Плазма крови это желтоватая жидкость состоящая из


По объему плазма составляет приблизительно 60% объема крови, а форменные элементы 40%.

Состав плазмы

Плазма представляет собой слегка желтоватую полупрозрачную жидкость. Удельный вес плазмы 1020—1028.

Плазма состоит,из воды, органических соединений и неорганических солей. 90—92% плазмы составляет вода, а 8 —10% приходится на долю сухого остатка. Сухой остаток в свою очередь состоит из белков и других органических соединений и из минеральных солей. Белки (сывороточный альбумин, сывороточный глобулин и фибриноген) — составляют около 7,2%, органические вещества (глюкоза, мочевина, аминокислоты, мочевая кислота и др.)—0,17% и неорганические соли— около 1 %.

Из белков необходимо отметить фибриноген, играющий важную роль в свертывании крови.

Минеральные вещества включают катионы, т. е. заряженные положительным электричеством ионы натрия, кальция, магния и железа, и анионы, т. е. заряженные отрицательным электричеством ионы хлора, йода, серы и фосфора.

Состав плазмы в нормальных физиологических условиях относительно постоянен.

Осмотическое давление плазмы


Осмотическим называется давление, которое оказывают растворенные в жидкости вещества. Чем больше концентрация веществ в растворе, тем выше осмотическое давление.

Осмотическое давление плазмы зависит в основном от концентрации находящихся в ней минеральных солей и имеет важное значение в распределении воды и растворенных веществ в тканях организма.

Осмотическое давление в организме поддерживается на постоянном уровне. Это достигается путем регулирования поступления или выделения из организма воды и минеральных солей.

Это давление может изменяться на непродолжительное время вследствие поступления в кровь значительного количества воды или солей. Но оно быстро выравнивается благодаря деятельности выделительных органов (почки, потовые железы и др.), которые начинают усиленно, функционировать, в результате чего удаляется излишек воды или солей.

Изменение деятельности ЭТИХ Органов Обусловлено тем, что имеющиеся в кровеносных сосудах специальные рецепторы, воспринимают изменение осмотического давления. При колебаниях осмотического давления в этих рецепторах возникает возбуждение и происходит рефлекторное изменение деятельности выделительных органов, а также переход воды и солей из тканей в кровь или из крови о ткани, в зависимости от причин, вызвавших изменение осмотического давления.


Постоянство осмотического давления имеет важное значение для нормальной деятельности клеток.

Значение постоянства осмотического давления

Если поместить эритроциты в солевой раствор, имеющий одинаковое осмотическое давление с кровью, то они заметным изменениям не подвергаются. При помещении в раствор с высоким осмотическим давлением эритроциты сморщиваются потому, что вода начинает выходить из них в окружающую среду. В растворе с низким осмотическим давлением вода покупает в эритроциты; они набухают, их оболочка не выдерживает повышенного давления и эритроциты разрушаются, их содержимое поступает в раствор.

Солевой раствор, имеющий осмотическое давление, одинаковое с кровью, называется изотоническим. Примером такого изотонического раствора является физиологический раствор (раствор NaCl—0,9% для теплокровных и 0,6% для холоднокровных)

Солевой раствор, имеющий осмотическое давление более высокое, чем давление крови, называется гипертоническим, а имеющий более низкое — гипотоническим.

Гемолиз


Если поместить каплю крови, а следовательно, и эритроциты и гипотонический раствор, то эритроциты набухают и разрушаются. Гемоглобин при этом выходит из эритроцитов и растворяется в плазме, которая становится прозрачной и окрашенной в красный цвет. Такая кровь называется лаковой кро-нью. Разрушение эритроцитов называется гемолизом. Гемолиз может наступить не только в условиях гипотонического раствора, но также при добавлении к крови эфира и некоторых других веществ.

Гемолиз вызывается также укусом тех змей, яд которых оказывает гемолизирующее действие.

Гемолиз наступает также при повторном введении животному эритроцитов других видов животных. В этих случаях в крови появляются специальные вещества — гемолизины, которые гемолизируют вводимые эритроциты.

При введении в кровь жидкостей должно быть учтено осмотическое давление вводимою раствора, которое должно соответствовать осмотическому давлению крови.

Источник: znaesh-kak.com

Компоненты и состав

Более 90% в составе плазмы крови занимает вода, остальные её составляющие — сухие вещества: белки, глюкоза, аминокислоты, жир, гормоны, растворенные минералы.


Порядка 8% состава плазмы приходится на белки. Белки в крови в свою очередь состоят из фракции альбуминов (5%), фракции глобулинов(4%), фибриногенов (0,4%). Таким образом, в 1 литре плазмы содержится 900 гр воды, 70 гр белка и 20 гр молекулярных соединений.

Компоненты плазмы
Плазма крови в пробирке

Наиболее распространен белок — альбумин в крови. Он образуется в печение и занимает 50% протеиновой группы. Основными функциями альбумина являются транспортная (перенос микроэлементов и препаратов), участие в обмене веществ, синтез белков, резервирование аминокислот. Наличие альбумина в крови отражает состояние печени — пониженный показатель альбумина свидетельствует о присутствии заболевания. Низкое же содержание альбумина у детей, например, увеличивает шанс на заболевание желтухой.

Глобулины— крупномолекулярные составляющие белка. Они вырабатываются печенью и органами иммунной системы. Глобулины могут быть трех видов: бета-, гамма-, альфа-глобулины. Все они обеспечивают транспортные и связующие функции. Гамма-глобулины еще именуют антителами, они отвечают за реакцию иммунной системы. При снижении иммуноглобулинов в организме наблюдается значительное ухудшение в работе иммунитета: возникают постоянные бактериальные и вирусные инфекции.


Белок фибриноген формируется в печени и, становясь фибрином, он образует сгусток в местах поражения сосудов. Таким образом жидкая составляющая крови участвует в процессе ее свертываемости.

Среди небелковых соединений присутствуют:

  • Органические азотосодержащие соединения (азот мочевины, билирубин, мочевая кислота, креатин и пр.). Повышение азота в организме называется азотомия. Она возникает при нарушении выведения продуктов обмена с мочой или же при избыточном поступлении азотистых веществ в силу активного распада белков (голодание, сахарный диабет, ожоги, инфекции).
  • Органические безазотистые соединения (липиды, глюкоза, холестерин в крови, молочная кислота). Для поддержания здоровья необходимо отслеживать ряд этих жизненно-важных показателей.
  • Неорганические элементы (кальций, соль натрия, магний и пр.). Минеральные вещества также являются важнейшими компонентами системы.

Ионы плазмы (натрий и хлор) поддерживают щелочной уровень крови (ph), обеспечивающий нормальное состояние клетки. Они также выполняют роль поддержки осмотического давления. Ионы кальция участвуют в реакциях мышечных сокращений и влияют на чувствительность нервных клеток.

В процессе жизнедеятельности организма, в кровь поступают продукты обмена, биологически активные элементы, гормоны, питательные вещества и витамины. При этом состав крови конкретно не меняется. Регуляторные механизмы обеспечивают одно из важнейших свойств плазмы крови — постоянство её состава.

Функции плазмы


Основная задача и функции плазмы состоит в перемещении кровяных клеток и питательных элементов. Она также выполняет связку жидких сред в организме, которые выходят за пределы кровеносной системы, поскольку имеет свойство проникать через сосуды человека.

Важнейшей функцией плазмы крови является проведение гемостаза (обеспечение работы системы при которой жидкость способна останавливаться при разных видах кровотечениях и удалять последующий тромб, участвующий в свертываемости). Задача плазмы в крови также сводится к поддержанию стабильного давления в организме.

Применение в донорстве

В каких ситуациях и для чего нужна плазма крови донора? Переливают плазму чаще всего не целиком кровь, а только её компоненты и плазменную жидкость. Производя забор крови, с помощью специальных средств разделяют жидкость и форменные элементы, последние, как правило, возвращаются пациенту. При таком виде донорства, частота сдачи возрастает до двух раз в месяц, но не более 12 раз в год.


Применение в донорстве
Переливание донорской плазмы

Из плазмы крови также делают кровяную сыворотку: из состава удаляется фибриноген. При этом сыворотка из плазмы остается насыщена всеми антителами, которые будут противостоять микробам.

Источник: SostavKrovi.ru

Состав крови

Состав крови:

Плазма крови – это прозрачная бесцветная жидкость, на 90% состоящая из воды, в которой растворены органические и неорганические соединения.

Состав крови

Состав плазмы по содержанию солей близок к морской воде. Важнейшие соли плазмы – хлориды Na, K и Ca. В нормальных условиях общая концентрация солей в плазме и в клетках крови одинакова.


Повышение или понижение содержания Na опасно для здоровья и жизни человека. Долго находящийся в море и лишенный пресной воды человек погибает от того, что в его крови увеличивается содержание солей. Вода из клеток и тканей устремляется в кровь, и организм обезвоживается.

Эритроциты – красные кровяные клетки – очень малы, в 1мм в кубе крови содержится до 5 млн. эритроцитов. Зарождаются в красном костном мозге, живут около 120 дней и разрушаются в селезенке и печени.

Эритроциты – безъядерные клетки в виде уплощенных дисков диаметром 7-8 мкм, толщиной 2 мкм. Они доставляют кислород из легких к клеткам, забирают у последних углекислый газ и переносят его в легкие. Количество эритроцитов у мужчин – 4,5-5,0 триллионов на литр, у женщин – 4,0-4,5 триллионов на литр.

Снаружи эритроцит покрыт мембраной, которая легко пропускает газы, воду, глюкозу и др. вещества. Внутри эритроцита содержится особый белок – гемоглобин, в состав которого входит железо. Именно гемоглобин придает крови красный цвет.

Диаметр отдельного эритроцита равен 7,2-7,5 мкм, толщина — 2,2 мкм, а объем – около 90 мкм3. Общая поверхность всех эритроцитов достигает 3000 м2, что в 1500 раз превышает поверхность тела человека. Такая большая поверхность эритроцитов обусловлена их большим числом и своеобразной формой. Они имеют форму двояковогнутого диска и при поперечном разрезе напоминают гантели. При такой форме в эритроцитах нет ни одной точки, которая бы отстояла от поверхности более чем на 0,85 мкм. Такие соотношения поверхности и объема способствуют оптимальному выполнению основной функции эритроцитов.


В крови у мужчин содержится в среднем 5х1012/л эритроцитов (6 000 000 в 1 мкл), у женщин – около 4,5х1012/л (4500000 в 1 мкл). Такое количество эритроцитов, уложенное цепочкой, 5 раз обовьют Земной Шар по экватору.

Лейкоциты – белые ( бесцветные ) кровяные клетки – состоят из цитоплазмы и ядра. В 1 мм в кубе крови содержится 4 — 9 тыс. лейкоцитов. Образуются в костном мозге. Способны сами активно двигаться, могут проникать сквозь стенку капилляров и выходить в межклеточное пространство. По способу движения напоминает амебу.

Лейкоциты (лимфоциты, моноциты, гранулоциты) имеют шаровидную форму и участвуют в защитной функции организма. Существует несколько разновидностей лейкоцитов. У взрослого человека в 1 л крови насчитывается 4,0-9,0 миллиардов лейкоцитов.

Лейкоциты выполняют важную функцию защиты организма от проникновения болезнетворных микробов. При любом повреждении кожи в ранку попадают бактерии. В этом случае лейкоциты устремляются к поврежденному участку. Лейкоцит захватывает и переваривает микробину. Этот процесс называютфагоцитозом, а белые кровяные клетки – фагоцитами. Они обеспечивают иммунитет.


У взрослых кровь содержит 4-9×109/л (4000-9000 в 1 мкл) лейкоцитов, т. е. их в 500-1000 раз меньше, чем эритроцитов. Увеличение их количества называют лейкоцитозом, а уменьшение – лейкопенией.

Лейкоциты делят на 2 группы: гранулоциты (зернистые) и агранулоциты (незернистые). В группу гранулоцитов входят нейтрофилы, эозинофилы и базофилы, а в группу агранулоцитов – лимфоциты и моноциты.

Установлено, что 1 фагоцит может захватить 10 — 15 бактерий. Если он поглащает больше, чем может переварить, то он гибнет. Смесь погибших и живых фагоцитов называется гноем.

К группе лейкоцитов относят также лимфоциты

Лимфоциты – белые кровяные клетки, находящиеся преимущественно в лимфе. Лимфоциты также играют важную роль в защитных реакциях организма.

Тромбоциты отвечают за процесс свертывания крови. 1 л крови содержит 180,0-320,0 миллиардов тромбоцитов.

В организме мужчины содержится 5,0-5,5 л крови, женщины – 4,0-4,5 л (6-8% от массы тела). Потеря 50% крови и более приводит к смерти.

Лимфоциты составляют 20 -40% белых кровяных телец. У взрослого человека содержится 1012 лимфоцитов общей массой 1,5 кг. Лимфоциты в отличие от всех других лейкоцитов способны не только проникать в ткани, но и возвращаться обратно в кровь. Они отличаются от других лейкоцитов и тем, что живут не несколько дней, а 20 и более лет (некоторые на протяжении всей жизни человека).

Лимфоциты представляют собой центральное звено иммунной системы организма. Они отвечают за формирование специфического иммунитета и осуществляют функцию иммунного надзора в организме, обеспечивая защиту от всего чужеродного и сохраняя генетическое постоянство внутренней среды. Лимфоциты обладают удивительной способностью различать в организме свое и чужое вследствие наличия в их оболочке специфических участков – рецепторов, активирующихся при контакте с чужеродными белками. Лимфоциты осуществляют синтез защитных антител, лизис чужеродных клеток, обеспечивают реакцию отторжения трансплантата, иммунную память, уничтожение собственных мутантных клеток и др.

Все лимфоциты делят на 3 группы: Т-лимфоциты (тимусзависимые), В-лимфоциты (бурсазависимые) и нулевые.

 

Форменные элементы

Строение клетки

Место образования и содержание в 1 мм3 крови

Продолжи-
тельность функциони-
рования

Место отмирания

Функции

Эритроциты Красные безъядерные клетки крови двояковогнутой формы, содержащие белок – гемоглобин Красный костный мозг; 4,5-5 млн.

3-4 мес

Селезенка. Гемоглобин разрушается в печени Перенос О2 из легких в ткани и CO2 из тканей в легкие
Лейкоциты Белые кровяные амебообразные клетки, имеющие ядро Красный костный мозг, селезенка, лимфатические узлы; 6-8 тыс.

3-5 дней

Печень, селезенка, а также места, где идет воспалительный процесс Защита организма от болезнетворных микробов путем фагоцитоза. Вырабатывают антитела, создавая иммунитет
Тромбоциты Кровяные безъядерные тельца Красный костный мозг; 300-400 тыс.

5-7 дней

Селезенка Участвуют в свертывании крови при повреждении кровеносного сосуда, способствуя преобразованию белка фибриногена в фибрин – волокнистый кровяной сгусток

 

Плазма крови по объему составляет 55-60% (форменные элементы – 40-45%). Это желтоватая полупрозрачная жидкость. Белки плазмы регулируют распределение воды между кровью и тканевой жидкостью, придают вязкость крови, играют роль в водном обмене. Некоторые из них ведут себя как антитела, обезвреживающие ядовитые выделения болезнетворных микроорганизмов.

 

Плазма крови содержит 90-92% воды и 8-10% сухого вещества, главным образом, белков и солей. В плазме находится ряд белков, отличающихся по своим свойствам и функциональному значению, -альбумины (около 4,5%), глобулины (2-3%) и фибриноген (0,2-0,4%).

Общее количество белка в плазме крови человека составляет 7-8 %. Остальная часть плотного остатка плазмы приходится на долю других органических соединений и минеральных солей.

Наряду с ними в крови находятся продукты распада белков и нуклеиновых кислот (мочевина, креатин, креатинин, мочевая кислота, подлежащие выведению из организма). Половина общего количества небелкового азота в плазме – так называемого остаточного азота – приходится на долю мочевины. При недостаточности функции почек содержание остаточного азота в плазме крови увеличивается.

Содержание органических и неорганических веществ плазмы крови за счет деятельности различных регулирующих систем организма поддерживается на относительно постоянном уровне.

Белок фибриноген играет важную роль в свертывании крови. Плазма, лишенная фибриногена, называется сывороткой.

Гемоглобин

Гемоглобин является основной составной частью эритроцитов и обеспечивает дыхательную функцию крови, являясь дыхательным пигментом. Он находится внутри эритроцитов, а не в плазме крови, что обеспечивает уменьшение вязкости крови и предупреждает потерю организмом гемоглобина вследствие его фильтрации в почках и выделения с мочой.

По химической структуре гемоглобин состоит из 1 молекулы белка глобина и 4 молекул железосодержащего соединения гема. Атом железа гема способен присоединять и отдавать молекулу кислорода. При этом валентность железа не изменяется, т. е. оно остается двухвалентным.

В крови здоровых мужчин содержится в среднем 14,5% гемоглобина (145 г/л). Эта величина может колебаться в пределах от 13 до 16 (130-160 г/л). В крови здоровых женщин содержится в среднем 13 г гемоглобина (130 г/л). Эта величина может колебаться в пределах от 12 до 14.

Гемоглобин синтезируется клетками костного мозга. При разрушении эритроцитов после отщепления гема гемоглобин превращается в желчный пигмент биллирубин, который с желчью поступает в кишечник и после превращений выводится с калом.

Соединение гемоглобина с газами

В норме гемоглобин содержится в виде 2-х физиологических соединений.

Гемоглобин, присоединивший кислород, превращается в оксигемо-глобин – НbО2. Это соединение по цвету отличается от гемоглобина, поэтому артериальная кровь имеет ярко алый цвет. Оксигемоглобин, отдавший кислород, называют восстановленным – Нb. Он находится в венозной крови, которая имеет более темный цвет, чем артериальная.

Гемолиз

Гемолизом называют разрушение оболочки эритроцитов, сопровождающееся выходом из них гемоглобина в плазму крови, которая окрашивается при этом в красный цвет и становится прозрачной.

В естественных условиях в ряде случаев может наблюдаться так называемый биологический гемолиз, развивающийся при переливании несовместимой крови, при укусах некоторых змей, под влиянием иммунных гемолизинов и т. п.

Источник: www.evaveda.com

Плазма крови: состав, концентрация и функциональные роли составляющих элементов

Плазма крови состоит в из белков, которые являются главной частью, хотя они составляют всего лишь 6-8 % от общей массы. Белки имеют свои подвиды: 

  • Альбумины – белковые вещества с низкой молекулярной массой, они составляют до 5%; 
  • Глобулины – белковые вещества, крупномолекулярные, они составляют до 3%; 
  • Фибриногены – глобулярный белок, они составляют до 0,4%.

Функции белковых элементов плазмы: 

  • Водный баланс (гомеостаз); 
  • Поддержка агрегатного состояния кровотока; 
  • Кислотно-основной гомеостаз; 
  • Стабильность функционирования иммунной системы; 
  • Транспортировка питательных элементов и других веществ; 
  • Участие в процессе свертываемости крови.

Альбумины синтезирует печень. Альбумины осуществляют питание клеток и тканей, регулируют онкотическое давление, резервируют аминокислоты и помогают синтезировать белки, транспортируют желчные вещества — стерины (холестерин), пигменты (билирубин), а также соли — желчных кислот, тяжелых металлов. Альбумины участвуют в доставке лекарственных компонентов (сульфаниламиды, антибиотики).

Глобулины делятся на фракции – A-глобулины, B-глобулины и G-глобулины. 

  • А-глобулины активизируют выработку белков – компонентов сыворотки крови (гликопротеинов), обеспечивающие почти 60% глюкозы. А-глобулины осуществляют транспортировку гормонов, липидов, микроэлементов, некоторых витаминов. А-глобулины – это плазминоген, эритропоэтин и протромбин. 
  • B-глобулины транспортируют желчные стерины, фосфолипиды, стероидные гормоны, катионы железа, цинка и других металлов. К бета-глобулинам причислен трансферрин, который связывает молекулы железа, деионизирует их и разносит по тканям (в печень и костный мозг). Также бета-глобулином является гемопексин, который помогает связыванию железа с ферритином, стероид-связывающий глобулин и липопротеины. 
  • G-глобулины имеют в своей группе антитела, которые разделяются на пять классов: IgG, IgA, IgM, IgD, IgE –глобулины иммунной системы, встающие на защиту организма от вторжения вирусов и инфекций. Гамма-глобулином являются и агглютинины крови, благодаря которым кровь определяется по группам. G-глобулины синтезируются, вырабатываются в селезенке, в клетках печени, в костном мозге и лимфоузлах.
  • Фибриноген – это растворимый белковый элемент, благодаря которому кровь может сворачиваться. Когда фибриноген соединяется с тромбином, он трансформируется в фибрин – нерастворимую форму, так образовываются сгустки крови. Фибриноген вырабатывается (синтезируется) в печени.

Любой острый воспалительный процесс может спровоцировать увеличение количества белков плазмы, особенно активно реагируют на воспаление ингибиторы протеаз (антитрипсины), гликопептиды, а также С-реактивные белки. Мониторинг уровня С-реактивного белка дает возможность отследить динамику состояния человека при острых воспалениях, например, при ревматоидном артрите.

Плазма крови содержит в своем составе органические небелковые вещества:

Группа I:

Это азотсодержащие вещества: 

  • 50% соединений – это азот мочевины; 
  • 25% соединений – аминокислотный азот; 
  • Низкомолекулярные остатки аминокислот (пептиды); 
  • Креатинин; 
  • Креатин; 
  • Билирубин; 
  • Индикан.

Патология почек, обширные ожоги нередко сопровождаются азотемией – высоким уровнем азотсодержащих элементов.

Группа II:

  • Это безазотистые вещества органического происхождения: 
  • Липиды, углеводы, продукты их обмена и распада (метаболизма), такие как лактат, пировиноградная кислота (ПВК), глюкоза, кетоны, холестерин. 
  • Минеральные элементы крови.

Неорганические элементы, которые содержит плазма крови занимают не более 1% всего состава. Это катионы Na+, K+, Ca2+, Mg2+ и Cl-, HP042-, HC03-, то есть анионы. Ионы, содержащиеся в плазме, поддерживают нормальное состояние клеток организма, регулируют кислотно-щелочной баланс (pH).

В лечебной практике применяется вливание физиологических сред пациенту в случае сильно кровопотери, обширных ожогов или для поддержки работы органов. Эти заменители плазмы осуществляют временную компенсаторную функцию. Так, изотонический раствор NaC (0,9%) равен по осмотическому давлению с давлением в кровотоке. Гораздо более адаптивен к крови смесь Рингера, так как в него помимо NaCl входят и ионы — СаС12+ КС1+, таким образом, он одновременно и изотоничен, и ионичен по отношению к крови. А благодаря тому, что в него включен и NaHC03, такая жидкость может считаться равной крови по кислотно-щелочному балансу. Еще один вариант – смесь Рингера – Локка приближен к составу естественной плазмы из-за того, что содержит глюкозу. Все физиологические компенсационные жидкости предназначены для поддержания уровня нормального, сбалансированного давления крови в ситуациях, связанных с кровотечением, обезвоживанием, в том числе и после операций.

Плазма крови – это важная составляющая крови, без которой функции многих органов и систем затруднительны, а порой и невозможны. Эта сложная биологическая среда выполняет массу полезных функций – обеспечение солевого баланса, необходимого для жизнедеятельности клеток, осуществление транспортной, защитной, выделительной и гуморальной функций.

Источник: ilive.com.ua

Состав плазмы крови

Желтоватая прозрачная жидкость, выделенная при образовании свертка в пробирке – и есть плазма? Нет – это сыворотка крови, в которой нет коагулируемого белка фибриногена (фактора I), он ушел в сгусток.  Однако, если взять кровь в пробирку с антикоагулянтом, то он не позволит ей (крови) свернуться, а тяжелые форменные элементы через некоторое время опустятся на дно, сверху же останется также желтоватая, но несколько мутноватая, в отличие от сыворотки, жидкость, вот она и есть плазма крови, мутность которой придают содержащиеся в ней белки, в частности, фибриноген (FI).

Состав плазмы крови поражает своим многообразием. В ней, кроме воды, которая составляет 90 – 93 %, присутствуют компоненты белковой и небелковой природы (до 10%):

  • Белки, которые забирают на себя 7 – 8 % от всего объема жидкой части крови (в 1 литре плазмы содержится от 65 до 85 граммов белков, норма общего белка в крови в биохимическом анализе: 65 – 85 г/л). Основными плазменными белками признаны альбумины (до 50% от всех белков или 40 – 50 г/л), глобулины (≈ 2,7%) и фибриноген;
  • Другие вещества белковой природы (компоненты комплемента, липопротеиды, углеводно-белковые комплексы и пр.);
  • Биологически активные вещества (ферменты, гемопоэтические факторы – гемоцитокины, гормоны, витамины);
  • Низкомолекулярные пептиды – цитокины, которые, в принципе, белки, но с низкой молекулярной массой, они продуцируются преимущественно лимфоцитами, хотя другие клетки крови также к этому причастны. Не глядя на свой «малый рост», цитокины наделены важнейшими функциями, они осуществляют взаимодействие системы иммунитета с другими системами при запуске иммунного ответа;
  • Углеводы, липиды, которые участвуют в обменных процессах, постоянно протекающих в живом организме;
  • Продукты, полученные в результате этих обменных процессов, которые впоследствии будут удалены почками (билирубин, мочевина, креатинин, мочевая кислота и др.);
  • В плазме крови собрано подавляющее большинство элементов таблицы Д. И. Менделеева. Правда, одни представители неорганической природы (натрий, хлор, калий, магний, фосфор, йод, кальций, сера и др.) в виде циркулирующих катионов и анионов легко поддаются подсчету, другие (ванадий, кобальт, германий, титан, мышьяк и пр.) – по причине мизерного количества, рассчитываются с трудом. Между тем, на долю всех присутствующих в плазме химических элементов приходится от 0,85 до 0,9%.

Таким образом, плазма – это очень сложная коллоидная система, в которой «плавает» все, что содержится в организме человека и млекопитающих и все, что готовится к удалению из него.

Вода – источник Н2О для всех клеток и тканей, присутствуя в плазме в столь значительных количествах, она обеспечивает нормальный уровень артериального давления (АД), поддерживает в более-менее постоянном режиме объем циркулирующей крови (ОЦК).

Различаясь аминокислотными остатками, физико-химическими свойствами и другими характеристиками, белки создают основу организма, обеспечивая ему жизнь. Разделив плазменные белки на фракции, можно узнать содержание отдельных протеинов, в частности, альбуминов и глобулинов, в плазме крови. Так делают с диагностической целью в лабораториях, так делают в промышленных масштабах для получения очень ценных лечебных препаратов.

Среди минеральных соединений наибольшая доля в составе плазмы крови принадлежит натрию и хлору (Na и Cl). Эти два элемента занимают ≈ по 0,3% минерального состава плазмы, то есть, они как бы являются основными, что нередко используется для восполнения объема циркулирующей крови (ОЦК) при кровопотерях. В подобных случаях готовится и переливается доступное и дешевое лекарственное средство – изотонический раствор хлорида натрия. При этом 0,9% р-р NaCl называют физиологическим, что не совсем верно: физиологический раствор должен, кроме натрия и хлора, содержать и другие макро- и микроэлементы (соответствовать минеральному составу плазмы).

468686846

Видео: что такое плазма крови

Функции плазмы крови обеспечивают белки

Функции плазмы крови определяются ее составом, преимущественно, белковым. Более детально этот вопрос будет рассмотрен в разделах ниже, посвященных основным белкам плазмы , однако кратко отметить важнейшие задачи, которые решает этот биологический материал, не помешает. Итак, главные функции плазмы крови:

  1. Транспортная (альбумин, глобулины);
  2. Дезинтоксикационная (альбумин);
  3. Защитная (глобулины – иммуноглобулины);
  4. Коагуляционная (фибриноген, глобулины: альфа-1-глобулин – протромбин);
  5. Регуляторная и координационная (альбумин, глобулины);

Это коротко о функциональном назначении жидкости, которая в составе крови постоянно движется по кровеносным сосудам, обеспечивая нормальную жизнедеятельность организма. Но все же некоторым ее компонентам следовало бы уделить больше внимания, к примеру, что читатель узнал о белках плазмы крови, получив столь мало сведений? А ведь именно они, главным, образом, решают перечисленные задачи (функции плазмы крови).

Безусловно, дать полнейший объем информации, затрагивая все особенности белков, присутствующих в плазме, в небольшой статье, посвященной жидкой части крови, наверное, сделать трудновато. Между тем, вполне возможно познакомить читателя с характеристиками основных протеинов (альбумины, глобулины, фибриноген – их считают главными белками плазмы) и упомянуть о свойствах некоторых других веществ белковой природы. Тем более что (как указывалось выше) они обеспечивают качественное выполнение своих функциональных обязанностей этой ценной жидкостью.

Несколько ниже будут рассмотрены основные белки плазмы, однако вниманию читателя хотелось бы представить таблицу, которая показывает, какими протеинами представлены основные белки крови, а также их главное предназначение.

Таблица 1. Основные белки плазмы крови

Основные белки плазмы Содержание в плазме (норма), г/л Главные представители и их функциональное назначение
Альбумины 35 — 55 «Строительный материал», катализатор иммунологических реакций, функции: транспорт, обезвреживание, регуляция, защита.
Альфа Глобулин α-1 1,4 – 3,0 α1-антитрипсин, α-кислый протеин, протромбин, транскортин, переносящий кортизол, тироксинсвязывающий белок, α1-липопротеин, транспортирующий жиры к органам.
Альфа Глобулин α-2 5,6 – 9,1 α-2-макроглобулин (главный в группе протеин) — участник иммунного ответа, гаптоглобин — образует комплекс со свободным гемоглобином, церулоплазмин – переносит медь, аполипопротеин В – транспортирует липопротеиды низкой плотности («плохой» холестерин»).
Бета Глобулины: β1+β2 5,4 – 9,1 Гемопексин (связывает гем гемоглобина, чем предотвращает удаление железа из организма), β-трансферрин (переносит Fe), компонент комплемента (участвует в иммунологических процессах), β-липопротеиды – «транспортное средство» для холестеринов и фосфолипидов.
Гамма глобулин γ 8,1 – 17,0 Естественные и приобретенные антитела (иммуноглобулины 5 классов – IgG, IgA, IgM, IgE, IgD), осуществляющие, главным образом, иммунную защиту на уровне гуморального иммунитета и создающие аллергостатус организма.
Фибриноген 2,0 – 4,0 Первый фактор свертывающей системы крови – FI.

Альбумины

Альбумины – это простые белки, которые по сравнению с другими протеинами:

  • Проявляют самую высокую устойчивость в растворах, но при этом хорошо растворяются в воде;
  • Неплохо переносят минусовые температуры, не особо повреждаясь при повторном замораживании;
  • Не разрушаются при высушивании;
  • Пребывая в течение 10 часов при довольно высокой для других белков температуре (60ᵒС), не теряют своих свойств.

Способности этих важных белков обусловлены наличием в молекуле альбумина очень большого количества полярных распадающихся боковых цепей, что определяет главные функциональные обязанности белков – участие в обмене и осуществление антитоксического эффекта. Функции альбуминов в плазме крови можно представить следующим образом:

  1. Участие в водном обмене (за счет альбуминов поддерживается необходимый объем жидкости, поскольку они обеспечивают до 80% суммарного коллоидно-осмотического давления крови);
  2. Участие в транспортировке различных продуктов и, особенно, тех, которые с большим трудом поддаются растворению в воде, например, жиров и желчного пигмента – билирубина (билирубин, связавшись с молекулами альбумина, становится безвредным для организма и в таком состоянии переносится в печень);
  3. Взаимодействие с макро- и микроэлементами, поступающими в плазму (кальций, магний, цинк и др.), а также со многими лекарственными препаратами;
  4. Связывание токсических продуктов в тканях, куда данные белки беспрепятственно проникают;
  5. Перенос углеводов;
  6. Связывание и перенос свободных жирных кислот – ЖК (до 80%), направляющихся в печень и другие органы из жировых депо и, наоборот, при этом, ЖК не проявляют агрессии в отношении красных клеток крови (эритроцитов) и гемолиза не происходит;
  7. Защита от жирового гепатоза клеток печеночной паренхимы и перерождения (жирового) других паренхиматозных органов, а, кроме этого, препятствие на пути образования атеросклеротических бляшек;
  8. Регуляция «поведения» некоторых веществ в организме человека (поскольку активность ферментов, гормонов, антибактериальных препаратов в связанном виде падает, данные белки помогают направить их действие в нужное русло);
  9. Обеспечение оптимального уровня катионов и анионом в плазме, защита от негативного воздействия случайно попавших в организм солей тяжелых металлов (комплексируются с ними с помощью тиоловых групп), нейтрализация вредных веществ;
  10. Катализ иммунологических реакций (антиген→антитело);
  11. Поддержание постоянства рН крови (четвертый компонент буферной системы – плазменные белки);
  12. Помощь в «строительстве» тканевых протеинов (альбумины совместно с другими белками составляют резерв «стройматериалов» для столь важного дела).

Синтезируется альбумин в печени. Средний период полужизни данного белка составляет 2 – 2,5 недели, хотя одни «проживают» неделю, а другие – «работают» до 3 – 3,5 недель. Путем фракционирования белков из плазмы доноров получают ценнейший лечебный препарат (5%, 10% и 20% раствор), имеющий аналогичное название. Альбумин является последней фракцией в процессе, поэтому его производство требует немалых трудовых и материальных затрат, отсюда и стоимость лечебного средства.

Показаниями к использованию донорского альбумина являются различные (в большинстве случаев довольно тяжелые) состояния: большая, создающая угрозу жизни, потеря крови, падение уровня альбумина и снижение коллоидно-осмотического давления по причине различных заболеваний.

Глобулины

Эти белки забирают меньшую долю по сравнению с альбумином, однако довольно ощутимую среди других протеинов. В лабораторных условиях глобулины разделяют на пять фракций: α-1, α-2, β-1, β-2 и γ-глобулины. В условиях производства для получения препаратов из фракции II + III выделяют гамма-глобулины, которые впоследствии будут использованы для лечения различных болезней, сопровождающихся нарушением в системе иммунитета.

В отличие от альбуминов, вода для растворения глобулинов не подходит, поскольку в ней они не растворяются, зато нейтральные соли и слабые основания вполне подойдут для приготовления раствора данного белка.

Глобулины – весьма значимые плазменные протеины, в большинстве случаев – это белки острой фазы. Не глядя на то, что их содержание находится в пределах 3% от всех плазменных белков, они решают важнейшие для организма человека задачи:

  • Альфа-глобулины участвуют во всех воспалительных реакциях (в биохимическом анализе крови отмечается повышение α-фракции);
  • Альфа- и бета-глобулины, находясь в составе липопротеинов, осуществляют транспортные функции (жиры в свободном состоянии в плазме появляются очень редко, разве что после нездоровой жирной трапезы, а в нормальных условиях холестерин и другие липиды связаны с глобулинами и образуют растворимую в воде форму, которая легко транспортируется из одного органа в другой);
  • α- и β-глобулины участвуют в холестериновом обмене (см. выше), что определяет их роль в развитии атеросклероза, поэтому неудивительно, что при патологии, протекающей с накоплением липидов, в сторону увеличения изменяются значения бета-фракции;
  • Глобулины (фракция альфа-1) переносят витамин В12 и отдельные гормоны;
  • Альфа-2-глобулин находится в составе принимающего очень активное участие в окислительно-восстановительных процессах гаптоглобина – этот острофазный белок связывает свободный гемоглобин и, таким образом, препятствует выведению железа из организма;
  • Часть бета-глобулинов совместно с гамма-глобулинами решает задачи иммунной защиты организма, то есть, является иммуноглобулинами;
  • Представители альфа, бета-1 и бета-2-фракций переносят стероидные гормоны, витамин А (каротин), железо (трансферрин), медь (церулоплазмин).

Очевидно, что внутри своей группы глобулины несколько отличаются друг от друга (прежде всего, своим функциональным назначением).

Следует заметить, что с возрастом или при отдельных заболеваниях печень может начать производить не совсем нормальные глобулины альфа и бета, при этом, измененная пространственная структура макромолекулы белков не лучшим образом отразится на функциональных способностях глобулинов.

Гамма-глобулины

Гамма-глобулины – белки плазмы крови, обладающие наименьшей электрофоретической подвижностью, эти протеины составляют основную массу естественных и приобретенных (иммунных) антител (АТ). Гамма-глобулины, образованные в организме после встречи с чужеродным антигеном, называют иммуноглобулинами (Ig). В настоящее время с приходом в лабораторную службу цитохимических методов стало возможным исследование сыворотки с целью определения в ней иммунных белков и их концентраций. Не все иммуноглобулины, а их известно 5 классов, имеют одинаковую клиническую значимость, кроме того, их содержание в плазме зависит от возраста и меняется при различных ситуациях (воспалительные заболевания, аллергические реакции).

Таблица 2. Классы иммуноглобулинов и их характеристика

Класс иммуноглобулинов (Ig) Содержание в плазме (сыворотке), % Основное функциональное назначение
G Ок. 75 Антитоксины, антитела, направленные против вирусов и грамположительных микробов;
A Ок. 13 Антиинсулярные АТ при сахарном диабете, антитела, направленные против капсульных микроорганизмов;
M Ок. 12 Направление – вирусы, грамотрицательные бактерии, форсмановские и вассермановские антитела.
E 0,0… Реагины, специфические АТ против различных (определенных) аллергенов.
D У эмбриона, у детей и взрослых, возможно, обнаружение следов Не учитываются, поскольку клинической значимости не имеют.

Концентрация иммуноглобулинов разных групп имеет заметные колебания у детей младшей и средней возрастной категории (преимущественно за счет иммуноглобулинов класса G, где отмечаются довольно высокие показатели – до 16 г/л). Однако приблизительно после 10-летнего возраста, когда прививки сделаны и основные детские инфекции перенесены, содержание Ig (в том числе, IgG) снижается и устанавливается на уровне взрослых:

IgM – 0,55 – 3,5 г/л;

IgA – 0,7 – 3,15 г/л;

IgG – 0,7 – 3,5 г/л;

Фибриноген

Первый фактор свертывания (FI – фибриноген), который при образовании сгустка переходит в фибрин, формирующий сверток (наличие в плазме фибриногена отличает ее от сыворотки), по сути, относится к глобулинам.

5468864486

Фибриноген с легкостью осаждается 5% этанолом, что используется при фракционировании белков, а также полунасыщенным раствором хлорида натрия, обработкой плазмы эфиром и повторным замораживанием. Фибриноген термолабилен и полностью сворачивается при температуре 56 градусов.

Без фибриногена не образуется фибрин, без него не останавливается кровотечение. Переход данного белка и образование фибрина осуществляется с участием тромбина (фибриноген → промежуточный продукт – фибриноген В → агрегация тромбоцитов → фибрин). Начальные стадии полимеризации фактора свертывания можно повернуть вспять, однако под влиянием фибринстабилизирующего фермента (фибриназа) происходит стабилизация и течение обратной реакции исключается.

Участие в реакции свертывания крови – главное функциональное назначение фибриногена, но он имеет и другие полезные свойства, например, по ходу выполнения своих обязанностей, укрепляет сосудистую стенку, производит небольшой «ремонт», прилипая к эндотелию и закрывая тем самым маленькие дефекты, которые то и дело возникают в процессе жизни человека.

Белки плазмы в качестве лабораторных показателей

В лабораторных условиях для определения концентрации плазменных белков можно работать с плазмой (кровь берут в пробирку с антикоагулянтом) или проводить исследование сыворотки, отобранной в сухую посуду. Белки сыворотки крови ничем не отличаются от плазменных протеинов, за исключением фибриногена, который, как известно, в сыворотке крови отсутствует и который без антикоагулянта уходит на образование сгустка. Основные протеины меняют свои цифровые значения в крови при различных патологических процессах.

5468488644864

Повышение концентрации альбумина в сыворотке (плазме) – редчайшее явление, которое случается при обезвоживании либо при чрезмерном поступлении (внутривенное введение) альбумина высоких концентраций. Снижение уровня альбумина может указывать на истощение функциональных возможностей печени, на проблемы с почками либо на нарушения в желудочно-кишечном тракте.

Увеличение или снижение белковых фракций характерно ряду патологических процессов, например, острофазные протеины альфа-1- и альфа-2-глобулины, повышая свои значения, могут свидетельствовать об остром воспалительном процессе, локализованном в органах дыхания (бронхи, легкие), затрагивающем выделительную систему (почки) либо сердечную мышцу (инфаркт миокарда).

Особенное место в диагностике различных состояний отводится фракции гамма-глобулинов (иммуноглобулинов). Определение антител помогает распознать не только инфекционное заболевание, но и дифференцировать его стадию. Более подробные сведения об изменении значений различных белков (протеинограмма) читатель может почерпнуть в отдельном материале по глобулинам.

Отклонения от нормы фибриногена проявляют себя нарушениями в системе гемокоагуляции, поэтому данный белок является важнейшим лабораторным показателем свертывающих способностей крови (коагулограмма, гемостазиограмма).

Что касается других важных для организма человека белков, то при исследовании сыворотки, используя определенные методики, можно найти практически любые, которые интересны для диагностики заболеваний. Например, рассчитывая концентрацию трансферрина (бета-глобулин, острофазный белок) в пробе и рассматривая его не только в качестве «транспортного средства» (хотя это, наверное, в первую очередь), врач узнает степень связывания протеином трехвалентного железа, высвобождаемого красными кровяными тельцами, ведь Fe3+, как известно, присутствуя в свободном состоянии в организме, дает выраженный токсический эффект.

Исследование сыворотки с целью определения содержания церулоплазмина (острофазный белок, металлогликопротеин, переносчик меди) помогает диагностировать такую тяжелую патологию, как болезнь Коновалова-Вильсона (гепатоцеребральная дегенерация).

Таким образом, исследуя плазму (сыворотку), можно определить в ней содержание и тех белков, которые жизненно необходимы, и тех, которые появляются в анализе крови, как показатель патологического процесса (например, С-реактивный белок).

Плазма крови – лечебное средство

Заготовка плазмы в качестве лечебного средства началась еще в 30 годах прошлого столетия. Сейчас нативную плазму, полученную путем спонтанного оседания форменных элементов в течение 2 суток, уже давно не используют. На смену устаревшим пришли новые методы разделения крови (центрифугирование, плазмаферез). Кровь после заготовки подвергается центрифугированию и разделяется на компоненты (плазма + форменные элементы). Жидкая часть крови, полученная подобным образом, обычно замораживается (свежезамороженная плазма) и, во избежание заражения гепатитами, в частности, гепатитом С, который имеет довольно длинный инкубационный период, направляется на карантинное хранение. Замораживание данной биологической среды при ультранизких температурах позволяет хранить ее год и более, чтобы потом использовать для приготовления препаратов (криопреципитат, альбумин, гамма-глобулин, фибриноген, тромбин и др.).

5468864468

В настоящее время жидкая часть крови для переливаний все чаще заготавливается методом плазмафереза, который наиболее безопасен для здоровья доноров. Форменные элементы после центрифугирования возвращаются путем внутривенного введения, а потерянные с плазмой белки в организме сдавшего кровь человека быстро регенерируются, приходят в физиологическую норму, при этом, не нарушая функции самого организма.

Кроме свежезамороженной плазмы, переливаемой при многих патологических состояниях, в качестве лечебного средства используют иммунную плазму, полученную после иммунизации донора определенной вакциной, например, стафилококковым анатоксином. Такую плазму, имеющую высокий титр антистафилококковых антител, используют также для приготовления антистафилококкового гамма-глобулина (иммуноглобулин человека антистафилококковый) – препарат довольно дорогостоящий, поскольку его производство (фракционирование белков) требует немалых трудовых и материальных затрат. И сырьем для него служит – плазма крови иммунизированных доноров.

Своего рода иммунной средой является и плазма антиожоговая. Давно замечено, что кровь людей, переживших подобный ужас вначале несет токсические свойства, однако спустя месяц в ней начинают обнаруживаться ожоговые антитоксины (бета- и гамма-глобулины), которые могут помочь «друзьям по несчастью» в остром периоде ожоговой болезни.

Разумеется, получение подобного лечебного средства сопровождается определенными трудностями, не глядя на то, что в период выздоровления потерянная жидкая часть крови восполняется донорской плазмой, поскольку организм обожженных людей испытывает белковое истощение. Однако донор должен быть взрослым и в другом отношении – здоровым, а его плазма должна иметь определенный титр антител (не менее 1 : 16). Иммунная активность плазмы реконвалесцентов сохраняется около двух лет и через месяц после выздоровления ее можно забирать у доноров-реконвалесцентов уже без компенсации.

Из плазмы донорской крови для людей, страдающих гемофилией или другой патологией свертывания, которая сопровождается снижением антигемофильного фактора (FVIII), фактора фон Виллебранда (ФВ, VWF) и фибриназы (фактор XIII, FXIII), готовится гемостатическое средство, называемое криопреципитатом. Его действующее вещество – фактор свертывания VIII.

Видео: о сборе и использовании плазмы крови

Фракционирование белков плазмы в промышленных масштабах

Между тем, использование цельной плазмы в современных условиях далеко не всегда оправдано. Причем, как с терапевтических, так и с экономических точек зрения. Каждый из плазменных белков несет свои, присущие только ему, физико-химические и биологические свойства. И вливать бездумно столь ценный продукт человеку, которому нужен конкретный белок плазмы, а не вся плазма, нет никакого смысла, к тому же – дорого в материальном плане. То есть, одна и та же доза жидкой части крови, разделенная на составляющие, может принести пользу нескольким пациентам, а не одному больному, нуждающемуся в отдельном препарате.

32111254

Промышленный выпуск препаратов был признан в мире после разработок в этом направлении ученых Гарвардского университета (1943 год). В основу фракционирования белков плазмы лег метод Кона, суть которого – осаждение фракций протеинов ступенчатым добавлением этилового спирта (концентрация на первом этапе – 8%, на завершающем – 40%) в условиях низких температур (-3ºС – I стадия, -5ºС – последняя). Безусловно, метод несколько раз модифицировался, однако и теперь (в разных модификациях) его используют для получения препаратов крови на всей планете. Вот его краткая схема:

  • На первой стадии осаждается белок фибриноген (осадок I) – данный продукт после специальной обработки пойдет в лечебную сеть под собственным названием или войдет в набор для остановки кровотечений, называемый «Фибриностатом»);
  • Вторую стадию процесса представляет супернатант II + III (протромбин, бета- и гамма-глобулины) – эта фракция пойдет на производство препарата, который называется гамма-глобулин человека нормальный, либо будет выпущена, как лечебное средство под названием антистафилококковый гамма-глобулин. В любом случае, из супернатанта, полученного на второй стадии, можно приготовить препарат, содержащий большое количество антимикробных и антивирусных антител;
  • Третья, четвертая стадии процесса нужны для того, чтобы добраться до осадка V (альбумин + примесь глобулинов);
  • 97 – 100% альбумин выходит лишь на завершающей стадии, после чего с альбумином еще долго придется работать, пока он не поступит в лечебные учреждения (5, 10, 20% альбумин).

Но это – всего лишь краткая схема, подобное производство на самом деле занимает много времени и требует участия многочисленного персонала разной степени квалификации. На всех этапах процесса будущее ценнейшее лекарство находится под постоянным контролем различных лабораторий (клинической, бактериологической, аналитической), ведь все параметры препарата крови на выходе должны строго соответствовать всем характеристикам трансфузионных сред.

Таким образом, плазма, помимо того, что в составе крови она обеспечивает нормальную жизнедеятельность организма, может быть еще важным диагностическим критерием, показывающим состояние здоровья, или же спасать жизнь других людей, используя свои уникальные свойства. И это не все о плазме крови. Мы не стали давать полнейшую характеристику всем ее белкам, макро- и микроэлементам, досконально описывать ее функции, ведь все ответы на оставшиеся вопросы можно найти на страницах СосудИнфо.

Рекомендации читателям СосудИнфо дают профессиональные медики с высшим образованием и опытом профильной работы.

На ваш вопрос ответит один из ведущих авторов сайта.

В данный момент на вопросы отвечает: А. Олеся Валерьевна, к.м.н., преподаватель медицинского вуза

Поблагодарить специалиста за помощь или поддержать проект СосудИнфо можно произвольным платежом по ссылке.

Источник: sosudinfo.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.