γ – глобулины. Антитела или иммуноглобулины связывают гистамин и принимают участие в защитных иммунных реакциях. Они производятся печенью, лимфатической тканью, костным мозгом и селезенкой.

Насчитывают 5 классов γ – глобулинов:

  • IgG (около 80% всех антител). Для него характерна высокая авидность (соотношение антитела к антигену). Может проникать через плацентарный барьер.
  • IgM – первый иммуноглобулин, который образуется у будущего малыша. Белок отличается высокой авидностью. Он первый обнаруживается в крови после вакцинации.
  • IgA.
  • IgD.
  • IgE.

Плотность плазмы кровиФибриноген – растворимый белок плазмы. Он синтезируется печенью. Под влиянием тромбина белок преобразуется в фибрин – нерастворимую форму фибриногена. Благодаря фибрину в местах, где целостность сосудов была нарушена, образуется сгусток крови.

Остальные белки и функции

Незначительные фракции белков плазмы после глобулинов и альбуминов:

  • Протромбин,
  • Трансферрин,
  • Иммунные белки,
  • С-реактивный белок,
  • Тироксинсвязывающий глобулин,
  • Гаптоглобин.

Задачи этих и других белков плазмы сводятся к:

  • Поддержанию гомеостаза и агрегатного состояния крови,
  • Контролю за иммунными реакциями,
  • Транспортировке питательных веществ,
  • Активации процесса свертывания крови.

Функции и задачи плазмы

Для чего нужна плазма человеческому организму?

Ее функции разнообразны, но в основном они сводятся к 3 главным:


  • Транспортирование кровяных телец, питательных веществ.
  • Осуществление связи между всеми жидкими средами организма, которые располагаются вне кровеносной системы. Эта функция возможна, за счет способности плазмы проникать сквозь сосудистые стенки.
  • Обеспечение гемостаза. Подразумевается контроль над жидкостью, которая останавливается во время кровотечений и удалять образовавшийся тромб.

Применение плазмы в донорстве

Сегодня кровь в цельном виде не переливают: для терапевтических целей отдельно выделяют плазму и форменные компоненты.

В пунктах сдачи крови чаще всего сдают кровь именно на плазму.

Плотность плазмы крови

Система плазмы крови

Как получить плазму?

Получение плазмы из крови происходит с помощью центрифугирования. Метод позволяет отделить плазму от клеточных элементов с помощью специального аппарата, не повреждая их. Кровяные тельца возвращаются донору.

Процедура по сдаче плазмы имеет ряд преимуществ перед простой сдачей крови:

  • Объем кровопотери меньше, а значит, вреда здоровью наносится тоже меньше.
  • Кровь на плазму можно сдать вновь уже через 2 недели.

Существуют ограничения по сдаче плазмы. Так, донор может сдать плазму не более 12 раз за год.

Сдача плазмы занимает не больше 40 минут.

Плазма является источником такого важного материала, как сыворотка крови. Сыворотка – это та же плазма, но без фибриногена, однако с тем же набором антител. Именно они борются с возбудителями различных заболеваний. Иммуноглобулины способствуют скорейшему развитию пассивного иммунитета.

Чтобы получить сыворотку крови, стерильную кровь помещают в термостат на 1 час. Далее полученный сгусток крови отслаивают от стенок пробирки и определяют в холодильник на 24 часа. Полученную жидкость при помощи пастеровской пипетки добавляют в стерильный сосуд.

Патологии крови, влияющие на характер плазмы

В медицине выделяют несколько заболеваний, которые способны влиять на состав плазмы. Все они представляют угрозу для здоровья и жизни человека.

Основными из них являются:

  • Гемофилия. Это наследственная патология, когда наблюдается недостаток белка, который отвечает за свертываемость.
  • Заражение крови или сепсис. Явление, возникающее из-за попадания инфекции непосредственно в кровеносное русло.

  • ДВС-синдром. Патологическое состояние, причиной которого является шок, сепсис, тяжелые повреждения. Характеризуется нарушениями свертывания крови, которые приводят одновременно к кровотечению и образованию тромбов в мелких сосудах.
  • Глубокий венозный тромбоз. При заболевании наблюдается формирование тромбов в глубоких венах (преимущественно на нижних конечностях).
  • Гиперкоагуляция. У пациентов диагностируется чрезмерно высокая свертываемость крови. Вязкость последней увеличивается.

Плазмотест или реакция Вассермана – это исследование, выявляющее наличие антител в плазме к бледной трепонеме. По этой реакции вычисляется сифилис, а также эффективность его лечения.

Плазма – жидкость, имеющая сложный состав, играет важную роль в жизни человека. Она отвечает за иммунитет, свертываемость крови, гомеостаз.

Источник: KardioBit.ru

Физико-химические свойства крови

Подробнее Покровский I том С.280-284.

К физико‑химическим свойствам крови относят:

Цвет

Плотность (абсолютную и относительную)

Вязкость (абсолютную и относительную)

Осмотическое давление, включающее онкотическое (коллоидно‑осмотическое) давление


Температуру

Концентрация водородных ионов (pH)

Суспензионная устойчивость крови, характеризуемая СОЭ

Цвет крови [f]

Цвет крови определяется содержанием гемоглобина, ярко-красная окраска артериальной крови — оксигемоглобином, тем­но-красная с синеватым оттенком окраска венозной крови — восстановленным гемоглобином. [3]

Плотность – объёмная масса[4]

Относительная плотность крови составляет 1,058 — 1,062 и зависит преимущественно от содержания эритроцитов.

Относи­тельная плотность плазмы крови в основном определяется концен­трацией белков и составляет 1,029—1,032.

Плотность воды (абсолютная) = 1000 кг ·м-3. [[5]]

Вязкость крови [6]

Подробнее Ремизов ++636+ С.148

 

Вязкость – внутреннее трение.

 

Вязкость воды (при 20ºС) 0,001 Па×с или 1 мПа×с.[7]

Вязкость крови человека (при 37ºС) в норме 4—5 мПа×с, при патологии колеблется 1,7 ¸ 22,9 мПа×с.

 

 

Плотность плазмы крови Плотность плазмы крови

 


Плотность плазмы крови Плотность плазмы крови

 

Плотность плазмы крови

 

Относительная вязкость крови в 4,5—5,0 раз больше вязкости воды. Вязкость плазмы не превышает 1,8—2,2.

Отно­шение вязкости крови и вязкости воды при той же температуре называют относительной вязкостью крови.

 

Изменения вязкости крови как неньютоновской жидкости [8]

Кровь – неньютоновская жидкость – вязкость анормальная, т.е. взкость крови величина непостоянная.

Вязкость крови в сосудах[9]

Чем меньше скорость движения крови, тем больше вязкость крови. Это связано с обратимой агрегацией эритроцитов (образование монетных столбиков), прилипанием эритроцитов к стенкам сосудов.

Феномен Фареуса‑Линдквиста [10]

В сосудах диаметром менее 500 мкм вязкость резко уменьшается и приближается к вязкости плазмы. Это связано с ориентацией эритроцитов вдоль оси сосуда и образованием «бесклеточной краевой зоной».

Вязкость крови и гематокрит [11]

Вязкость крови зависит главным образом от содержания эритроцитов и в меньшей степени от белков плазмы.

Увеличение Ht сопровождается более быстрым возрастанием вязкости крови, чем при линейной зависимости [12]

 


Плотность плазмы крови

 

Вязкость венозной крови несколько больше, чем артериальной[Б65] .

 

Вязкость крови возрастает при опорожнении депо крови, содержащей большее число эритро­цитов.

Венозная кровь обладает несколько боль­шей вязкостью, чем артериальная. При тяжелой физической работе увеличивается вязкость крови.



Некоторые инфекционные заболевания увеличивают вязкость, другие же, например брюшной тиф и туберкулез, — уменьшают.

Вязкость крови влияет на скорости оседа­ния эритроцитов (СОЭ).

 

Методы определения вязкости крови[Мф66]

 

Совокупность методов измерения вязкости называют вискозиметри­ей, а приборы, используемые для таких целей, — вискозиметрами.

Наиболее распространенные методы вискозиметрии:

падающего шарика

капиллярные

ротационные.

 

Капиллярный метод основан на формуле Пуазейля и заключает­ся в измерении времени протекания через капилляр жидкости известной массы под действием силы тяжести при определенном перепаде давлений.

Метод падающего шарика используется в вискозиметрах, осно­ванных на законе Стокса.

 

Плотность плазмы крови

 

Источник: studopedia.su

Кровь представляет собой коллоидно-полимерный раствор, растворителем в котором является вода, растворимыми веществами — соли и низкомолекулярные органические соединения, коллоидным компонентом — белки и их комплексы.

2.1. Плотность зависит от содержания в ней форменных элементов, белков и липидов. У рыб плотность крови составляет 1035 г/л, у птиц — 1052 г/л у грызунов — 1051 г/л, у человека — 1060 г/л.

Плотность лейкоцитов и тромбоцитов ниже, чем эритроцитов.

2.2. Вязкость — в 3-6 раз больше вязкости воды, зависит от содержания в крови эритроцитов и белков. Возрастает при сгущении крови различного генеза.

2.3. Осмотическое давление крови обусловлено растворенными в жидкой части крови осмотически активными веществами (ионами и белками). Оно определяет транспорт воды из внеклеточной среды организма в кровь и наоборот. Величина осмотического давления зависит от концентрации раствора и от его температуры, но не зависит от природы растворенного вещества и природы растворителя. В настоящее время существует несколько способов количественной характеристики осмотического давления:

1. в единицах атмосферного давления, норма — 6,6-6,7 атмосфер;

2. в мм ртутного столба — (6,6-6,7)*760;

3. осмотическая активность — концентрация кинетически активных частиц в 1л, за единицу измерения принимают мосмоль (миллиосмоль). 1 мосмоль =6,32·1023 частиц в 1л. Нормальная осмотическая активность плазмы крови равна 285-310 мосмоль/л.

 

Таблица 2.3.1.

Концентрация основных компонентов плазмы и создаваемое ими осмотическое давление

 

Основные компоненты плазмы Молярная концентрация, ммоль/л Молекулярная масса Осмотическое давление, кПа
:Na+ 3,25
С1- 35,5 2,32
НСО3_ 0,01
К+ 5,0 0,11
Са2 + 2,5 0,06
PO4 1,0 0,02
Глюкоза 5,5 0,13
Белок 0,8 Между 70 000 и 400 000 0,02

 

Плазма крови, представляющая собой сложный раствор, содержащий различные молекулы неэлектролитов (мочевина, глюкоза и др.), ионы (Na+, K+, СI, НСОз и др.) и мицеллы (белок), имеет осмотическое давление, равное сумме осмотических давлений содержащихся в ней ингредиентов. В таблице 2.3.1. приведены концентрации основных компонентов плазмы и создаваемое ими осмотическое давление.

Как видно из таблицы, осмотическое давление плазмы определяется в основном ионами Na+, Cl, НСО3 и К+, так как их молярная концентрация относительно велика, в то время как молекулярная масса незначительна. Осмотическое давление, обусловленное высокомолекулярными коллоидными веществами, называется онкотическим давлением. Несмотря на значительное содержание белка в плазме, его доля в создании общего осмотического давления плазмы невелика, так как молярная концентрация белков весьма низкая в силу их очень большой молекулярной массы. В связи с этим альбумины (концентрация 42 г/л, молекулярная масса 70 000) создают онкотическое давление, равное 0,6 мосмоль, а глобулины и фибриноген, молекулярная масса которых еще выше, создают онкотическое давление 0,2 мосмоль.

В клинической и научной практике широко используются такие понятия как изотонические, гипотонические и гипертонические растворы. Изотонические растворы имеют суммарную концентрацию ионов, не превышающую 285-310 ммоль/л. Это может быть 0,83% раствор хлористого натрия для теплокровных, 0,6% раствор NaCL для холоднокровных (его часто называют физиологическим раствором, хотя это не полностью отражает ситуацию, так как осмотическое давление создается не только хлористым натрием, но и другими ионами плазмы крови — см. табл.2.3.1.), 1,1% раствор хлористого калия, 1,3% раствор бикарбоната натрия, 5,5% раствор глюкозы и т.д. Гипотонические растворы имеют меньшую концентрацию ионов — менее 285 ммоль/л, а гипертонические, наоборот, большую — выше 310 ммоль/л.

Эритроциты являются тонкими осмометрами и реагируют адекватным изменениям на колебания осмотического давления. В изотоническом растворе не изменяют свой объем, в гипертоническом — уменьшают его, происходит плазмолиз, а в гипотоническом — увеличивают пропорционально степени гипотонии, вплоть до разрыва эритроцитов (гемолиза).

Явление осмотического гемолиза эритроцитов используется в клинической и научной практике с целью определения качественных характеристик эритроцитов (предел осмотической резистентности эритроцитов). В клинической практике используется введение различных жидкостей (изо-, гипо- гипертонических). Например, для повышения выхода воды из межклеточного пространства в сосуды применяют гипертонические растворы.

Постоянство электролитного состава и осмотического давления находятся в жесткой взаимосвязи с водным балансом — изменения осмотического давления ведет к перераспределению воды, солей между вне- и внутриклеточными пространствами, изменению их поступления и выделения из организма.

Изменение осмотического давления крови регистрируется осморецепторами, воспринимающими изменения уровня ионов натрия, калия, кальция, хлора. Эти рецепторы расположены в cосудах печени, почках, селезенке, поджелудочной железе, некоторых мышц (периферические осморецепторы). От рецепторов информация передается к супраоптическому ядру гипоталамуса (центральное звено осморецепции). Осморецепторы чутко реагируют на сдвиги концентраций осмотически активных веществ плазмы крови. При увеличении осмолярности плазмы крови на 1%, концентрация антидиуретического гормона (АДГ) возрастает на 1 пг/мл (пикограмм равен миллионной доле микрограмма). Переход к состоянию максимального осмотического концентрирования мочи требует 10-кратного возрастания количества АДГ в крови. Падение осмотического давления плазмы ниже 280 мосмоль/кг (в норме — 285 мосмоль/кг) ингибирует секрецию АДГ, увеличение до 288 мосмоль стимулирует его синтез

Помимо осморецепторов, в механизмах осмотического гомеостаза имеет значение волюморецепторы, реагирующие на изменение объема внутрисосудистой жидкости. Они расположены во многих крупных сосудах , венах, артериях, а также в обеих предсердиях и передают информацию к нейронам гипоталамуса и продолговатого мозга (к центру волюморегуляции). Эти рецепторы реагируют на снижение объема циркулирующей жидкости на 7-15%. Ведущее значение в регуляции осмотического давления имеют те волюморецепторы, которые реагируют на изменение напряжения сосудистой стенки в области низкого давления — барорецепторы, расположенные в обеих предсердий, каротидном синусе, в афферентных артериолах почечных клубочков, в сонной артерии, дуге аорты, правом желудочке.

 

Источник: helpiks.org


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.