Кровь это разновидность


Кровь является важнейшей тканью организма, которая имеет определенный состав и отвечает за выполнение множества жизненно важных функций. Она чутко реагирует на развитие любого патологического процесса, за счет чего с помощью лабораторных методов исследования существует возможность выявить любые заболевания на самой ранней стадии.

Что такое кровь?

Данная вязкая субстанция обладает рядом важных свойств:

  • универсальностью;
  • многофункциональностью;
  • высокой степенью адаптации;
  • многокомпонентностью.

Их наличие и определяет то, к какой ткани относится кровь и почему. Она не отвечает за нормальное функционирование какого-либо определенного органа, ее задача – поддержать работу всех систем.

Кровь – это жидкая соединительная ткань, так как характер расположения ее компонентов рыхлый, а также очень сильно развита плазма, которая гистологически является межклеточным веществом. Источником ее развития служит мезенхима. Это своеобразный зачаток, из которого начинают формироваться все типы соединительной ткани (жировая, фиброзная, костная и т.д.).

Функции крови


Жизнедеятельность каждой клетки является нормальной только в том случае, если внутренняя среда организма постоянна. Выполнение данного условия напрямую зависит от состава крови, лимфы и межклеточной жидкости. Между ними постоянно происходит обмен, за счет чего клетки получают все необходимые питательные вещества и избавляются от конечных продуктов жизнедеятельности. Данное постоянство внутренней среды получило название гомеостаз.

Кровь – тип ткани, который самостоятельно отвечает за выполнение множества функций в организме:

  1. Транспортная. Она заключается в переносе необходимых веществ к клеткам, а также информации и энергии, которые в них содержатся.
  2. Дыхательная. Кровь своевременно доставляет молекулы кислорода ко всем тканям и органам из легких и забирает у них углекислый газ.
  3. Питательная. Она переносит жизненно важные элементы из органов, где они всасываются, к тем, которые в них нуждаются.
  4. Выделительная. В процессе жизнедеятельности организма образуются конечные продукты обмена веществ. Задача крови – доставить их к органам выделения.
  5. Терморегулирующая. Одной из физиологических особенностей крови является теплоемкость. Благодаря этому жидкая соединительная ткань осуществляет перенос данного вида энергии по всему организму и распределяет ее.
  6. Защитная. Данная функция характеризуется несколькими проявлениями: остановка кровотечений и восстановление проходимости сосудов при различного рода травмах и нарушениях, а также поддержка иммунной системы человека, которая осуществляется с помощью выработки антител к чужеродным антигенам.

Таким образом, многофункциональность объясняет, к какой ткани относится кровь и почему именно к соединительной.

Состав

Он отличается у людей разных возрастов и полов. На него также влияют особенности физиологического развития и внешних условий. Несмотря на то что у разных лиц неодинаковый объем (от 4-х до 6-ти литров) и состав крови, функции она у всех выполняет одни и те же.

Она представлена 2-мя главными компонентами: форменными элементами и плазмой. Последняя является мощно развитым межклеточным веществом, что также объясняет, почему кровь – соединительная ткань. Плазма составляет большую часть ее объема (60%). Это прозрачная жидкость белого или желтого оттенка.

В ее состав входят:

  • вода (90%);
  • белки;
  • глюкоза;
  • жиры;
  • соли;
  • гормоны;
  • электролиты;
  • органические соединения;
  • витамины;
  • азот.

Неизменный состав плазмы – важное условие для поддержания нормальной жизнедеятельности организма. Если под воздействием каких-либо неблагоприятных факторов в ней снизится уровень воды, это приведет к уменьшению показателя свертываемости крови.

К форменным элементам относятся:

  • тромбоциты;
  • эритроциты;
  • лейкоциты.

Каждый из них выполняет определенную функцию.

Характеристики клеток крови:

  1. Тромбоциты. Это бесцветные пластины, не имеющие ядра. Процесс тромбопоэза (формирования) происходит в красном костном мозге. Их главная задача – поддерживать нормальную свертываемость. При любом нарушении целостности кожного покрова они проникают в плазму и запускают процесс, благодаря чему кровотечение останавливается. На каждый литр жидкой соединительной ткани приходится 200-400 тысяч тромбоцитов.
  2. Эритроциты. Это дискообразные элементы красного цвета, не имеющие ядра. Процесс эритропоэза осуществляется также в костном мозге. Данные элементы являются самыми многочисленными: на каждый кубический миллиметр их приходится около 5-ти млн. Именно благодаря эритроцитам кровь имеет красный цвет. В роли пигмента выступает гемоглобин, основная функция которого – перенос кислорода из легких во все ткани и органы. Смена эритроцитов на новые происходит примерно каждые 4 месяца.
  3. Лейкоциты. Это элементы белого цвета без ядра, у которых нет определенной формы. Процесс лейкопоэза происходит не только в красном костном мозге, но и в лимфатических узлах и селезенке. В каждом кубическом миллиметре крови содержится примерно 6-8 тысяч белых телец. Их смена происходит очень часто – каждые 2-4 дня. Это обусловлено коротким сроком функционирования данных элементов. Они разрушаются в селезенке, там же они становятся ферментами.

Одновременно и к кровеносной, и к иммунной системе принадлежит особый вид клеток – фагоциты. Циркулируя по организму, они уничтожают патогены, препятствуя развитию различных заболеваний.

Таким образом, состав и функции крови весьма разнообразны.

Обновление жидкой соединительной ткани

Существует теория, что возраст данного биологического материала напрямую влияет на состояние здоровья, то есть с течением времени человек все сильнее подвержен появлению различных заболеваний.

Данная версия правдива лишь наполовину, так как клетки крови на протяжении всей жизни регулярно обновляются. У лиц мужского пола этот процесс происходит каждые 4 года, женского – 3 года. Вероятность возникновения патологий и обострения имеющихся недугов увеличивается именно к концу этого срока, то есть перед следующим обновлением.

Группы крови

На поверхности эритроцитов имеется особая структура – агглютиноген. Именно он и является определяющим в том, какую группу крови имеет человек.

Согласно наиболее распространенной системе АВО, их 4:

  • О (I);
  • A (II);
  • B (III);
  • AB (IV).

При этом группы А (II) и В (III) имеют структуры А и В соответственно. При O (I) эритроциты не имеют на поверхности агглютиногенов, а при АВ (IV) – сразу оба их вида. Таким образом, пациенту с АВ (IV) допускается переливать кровь любой группы, его иммунная система не воспримет клетки как чужеродные. Такие люди называются универсальными реципиентами. Кровь группы О (I) не имеет агглютиногенов, поэтому она подходит всем. Имеющие ее люди считаются универсальными донорами.

Резус-принадлежность


На поверхности эритроцитов также может присутствовать антиген D. При его наличии человек считается резус-положительным, при отсутствии – резус-отрицательным. Данная информация необходима при переливании крови и планировании беременности, так как при смешивании жидкой соединительной ткани разной принадлежности могут образовываться антитела.

Венозная и капиллярная кровь

В медицинской практике существуют 2 основных способа забора данного вида биоматериала – из пальца и из крупных сосудов. Капиллярная кровь предназначена в основном для проведения общего анализа, в то время как венозная считается более чистой и применяется для более углубленной диагностики.

Заболевания

Многие факторы определяют то, к какой ткани относится кровь и почему. Несмотря на то что она является жидким биоматериалом, в ней, как и в любом другом органе, могут возникнуть различные патологии. Они обусловлены сбоями в работе элементов, нарушением их строения или существенным изменением их концентрации.

К заболеваниям крови относятся:

  • анемия – патологическое уменьшение количества эритроцитов;
  • полицитемия – их уровень, напротив, очень высокий;
  • гемофилия – заболевание наследственного характера, при котором нарушен процесс свертывания;
  • лейкемия – целая группа патологий, при которых клетки крови трансформируются в злокачественные образования;
  • агаммаглобулинемия – недостаток сывороточных белков, содержащихся в плазме.

Каждое из этих заболеваний требует индивидуального подхода при составлении схемы лечения.

В заключение

Кровь обладает многими свойствами, ее задача – поддержать нормальный уровень функционирования всех органов и систем. Характер расположения ее компонентов рыхлый, кроме того, ее межклеточное вещество развито весьма мощно. Это и определяет то, к какой ткани относится кровь и почему к соединительной.

Источник: www.syl.ru

Кровь (haema, sanguis) — это жидкая ткань, состоящая из плазмы и взвешенных в ней кровяных клеток. Кровь заключена в систему сосудов и находится в состоянии непрерывного движения. Кровь, лимфа, межтканевая жидкость являются 3 внутренними средами организма, которые омывают все клетки, доставляя им необходимые для жизнедеятельности вещества, и уносят конечные продукты обмена. Внутренняя среда организма постоянна по своему составу и физико-химическим свойствам. Постоянство внутренней среды организма называется гомеостаз и является необходимым условием жизни. Гомеостаз регулируется нервной и эндокринной системами. Прекращение движения крови при остановке сердца приводит организм к гибели.

Функции крови:


  1. Транспортная (дыхательная, питательная, экскреторная)

  2. Защитная (иммунная, защита от кровопотери)

  3. Терморегулирующая

  4. Гуморальная регуляция функций в организме.

КОЛИЧЕСТВО КРОВИ, ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА КРОВИ

Количество

Кровь составляет 6-8% массы тела. Новорожденные имеют до 15%. В среднем у человека 4,5 — 5 л. Кровь, циркулирующая в сосудах — периферическая, часть крови содержится в депо (печень, селезенка, кожа) — депонированная. Потеря 1/3 крови ведет к гибели организма.

Удельный вес (плотность) крови — 1,050 — 1,060.

Он зависит от количества эритроцитов, гемоглобина и белков в плазме крови. Он увеличивается при сгущении крови (обезвоживание, физические нагрузки). Снижение удельного веса крови наблюдается при притоке жидкости из тканей после кровопотери. У женщин несколько ниже удельный вес крови, т. к. у них меньше количество эритроцитов.

  • Вязкость крови 3— 5, превышает вязкость воды в 3 — 5 раз (вязкость воды при температуре + 20°С принята за 1 условную единицу).

  • Вязкость плазмы — 1,7-2,2.


Зависит вязкость крови от количества эритроцитов и белков плазмы (в основном

фибриногена) в крови.

От вязкости крови зависят реологические свойства крови — скорость кровотока и

периферическое сопротивление крови в сосудах.

Вязкость имеет разную величину в разных сосудах (самая высокая в венулах и

венах, пониже в артериях, самая низкая в капиллярах и артериолах). Если бы

вязкость была бы одинаковая во всех сосудах, то сердцу пришлось бы развивать

мощность в 30-40 раз больше, чтобы протолкнуть кровь через всю сосудистую

систему.

Вязкость увеличивается при сгущении крови, обезвоживании, после физических

нагрузок, при эритремиях, некоторых отравлениях, в венозной крови, при введении

препаратов — коагулянтов (препаратов, усиливающих свертывание крови).

Уменьшается вязкость при анемиях, при притоке жидкости из тканей после кровопотери, при гемофилии, при повышении температуры, в артериальной крови, при введении гепарина и др. противосвертывающих средств.

Реакция среды (рН) — в норме 7,36 7,42. Жизнь возможна, если рН от 7 до 7,8.

Состояние, при котором происходит накопление в крови и тканях кислых эквивалентов, называется ацидоз (закисление), рН крови при этом уменьшается (меньше 7,36). Ацидоз может быть:

  • газовым — при накоплении СО2 в крови (СО2+ Н2О<-> Н2СО3 — накопление кислых эквивалентов);

  • метаболическим (накопление кислых метаболитов, например при диабетической коме накопление ацетоуксусной и гамма-аминомаслной кислот).


Ацидоз приводит к торможению ЦНС, коме и смерти.

Накопление щелочных эквивалентов называется алкалоз (защелачивание) -увеличение рН больше 7,42.

Алкалоз также может быть газовым, при гипервентиляции легких (если выведено слишком большое количество СО2), метаболическим — при накоплении щелочных эквивалентов и чрезмерном выведении кислых (неукротимая рвота, поносы, отравления и др.) Алкалоз приводит к перевозбуждению ЦНС, судорогам мышц и смерти.

Поддержание рН достигается за счет буферных систем крови, которые могут связывать гидроксильные (ОН-) и водородные ионы (Н+) и тем удерживать реакцию крови постоянной. Способность буферных систем противодействовать сдвигу рН объясняется тем, что при взаимодействии их с Н+ или ОН-, образуются соединения, обладающие слабо выраженным кислотным или основным характером.

Основные буферные системы организма:

  • белковая буферная система (кислые и щелочные белки);

  • гемоглобиновая (гемоглобин, оксигемоглобин);

  • бикарбонатная (бикарбонаты, угольная кислота);

  • фосфатная (первичные и вторичные фосфаты).


Осмотическое давление крови =7,6-8,1 атм.

Создается оно в основном солями натрия и др. минеральными солями, растворенными в крови.

Благодаря осмотическому давлению вода распределяется равномерно между клетками и тканями.

Изотоническими растворами называют растворы, осмотическое давление которых равно осмотическому давлению крови. В изотонических растворах эритроциты не изменяются. Изотоническими растворами являются: физиологический раствор 0,86% NaCl, раствор Рингера, раствор Рингера-Локка и др.

В гипотоническом растворе (осмотическое давление которого ниже, чем в крови) вода из раствора идет в эритроциты, при этом они набухают и разрушаются —осмотический гемолиз. Растворы с более высоким осмотическим давлением называются гипертоническими, эритроциты в них теряют Н2О и сморщиваются.

Онкотическое давление крови обусловлено белками плазмы крови (в основном альбуминами) В норме составляет 25-30 мм рт. ст. (в среднем 28) (0,03 — 0,04 атм.). Онкотическое давление — это осмотическое давление белков плазмы крови. Является частью осмотического давления (составляет 0,05 % от

осмотического). Благодаря ему вода удерживается в кровеносных сосудах (сосудистом русле).

При уменьшении количества белков в плазме крови — гипоальбуминемии (при нарушении функции печени, голоде) онкотическое давление снижается, вода выходит из крови через стенку сосудов в ткани, при этом возникают онкотические отеки («голодные» отеки).

СОЭ скорость оседания эритроцитов, выражается в мм/час. У мужчин СОЭ в норме – 0-10 мм/час, у женщин — 2-15 мм/час (у беременных до 30-45 мм/час).

СОЭ повышается при воспалительных, гнойных, инфекционных и злокачественных заболеваниях, в норме повышена у беременных.

СОСТАВ КРОВИ

  1. Форменные элементы крови — клетки крови, составляют 40 — 45% крови.

  2. Плазма крови — жидкое межклеточное вещество крови, составляет 55 — 60 % крови.

Соотношение плазмы и форменных элементов крови называется гематокритный показатель, т.к. он определяется с помощью гематокрита.

При стоянии крови в пробирке форменные элементы оседают на дно, а плазма остается сверху.

ФОРМЕННЫЕ ЭЛЕМЕНТЫ КРОВИ

Эритроциты (красные кровяные тельца), лейкоциты (белые кровяные тельца), тромбоциты (красные кровяные пластины).

ЭРИТРОЦИТЫ — это красные кровяные клетки, лишенные ядра, имеющие

форму двояковогнутого диска, размером 7-8 мкм.

Образуются в красном костном мозге, живут 120 дней, разрушаются в селезенке («кладбище эритроцитов»), печени, в макрофагах.

Функции:

1) дыхательная — за счет гемоглобина (перенос О2 и СО2);

  1. питательная — могут транспортировать аминокислоты и др. вещества;

  2. защитная — способны связывать токсины;

  3. ферментативная — содержат ферменты. Количество эритроцитов в норме:

  • у мужчин в 1 мл — 4,1-4,9 млн.

  • у женщин в 1 мл – 3,9 млн.

  • у новорожденных в 1 мл — до 6 млн.

  • у пожилых в 1 мл — менее 4 млн.

Повышение количества эритроцитов в крови называется эритроцитоз.

Виды эритроцитоза:

1.Физиологический (в норме) — у новорожденных, жителей горных районов, после еды и физической нагрузки.

2.Патологический — при нарушениях кроветворения, эритремиях (гемобластозах — опухолевых заболеваниях крови).

Понижение количества эритроцитов в крови называется эритропения. Она может быть после кровопотери, нарушения образования эритроцитов

(железодефицитная, В!2 дефицитная, фолиеводефицитная анемии) и повышенном разрушении эритроцитов (гемолизе).

ГЕМОГЛОБИН (НЬ) — дыхательный пигмент красного цвета, находящийся в эритроцитах. Синтезируется в красном костном мозге, разрушается в селезенке, печени, в макрофагах.

Гемоглобин состоит из белка — глобина и 4 молекул тема. Гем — небелковая часть НЬ, содержит железо, которое соединяется с О2 и СО2. Одна молекула гемоглобина может присоединять 4 молекулы О2.

Норма количества НЬ в крови у мужчин до 132-164 г/л, у женщин 115 -145 г/л. Гемоглобин снижается — при анемиях (железодефицитной и гемолитической), после кровопотери, повышается — при сгущении крови, В12 — фолиево — дефицитной анемии и т.д.

Миоглобин — мышечный гемоглобин. Играет большую роль в снабжении О2 скелетных мышц.

Функции гемоглобина: — дыхательная — перенос кислорода и углекислого газа;

  • ферментативная — содержит ферменты;

  • буферная — участвует в поддержании рН крови. Соединения гемоглобина:

1.физиологические соединения гемоглобина:

а) Оксигемоглобин: НЬ + О2 <-> НЬО2

б) Карбогемоглобин: НЬ + СО2 <-> НЬСО2 2. патологические соединения гемоглобина

а) Карбоксигемоглобин — соединение с угарным газом, образуется при отравлениях угарным газом (СО), необратимо, при этом НЬ уже не способен переносить О2 и СО2: НЬ + СО -> НЬО

б) Метгемоглобин (Мет НЬ) — соединение с нитратами, соединение необратимо, образуется при отравлении нитратами.

ГЕМОЛИЗ — это разрушение эритроцитов с выходом гемоглобина наружу. Виды гемолиза:

1. Механический гемолиз — может возникнуть при встряхивании пробирки с кровью.

2. Химический гемолиз — кислотами, щелочами и т.д.

З.Осмотический гемолиз — в гипотоническом растворе, осмотическое давление которого ниже, чем в крови. В таких растворах вода из раствора идет в эритроциты, при этом они набухают и разрушаются.

4. Биологический гемолиз — при переливании несовместимой группы крови, при укусах змей (яд обладает гемолитическим эффектом).

Гемолизированная кровь называется «лаковая», по цвету ярко-красная т.к. гемоглобин переходит в кровь. Гемолизированная кровь непригодна для анализов.

ЛЕЙКОЦИТЫ — это бесцветные (белые) клетки крови, содержание ядро ипротоплазму.Образуются в красном костном мозге, живут 7-12 дней, разрушаются в селезенке, печени, в макрофагах.

Функции лейкоцитов: иммунная защита, фагоцитоз чужеродных частиц.

Свойства лейкоцитов:

  1. Амебовидная подвижность.

  2. Диапедез — способность проходить сквозь стенку сосудов в ткани.

  3. Хемотаксис — движение в тканях к очагу воспаления.

  4. Способность к фагоцитозу — поглощению чужеродных частиц.

В крови у здоровых людей в состоянии покоя количество лейкоцитов колеблетсяот 3,8-9,8 тыс. в 1 мл.

Увеличение количества лейкоцитов в крови называется лейкоцитоз.

Виды лейкоцитоза:

— физиологический лейкоцитоз (в норме) — после еды и физической нагрузки.

— патологический лейкоцитоз — возникает при инфекционных, воспалительных, гнойных процессах, лейкозах.

Понижение количества лейкоцитов в крови называется лейкопения, может быть при лучевой болезни, истощении, алейкемическом лейкозе.

Процентное соотношение видов лейкоцитов между собой называется лейкоцитарная формула.Кровь это разновидность

Источник: studfile.net

Клетки

Описание

Значение

Эритроциты

Вогнутые с двух сторон маленькие клетки (диаметр – 7-10 мкм) красного цвета из-за входящего в состав гемоглобина (расположен в цитоплазме). Взрослые эритроциты не имеют ядра и большинство органелл. Не способны к делению. Клетки живут на протяжении 100-120 дней, а затем уничтожаются макрофагами. Составляют 99 % всех клеток крови

Железо, находящееся в гемоглобине, связывает кислород. Проходя по малому кругу кровообращения через лёгкие и двигаясь по артериям, клетки по телу разносят кислород. Обратно к лёгким доставляют углекислый газ

Лейкоциты

Белые округлые ядерные клетки, способные к передвижению. Могут выходить за пределы кровяного потока в межклеточное пространство. В зависимости от зернистости цитоплазмы делятся на две группы:

– гранулоциты – зернистые;

– агранулоциты – незернистые.

К гранулоцитам относятся небольшие клетки (диаметр 9-13 мкм) трёх видов:

– базофилы – способствуют свёртываемости крови;

– эозинофилы – обезвреживают токсины;

– нейтрофилы – захватывают и переваривают бактерии.

Агранулоциты бывают трёх видов:

– моноциты – активные фагоциты размером 18-20 мкм;

– лимфоциты – главные клетки иммунной системы, вырабатывающие антитела

Являются частью иммунной системы. Поглощают посредством фагоцитоза чужеродные частицы. Защищают организм от инфекций

Тромбоциты

Ограниченные мембраной части цитоплазмы костного мозга. Не содержат ядра. Размер зависит от возраста, поэтому выделяют юные, зрелые, старые тромбоциты

Вместе с белками плазмы осуществляют коагуляцию – процесс свёртываемости крови, предупреждая кровопотерю

Источник: obrazovaka.ru

Кровь похожа на первозданное море. Имеющиеся между ними различия вызваны тем, что в свое время море было внешней средой, которая питала находящиеся в нем простейшие клетки и организмы, в то время как наша кровь является внутренней средой, соответствующей более специализированным нуждам организма, в котором она заключена.

Своей обширной поверхностью море соприкасалось с воздухом, поглощая кислород, который затем доставлялся примитивным организмам. Система замкнутой циркуляции — кровообращения — не имеет прямого контакта с воздушной средой, и обмен кислорода на углекислоту происходит в ней иначе. Для выполнения этой жизненно необходимой функции кровь выработала специфические структуры — красные кровяные тельца. Аналогично, и во многом по тем же причинам, в крови возникли и другие элементы и структуры, которых не было в первобытном море.

И все же, несмотря на десятки миллионов лет, прошедших с тех пор, как наши предки покинули первозданное море и приспособились к жизни на суше, жидкая составная часть нашей крови и вода древнего моря остались почти идентичными по своему неорганическому химическому составу.

Кровь, в ту пору вытеснившая море, но в чем-то главном оставаясь тем же морем, по своему составу была все же значительно более сложной жидкостью, содержавшей во взвешенном состоянии плотные элементы. Что представляют собой эти элементы, каков состав жидкой части крови — это была загадка, над разрешением которой в течение многих столетий бились виднейшие ученые. На некоторые из них удалось ответить полностью, а к решению других мы только еще приблизились.

Изучение природы крови стало возможным лишь по мере дальнейшего усовершенствования микроскопа и методов его использования, благодаря применениям новейших достижений химии и других наук, а также появлению новых приборов и инструментов.

Плотные элементы крови — красные кровяные тельца, различные виды лейкоцитов и особые образования, названные тромбоцитами, которые фактически не являются клетками, взвешены в плазме.

Красные тельца, или эритроциты,— наиболее многочисленные клетки крови. В их функции входит доставка кислорода к тканям и удаление из организма углекислоты. Количество красных кровяных телец подвержено некоторым колебаниям, но обычно оно составляет в среднем около 35 триллионов. В одном кубическом миллиметре крови мужчины (примерно капли) содержится от 5 до 5,5 миллиона красных телец. По какой-то непонятной причине в равном объеме женской крови красных телец на полмиллиона меньше.

Однако пол — не единственный фактор, влияющий на количество красных кровяных телец у человека. У людей, живущих в высокогорных районах, например в Тибете и Андах, число эритроцитов примерно на 30% больше, чем у жителей морского побережья. При переезде из низменностей в высокогорные места, даже на непродолжительное время, у людей почти немедленно повышается количество красных кровяных телец. Их число в нашей крови возрастает также во время физических упражнений и любой мышечной нагрузки, в моменты эмоционального возбуждения или при повышении температуры окружающей среды.

Например, у людей и животных, работающих в глубоких шахтах, где атмосферное давление выше, чем на поверхности земли, количество эритроцитов по сравнению с жителями морского побережья меньше. В любом случае, когда организм нуждается в дополнительном снабжении кислородом, в кровообращение вводятся новые порции переносящих его красных телец. Когда же потребность тела в кислороде уменьшается, сокращается и количество красных телец в крови.

Судя по всему, увеличение количества циркулирующих красных кровяных телец вызывается одним из двух важных факторов: либо возрастает скорость образования этих элементов крови, либо же селезенка, орган, расположенный в верхней левой части брюшной полости и, помимо прочих функций, играющий роль резервуара для эритроцитов, выпускает дополнительно красные тельца в систему кровообращения.

Жизненный цикл красных кровяных телец весьма непродолжительный и бурный. Они образуются в костном мозгу позвоночника, ребер и других костей и проходят через несколько стадий, прежде чем приобретают окончательную форму. В первоначальный момент своего появления красное кровяное тельце — сравнительно большая клетка, практически бесцветная, с довольно крупным ядром и всеми другими чертами, характерными для живой клетки. По мере своего развития она уменьшается, постепенно лишается ядра и вбирает в себя гемоглобин, который и придает ей красный цвет. На этой стадии клетка попадает в кровь и превращается в окончательно сформированное красное кровяное тельце.

Зрелый эритроцит — это круглый, плоский и гибкий двояковогнутый диск. Эти свойства эритроцита увеличивают его поверхность, а следовательно, и способность связывать кислород. Благодаря им он также обладает возможностью сгибаться и свертываться при прохождении через узкий просвет капилляров.

Совершая круговое движение по системе кровообращения со средней скоростью 1—2 оборота в минуту, красные кровяные тельца подвергаются множеству опасностей. Мчась по сосудам, они наталкиваются на другие клетки; их подстерегают и другие неожиданности. Этим объясняется довольно короткая продолжительность жизни эритроцитов — она составляет 90—125 дней. Когда изношенные или состарившиеся эритроциты в ходе своего путешествия по системе кровообращения попадают в селезенку, их захватывают и разрушают крупные клетки — так называемые макрофаги. Макрофаги сохраняют железо, содержащееся в гемоглобине красных телец, и вновь возвращают этот ценнейший материал в организм человека.

Без гемоглобина ткани нашего тела могли бы задохнуться. Гемоглобин — это удивительное вещество, которому красные кровяные тельца обязаны своим цветом,— находится в родстве как с зеленым хлорофиллом растений, так и с пигментами, ярко окрашивающими оперенье птиц. Но у него есть важная особенность: гемоглобин содержит железо. Железа, которое содержится в крови взрослого человека, хватило бы на изготовление двухдюймового гвоздя. Именно благодаря этому железу гемоглобина красные кровяные тельца обладают способностью транспортировать необходимый для жизни кислород.

Как известно, на воздухе обычное железо быстро ржавеет, так как оно легко вступает в соединение с кислородом. Обычное окисленное железо не склонно отдавать кислород. Но железо составляет лишь незначительную часть гемоглобина. В основном же гемоглобин состоит из пигмента, называемого порфирином, и белковой субстанции — глобина. В соединении с этими веществами железо приобретает совершенно своеобразную способность к взаимодействию с кислородом — оно может с такой же легкостью отдавать кислород, как и соединяться с ним. Эта особенность, на которой мы подробнее остановимся ниже, позволяет крови без задержки снабжать любую клетку организма необходимым ей кислородом.

Но, однако, как ни важны красные кровяные тельца для жизни, сами они не имеют черт, присущих живому организму. Утрачивая ядро в последней стадии своего развития, они фактически превращаются в биохимические структуры, призванные с наибольшей эффективностью выполнять возложенную на них специфическую задачу. Лишенные способности и к самостоятельному передвижению, они направляются в различные части тела под воздействием тех факторов, которые регулируют кровоток.

Иное положение занимают белые кровяные тельца, или лейкоциты. В отличие от эритроцитов они самостоятельно перемещаются по крови. В каждом лейкоците имеется ядро, что уже само по себе является характеристикой живой клетки. Кроме того, лейкоциты обладают возможностью независимого «амебоидного» передвижения, что позволяет многим из них проникать сквозь эндотелиальные стенки капилляров и свободно передвигаться по всему телу. В широком смысле слова, белые кровяные тельца представляют собой автономные живые существа, ведущие относительно независимый образ жизни внутри человеческого организма. И все же лейкоциты— это неотъемлемая часть тела человека, ибо их жизнедеятельность подчинена нуждам высокоорганизованной системы клеток, к которой они принадлежат, т. е. самому человеческому телу.

Лейкоциты не содержат гемоглобина. В организме человека их примерно в 600 раз меньше, чем эритроцитов. Но и с этим «меньшинством» приходится считаться — в теле взрослого человека содержится в среднем около 60 миллиардов лейкоцитов! Эти якобы независимые организмы, блуждающие в крови и имеющие огромное значение для жизнедеятельности и здоровья человека, делятся на две основные группы — гранулоциты и лимфоциты. Каждая из них в свою очередь подразделяется на несколько разновидностей.

Гранулоциты гораздо многочисленнее лимфоцитов. У них имеется дольчатое ядро. Своим названием гранулоциты обязаны тому, что в их протоплазме, составляющей основную часть клетки, разбросаны мелкие зерна (гранулы).

Поскольку под микроскопом все гранулоциты выглядят почти одинаково, одно время полагали, что внутри этой группы не существует разновидностей. И лишь применение более тонких методик показало, что не все гранулоциты одинаковы, что они по-разному реагируют с различными красителями. Установлено существование трех четко различающихся видов гранулоцитов, имеющих, помимо различной реакции на красители, и другие специфические черты. Они известны под названием нейтрофилы, эозинофилы и базофилы.

Нейтрофилы содержат гранулы, которые в присутствии нейтральных красителей (не дающих ни кислой, ни щелочной реакции) окрашиваются в фиолетовый цвет. Нейтрофилы относятся к числу активных защитников организма против любой инфекции. Действуя одновременно как солдаты, полицейские и санитары, они бросаются в атаку, пожирают и проглатывают микробы или любые частички инородных веществ, с которыми сталкиваются.

Эти белые тельца составляют 65—70% общего числа лейкоцитов. По своему внешнему виду они очень похожи на амеб — одноклеточных животных, живущих в стоячей воде. Они свободно передвигаются в организме, выпуская ложноножки (псевдоподии) и передвигаясь при помощи этих похожих на щупальца выростов. Более того, они даже могут покидать кровеносные сосуды и перемещаться в любые ткани организма, нуждающиеся в защите от инфекции и нашествия микробов.

Две другие разновидности гранулоцитов — это эозинофилы, которые окрашиваются кислыми красками в красный цвет, и базофилы, зернистость которых под действием щелочных красителей приобретает синий цвет. Эти разновидности лейкоцитов весьма немногочисленны и значительно менее подвижны, чем нейтрофилы. Их назначение до сих пор не совсем понятно.

Как показали недавние исследования, количество эозинофилов — лейкоцитов, окрашивающихся в красный цвет,— увеличивается при таких аллергических состояниях организма, как астма, или же из-за присутствия в организме определенных глистов, например анкилостом. Это навело некоторых ученых на мысль, что, возможно, эозинофилы ведут активную борьбу против паразитов и агентов, вызывающих аллергию. Но все это пока относится лишь к области догадок и не подтверждено практическими доказательствами.

Жизненный цикл гранулоцитов исследован недостаточно, известно лишь, что все они образуются только в костном мозге. Например, по мнению одних ученых, продолжительность жизни нейтрофилов равна нескольким часам, другие же полагают, что она составляет 21 день. Нейтрофилы являются важной частью защитных линий организма, поэтому срок их жизни так же трудно предсказать, как и срок жизни любого солдата, постоянно участвующего в сражениях. То желтоватое вещество, которое скапливается иногда в месте внедрения инфекции и известно под названием гноя, является последствием тех битв, которые ведут нейтрофилы. Гной состоит из погибших в сражении клеток: мертвых нейтрофилов и других лейкоцитов, погибших бактерий, жидкости и остатков пораженной ткани.

Ко второй важной группе белых телец, циркулирующих в крови, относятся лимфоциты. Их значительно меньше, чем гранулоцитов. Лимфоциты составляют всего 25% общего количества лейкоцитов, находящихся в организме человека.

Как удалось установить, в группу лимфоцитов входят по меньшей мере две, а возможно и три, разновидности клеток. Две из них, существование которых не вызывает сомнения,— это малые и большие лимфоциты. Возможный третий член этой группы — разновидность белых кровяных телец, известная под названием моноцитов*. Ни одна из этих разновидностей лимфоцитов, по-видимому, не играет активной роли в крови. Очевидно, для них система кровообращения не больше как средство перемещения из одной части тела в другую.
__________
* Моноциты не принадлежат к числу лимфоцитов, а образуют самостоятельную клеточную группу. — Прим. ред.

Малые лимфоциты, по размерам лишь незначительно превосходящие красные кровяные тельца, составляют подавляющее большинство клеток из группы лимфоцитов. Они имеют сравнительно крупное, слегка вдавленное ядро, окруженное тонким ободком протоплазмы. Эти клетки образуются в лимфоидной ткани, а не в костном мозге. Их обнаруживают в большом количестве в основном в селезенке и лимфатических узлах — стратегических пунктах, расположенных в важнейших соединениях лимфатических каналов и играющих весьма активную роль в защите организма.

Как уже указывает само название, большие лимфоциты похожи на малые лимфоциты, но отличаются от них своими размерами — их диаметр почти в полтора раза больше. В крови взрослых людей больших лимфоцитов совсем немного, но в крови ребенка они присутствуют, по-видимому, в большом количестве. Они встречаются почти исключительно в лимфоидной ткани. Большие лимфоциты имеют крупное ядро овальной или почкообразной формы; окружающий ядро слой протоплазмы шире, чем у малых лимфоцитов. Эти и другие характерные черты позволили некоторым исследователям предположить, что большой лимфоцит — это не что иное, как незрелая форма малого лимфоцита.

Функции больших и малых лимфоцитов выяснены не до конца, хотя кое-что нам известно, а о многом теперь уже можно догадываться. В отличие от нейтрофилов лимфоциты не захватывают и не пожирают инородные тела. Однако против некоторых микробов они ведут борьбу. Но, пожалуй, важнейшей особенностью лимфоцитов является их участие в образовании антител — глобулинов крови, играющих ведущую роль в механизме иммунологической защиты организма от заболеваний.

К третьему типу клеток, которые, как полагают, также входят в семейство лимфоцитов, относится моноцит. Моноцит по своим размерам несколько крупнее большого лимфоцита, кайма протоплазмы у него еще шире, а ядро имеет глубокое вдавление, придающее ему форму почки. Моноциты свободно передвигаются и очень активно участвуют в уничтожении бактерий и других инородных веществ. Они составляют около 5% белых кровяных телец.

Наши познания о различных видах белых кровяных телец до сих пор довольно примитивны. Правда, мы уже научились распознавать большинство из них, но пока что не смогли полностью проследить жизненный цикл каждого из известных нам видов. Разумеется, это крайне затрудняет работу исследователей, ибо то, что мы подчас принимаем за независимые и обособленные тельца, на самом деле может оказаться всего лишь промежуточной стадией развития одной и той же клетки. К счастью, опыт, знания, инструментарий и методы исследования современной науки постоянно совершенствуются, и это вселяет в нас уверенность, что эта загадка крови, как и другие, будет разрешена.

В крови имеется еще один чрезвычайно важный для жизни форменный элемент, который нельзя причислить ни к красным, ни к белым тельцам. Это — мельчайшие структуры, названные кровяными пластинками, или тромбоцитами.

Диаметр тромбоцитов составляет всего лишь одну треть диаметра эритроцита. Они представляют собой обрывки протоплазмы гигантских клеток костного мозга, образующиеся в результате их распада. Подлинный процесс образования тромбоцитов показан в замечательном фильме, созданном в 1960 году двумя японцами, Редзюн Киносита и Сусумо Оно.

При помощи остроумной комбинации микроскопа и кинокамеры Киносита и Оно удалось заснять удивительный процесс образования кровяных пластинок через небольшое отверстие, вырезанное в большеберцовой кости (tibia) живого кролика. Внутри костного мозга камера зафиксировала крупные клетки, так называемые мегакариоциты. Часть из них росла, созревала и затем делилась на две новые клетки, т. е. следовала по обычному пути клеточного размножения. Другие же клетки, по совершенно непонятным причинам отклонялись от ЭТОГО пути. После деления обе новые клетки вместо того, чтобы развиваться самостоятельно, снова сливались воедино, причем вновь образованная клетка превышала размеры материнской клетки в момент первоначального деления. Эта новая клетка в свою очередь росла, а затем вновь делилась надвое. Повторялась прежняя картина: дочерние клетки снова соединялись в еще более крупную по размерам клетку. Столь странная аномалия процесса деления выявлялась на протяжении четырех поколений. Затем при очередном соединении дочерних клеток они образовывали гигантскую клетку, нестойкую и все время находящуюся в бурном движении. Эта клетка незамедлительно распадалась на составные части. Из обломков этого подвергшегося саморазрушению гиганта и возникали тромбоциты, которые затем попадали в циркулирующую кровь.

Тромбоциты резко отличаются друг от друга как по размерам и форме, так и, очевидно, по выполняемым в организме функциям. Несомненно, важнейшая из них, как мы увидим в дальнейшем,— это роль, которую они играют в образовании сгустков крови (тромбов) и заживлении поврежденных сосудов.

Перейдем к рассмотрению плазмы. Плазма более чем на 90% состоит из воды и занимает примерно 54% общего объема крови. Являясь главным транспортным средством системы кровообращения, она переносит различные кровяные тельца, а также большое количество других веществ, которые в отличие от форменных элементов находятся в растворенном состоянии. В число последних входят питательные вещества, продукты распада и другие органические и неорганические химические соединения. Собственно плазму образуют самые различные вещества. Это смесь бесчисленных белков и других веществ, выполняющих множество функций и играющих жизненно важную роль. Такова плазма, эта замечательная по своему составу, слегка опалесцирующая, желтоватая жидкость, остающаяся после удаления из крови кровяных телец.

После того как еще в XVII веке великий Мальпиги доказал, что кровь — не простая жидкость, многие исследователи крови посвятили себя нелегкому труду по выяснению ее состава. Как выяснилось, при помощи микроскопа нельзя было обнаружить вещества, из которых состояла кровь, на первый взгляд кажущаяся однородной. Разумеется, микроскоп позволял увидеть микробы и другие частички, содержащиеся в капле воды и не видимые невооруженным глазом. Но, увы, в него нельзя было разглядеть, что вода на самом деле является химическим соединением водорода и кислорода. Подобное, более тонкое исследование потребовало помощи со стороны химиков и физиков.

Используя более совершенные приборы и новейшие методы исследования, физиологи-экспериментаторы и другие ученые доказали, что плазма состоит из определенных минеральных веществ, различных химических элементов и белков. Многие из этих составных частей удалось определить и измерить, правда, в первом приближении, но природа белков плазмы в основном оставалась тайной вплоть до 1941 года. В 1941 году Эдвин Кон, сотрудник Гарвардского университета, добился определенного успеха в изучении плазмы с помощью эффективного прибора, который с тех пор называется фракционатором Кона.

Предложенный Коном метод сочетал в себе элементы химии и физики. Ученый использовал физический принцип центрифуги, которая при больших оборотах позволила отделить плотные элементы крови от ее жидкой части. В своих химических исследованиях он исходил из тончайших различий в степени растворимости белков. Этот физико-химический метод позволил не только отделить плотные составные части от жидкой, но и приступить к еще более сложному разделению многочисленных компонентов самой плазмы.

Современные исследователи, увы, еще далекие от совершенства, тем не менее уже хорошо изучили на практике основные составные части плазмы.

Плазма — это жидкость со слабощелочной реакцией, которая является внутренней сбалансированной средой тканей и без которой ткани не могли бы существовать. Кислотно-щелочное соотношение измеряется концентрацией ионов водорода и обозначается символом pH; pH, равная семи, характерна для нейтральной реакции, более высокая — для щелочной, а меньше семи — для кислой; pH крови и других внутренних жидкостей тела равна примерно 7,43. Только две жидкости организма обычно обладают кислой реакцией: это желудочный сок, вырабатываемый в пищеварительном тракте, и выделяемая организмом моча.

Вопреки некоторым распространенным поверьям, «кислой крови» не существует, за исключением крайне тяжелых случаев диабета и нефрита в терминальной стадии (за несколько часов до смерти). Если же обладающие кислой реакцией вещества (побочные продукты обмена веществ) все-таки попадают в кровь, они выделяются из организма почками и легкими. В любом случае эти вещества незамедлительно нейтрализуются особыми химическими соединениями — например двууглекислым натрием, — которые способствуют поддержанию в крови нормальной pH, равной 7,43.

Сама плазма на 91—92% состоит из воды. В этой воде и растворены те 8—9% веществ, которые связывают жидкую часть крови. Выделение и установление природы различных фракций, составляющих эти 8—9%, было и остается одной из самых настоятельных задач, когда-либо стоявших перед человеком.

Около 1% растворенных субстанций составляют неорганические вещества — натрий, калий, кальций, фосфор, железо, йод, медь, магний и другие элементы, встречающиеся в различных комбинациях. Именно эти соли и придают плазме большое сходство с морем, далеким прародителем живых существ, ставших сухопутными.

В этой солевой жидкости растворены также белки плазмы. Эти важные составные части крови распределены в плазме, подобно тому как яичный белок растворяется в солоноватой воде, делая ее слегка мутной и вязкой.

Белки составляют около 7% плазмы. Благодаря самоотверженным усилиям таких ученых, как уже упомянутый д-р Кон, в настоящее время удалось классифицировать их на пять главных фракций.

Первая и самая крупная фракция — сывороточный альбумин. Он играет важную роль в создании осмотического давления плазмы, которое в свою очередь способствует поддержанию объема крови на необходимом уровне за счет регулирования обмена воды между кровью и тканями.

Далее следуют три разновидности сывороточных глобулинов — альфа, бета и гамма. Они связаны с реакциями иммунитета организма и образованием антител, которые помогают бороться с возбудителями таких заболеваний, как корь, свинка, грипп, дифтерия и сыпной тиф. Отдельные антитела в группах бета и гамма участвуют в реакции разрушения крови несовместимой группы (которая может быть введена при переливании).

И, наконец, пятый белок плазмы — фибриноген. Эта субстанция может превращаться в сеть фибрина, на основе которой образуются сгустки крови.

Помимо этих важнейших белковых фракций, плазма переносит продукты пищеварения, побочные продукты обмена веществ, а также множество других веществ — гормоны, ферменты и целый ряд дополнительных субстанций, состав которых еще предстоит изучить и определить.

Все сказанное выше в самых общих чертах подытоживает наши сведения о составе плазмы. И хотя нам известно уже довольно много, предстоит еще многое узнать, чтобы составить полную и ясную картину течения Реки жизни.

В XX веке человек узнал о существовании четко различимых групп крови. Этому в большой степени помог опыт переливания крови. С незапамятных времен, когда впервые делались переливания, было известно, что в одних случаях операции проходят успешно, в то время как другие оканчиваются смертельным исходом. Причину этого не могли выяснить вплоть до начала XX века, когда д-р Карл Ландштейнер, удостоенный Нобелевской премии за свою в высшей степени оригинальную работу, нашел правильный ответ на эту вековую загадку.

Ландштейнер обнаружил, что кровь человека неоднотипна, ее можно разделить на четыре основные группы. Группы получили обозначение А, АВ, В и 0. Было доказано, что у всех человеческих рас одни и те же группы крови. Разница заключается лишь в процентном соотношении групп у различных рас. Так, например, группа крови А встречается у большей части кавказских народов. Негроидные народы по преимуществу имеют группу крови В. Что же касается групп крови АВ и 0, то их распространение среди обеих этих рас примерно одинаково.

Переливание крови кончается трагически в тех случаях, когда кровь донора несовместима с кровью реципиента. Антитела в крови больного склеивают (агглютинируют) красные тельца крови донора, образуя большие комки, которые застревают в узких капиллярах. Происходит блокада кровообращения, приводящая к серьезным нарушениям в организме и нередко даже к смертельному исходу.

Опытным путем установлено, что в большинстве случаев люди с группами крови А и В могут получать при переливании лишь кровь их собственной группы или же группы 0. Люди с группой крови АВ могут получать кровь этой же группы, группы 0 и во многих случаях также кровь групп А и В. Людей с группой крови 0 называют «универсальными донорами», ибо их кровь совместима с любой другой группой. Но им можно переливать кровь исключительно их собственной группы.

Открытие групп крови позволило производить переливания крови в большом масштабе, благодаря чему во время прошедших мировых войн удалось спасти множество жизней. В ходе дальнейших экспериментов выяснилось, что существуют и другие различия, из-за которых даже две разновидности крови одной и той же группы могут оказаться несовместимыми.

Одно из них было открыто в 1940 году тем же Ландштейнером, который в то время работал вместе с доктором Вайнером. После серии экспериментов с кровью макак-резусов ученые обнаружили еще один агглютиноген крови, названный ими резус-фактором (Rh-фактор). Резус-фактор встречается не только в крови макак-резусов, которым он обязан своим названием, но и в крови людей. Лиц, обладающих этим агглютиногеном, называют резус- положительными, а лиц, лишенных его, — резус-отрицательными.

Примерно 85% представителей кавказской расы являются резус-положительными. Представители всех других рас почти целиком оказались резус-положительными.

Было установлено, что иногда при переливании крови резус-фактор является причиной летальных исходов, хотя группы крови могут быть совместимыми. Это наблюдается сравнительно редко у больных, уже получавших до этого переливания крови, или у женщин, незадолго до этого разрешившихся мертворожденным ребенком.

Это обстоятельство послужило путеводной нитью, позволившей установить, что смертельный исход наступает лишь в тех случаях, когда резус-отрицательному больному повторно переливают резус-положительную кровь.

Отсюда был сделан вывод, что такое осложнение представляет собой своего рода иммунную реакцию, возникающую лишь в том случае, если больной однажды уже подвергался действию резус-положительной крови. На выработку резус-антител требуется примерно 12 дней. После повторного переливания резус-положительной крови образовавшиеся антитела разрушают красные кровяные тельца донора.

Следует еще раз подчеркнуть, что опасность появляется лишь в случае переливания резус-положительной крови больному с резус-отрицательной кровью. Переливание резус-отрицательной крови пациенту с резус-положительной кровью обычно проходит безвредно, если в остальных отношениях кровь донора и реципиента совместима.

Открытие резус-фактора пролило свет на происхождение некоторых акушерских осложнений. Около 13% всех браков среди белого населения США происходит между резус-отрицательными женщинами и резус-положительными мужчинами. Почти половина детей от этих браков имеет резус-отрицательную кровь. Остальные наследуют резус-фактор от отцов.

Когда резус-отрицательная мать впервые рожает рёзус-положительного ребенка, обычно не отмечается каких-либо осложнений. Но если и второй ребенок является резус-положительным, последствия могут быть чрезвычайно серьезными. Антитела матери, возникшие уже при беременности первым резус-положительным ребенком, вызывают тяжелое заболевание, называемое эритробластозом плода, результатом чего может быть рождение мертвого ребенка или же смерть ребенка вскоре после родов. В тех случаях, когда ребенок все-таки выживает, он заболевает желтухой и анемией.

К счастью, такие случаи чрезвычайно редки. Лишь 5 % будущих матерей с резус-отрицательной кровью во время беременности подвергается сенсибилизации резус-положительным плодом. По всей видимости, это объясняется тем, что проникновение эритроцитов плода через плаценту в систему кровообращения матери — явление аномальное и происходит в исключительных случаях.

После открытия резус-фактора Ландштейнером и Вайнером были обнаружены и другие факторы крови, и возможность новых подобных открытий отнюдь не исключена. Знание этих специфических факторов крови оказалось чрезвычайно полезным и позволило свести к минимуму риск при переливании крови. Переливание крови заняло прочное место в медицине, к нему прибегают для спасения жизни больного при шоках, потере крови и многих заболеваниях.

Знание различных факторов крови с недавних пор помогает решать случаи спорного отцовства. Впрочем, здесь для установления истины одних анализов крови недостаточно. Анализы крови не могут доказать, что тот или иной мужчина истинный отец ребенка. Во всяком случае, пока что не могут. С их помощью удается установить лишь непричастность подозреваемого в отцовстве — и то лишь в отдельных случаях.

Процедура проверки относительно несложная. Сначала гематолог определяет группы крови матери и ребенка. Затем, применив некоторые формулы законов наследственности, он определяет целый ряд типов крови, к одному из которых должна принадлежать кровь отца. Если кровь подозреваемого мужчины не совпадает ни с одним из этих типов, он не может быть отцом ребенка. Если же его кровь совпадает с одним из типов этого ряда, он может быть отцом, впрочем, как и любой мужчина со схожей разновидностью крови. Кровь тут бессильна доказать вину — если вообще уместно называть отцовство виной. Кровь может лишь свидетельствовать о невиновности.

Такова природа Реки жизни — гигантского скопления мириадов клеток и сложных водоворотов плазмы. А было время, когда человеку казалось, что кровь — это просто красноватая водичка — таинственная, волшебная вода жизни.

Источник: www.perunica.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.