Измерение содержания оксигемоглобина в артериальной крови человека


Кривая диссоциации оксигемоглобина, ее характеристика. Кислородная емкость крови.

В 100 мл крови при температуре тела растворяется лишь 0,3 мл кислорода. Кисло­род, растворяющийся в плазме крови капилляров малого круга кровообращения, диф­фундирует в эритроциты, сразу же связывается гемоглобином, образуя оксигемоглобин, в котором кислорода 190 мл/л. Скорость связывания кислорода велика: время полунасы­щения гемоглобина кислородом около 3 мс. В капиллярах альвеол с соответствующими вентиляцией и перфузией практически весь гемоглобин превращается в оксигемоглобин.

Кривая диссоциации оксигемоглобина. Превращение гемоглобина в оксигемоглобин определяется напряжением растворенного кислорода. Графически эта зависимость выра­жается кривой диссоциации оксигемоглобина (рис. 151).

Когда напряжение кислорода равно нулю, в крови находится только восстановленный гемоглобин (дезоксигемоглобин).


вышение напряжения кислорода сопровождается увеличением количества оксигемоглобина. Но данная зависимость существенно отли­чается от линейной, кривая имеет S-образную форму. Особенно быстро (до 75%) уровень оксигемоглобина возрастает при увеличении напряжения кислорода от 10 до 40 мм рт. ст. При 60 мм рт. ст. насыщение гемоглобина кислородом достигает 90%, а при дальнейшем повышении напряжения кислорода приближается к полному насыщению очень медленно. Таким образом, кривая диссоциации оксигемоглобина состоит из двух основных ча­стей — крутой и отлогой.

Отлогая часть кривой, соответствующая высоким (более 60 мм.рт. ст.) напряжениям кислорода, свидетельствует о том, что в этих условиях содержание оксигемоглобина лишь слабо зависит от напряжения кислорода и его парциального давления во вдыхаемом и альвеолярном воздухе. Так, подъем на высоту 2 км над уровнем моря сопровождается снижением атмосферного давления с 760 до 600 мм рт. ст., парциального давления кислорода в альвеолярном воздухе со 105 до 70 мм рт. ст., а содержание оксигемоглобина снижается лишь на 3%. Таким образом, верхняя отлогая часть кривой диссоциации отражает способность гемоглобина связывать большие количества кислорода несмотря удумеренное снижение его парциально­го давления во вдыхаемом воздухе. И в этих условиях ткани достаточно снаб­жаются кислородом.

Крутая часть кривой диссоциации соответствует напряжениям кислорода, обычным для тканей организма (35 мм рт. ст. и ниже). В тканях, поглощающих много кислорода (работающие мышцы, печень, почки), оксигемоглобин диссоциирует в большей степени, иногда почти полностью. В тканях, в которых интенсивность окислительных процессов мала, большая часть оксигемоглобина не диссоциирует. Переход тканей из состояния по­коя в деятельное состояние (сокращение мышц, секреция желез) автоматически создает условия для увеличения диссоциации оксигемоглобина и увеличения снабжения тканей кислородом.


Сродство гемоглобина к кислороду (отражается кривой диссоциации оксигемогло­бина) непостоянно. Особенно значительно на него влияют следующие факторы. 1. В эри­троцитах содержится особое вещество 2, 3-дифосфоглицерат. Его количество увеличи­вается, в частности, при снижении напряжения кислорода в крови. Молекула 2, 3-дифос-фоглицерата способна внедряться в центральную часть молекулы гемоглобина, что при­водит к снижению сродства гемоглобина к кислороду. Кривая диссоциации смещается вправо. Кислород легче переходит в ткани. 2. Сродство гемоглобина к кислороду сни­жается при увеличении концентрации Н4‘ и двуокиси углерода (рис. 152). Кривая дис­социации оксигемоглобина в этих условиях также смещается вправо. 3. Подобным же образом действует на диссоциацию оксигемоглобина повышение температуры. Нетруд­но понять, что эти изменения сродства гемоглобина к кислороду имеют важное значение для обеспечения снабжения им тканей. В тканях, в которых процессы обмена веществ протекают интенсивно, концентрация двуокиси углерода и кислых продуктов увели­чивается, а температура повышается. Это ведет к усилению диссоциации оксигемо­глобина.


Гемоглобин крови плода (HbF) обладает значительно большим сродством к кисло­роду, чем гемоглобин взрослых (НЬА). Кривая диссоциации HbF по отношению к кривой диссоциации НЬА сдвинута влево.

В волокнах скелетных мышц содержится близкий к гемоглобину миоглобин. Он обладает очень высоким сродством к кислороду.

Количество кислорода в крови. Максимальное количество кислорода, которое может связать кровь при полном насыщении гемоглобина кислородом, называется кислородной емкостью крови. Для ее определения кровь насыщают кислородом воздуха. Кислородная емкость крови зависит от содержания в ней гемоглобина.

Один моль кислорода занимает объем 22,4 л. Грамм-молекула гемоглобина способна присоеди­нить 22 400Х4== 89 600 мл кислорода (4 — число гемов в молекуле гемоглобина). Молекулярная масса гемоглобина — 66 800. Значит, 1 г гемогло­бина способен присоединить 89 600:66 800== 1,34 мл кислорода. При содержании в крови 140 г/л ге­моглобина кислородная емкость крови будет 1,34-. 140=== 187,6 мл, или около 19 об. % (без учета не­большого количества физически растворенного в плазме кислорода).

В артериальной крови содержание кис­лорода лишь немного (на 3—4%) ниже ки­слородной емкости крови. В норме в 1 л арте­риальной крови содержится 180—200 мл кис­лорода. При дыхании чистым кислородом его количество в артериальной крови практи­чески соответствует кислородной емкости. По сравнению с дыханием атмосферным воз­духом количество переносимого кислорода увеличивается мало (на 3—4%), но при этом возрастают напряжение растворенного ки­слорода и способность его диффундировать в ткани.


Венозная кровь в состоянии покоя со­держит около 120 мл/л кислорода. Таким об­разом, протекая по тканевым капиллярам, кровь отдает не весь кислород. Часть кисло­рода, поглощаемая тканями из артериальной крови, называется коэффициентом утилиза­ции кислорода. Для его вычисления делят разность содержания кислорода в артери­альной и венозной крови на содержание кислорода в артериальной крови и умножают на 100. Например: (200— 120) :200-100=40%. В покое коэффициент утилизации кисло­рода колеблется от 30 до 40%. При тяжелой мышечной работе он повышается до 50— 60%.

Источник: studopedia.ru

Причины S–образной формы кривой диссоциации оксигемоглобина до конца не ясны. Если бы каждая молекула гемоглобина присоединяла только одну молекулуO2, то


Измерение содержания оксигемоглобина в артериальной крови человека

 

Рис.Кривые диссоциации оксигемоглобина (Hb) и оксимиоглобина (Mb) при рН 7,4 и t 37 °С

 

кинетика этой реакции графически описывалась бы гиперболой . Именно такая гиперболическая кривая диссоциации характерна, например, для реакции соединения кислорода с миоглобином (Mb), аналогичной реакции оксигенации гемоглобина . Строение миоглобина сходно со структурой одной из четырех субъединиц гемоглобина, поэтому молекулярные массы этих двух веществ соотносятся как 1:4. Поскольку в состав миоглобина входит лишь одна пигментная группа, одна молекула миоглобина может присоединить только одну молекулу O2:

Mb + O2 ↔ МbO2. (6)

Гиперболическая кривая диссоциации для этой реакции приведена на рис. 22.6. Исходя из вполне правдоподобного предположения о том, что S–образная форма кривой диссоциации НbO2 обусловлена связыванием одной молекулой гемоглобина четырех молекул O2, Эдер выдвинул так называемую гипотезу промежуточных соединений. Согласно этой гипотезе, присоединение четырех молекул O2 к гемоглобину происходит в несколько стадий, причем каждая из этих стадий влияет на равновесие следующей реакции. Таким образом, реакция соединения кислорода с гемоглобином описываетсячетырьмя константами равновесия, что и объясняет сигмоидную форму кривой диссоциации оксигемоглобина.


В то же время возможно и другое объяснение, согласно которому существуют две формы гемоглобина–оксигенированная и дезоксигенированная, переходящие одна в другую в результатеконформационных перестроек.Если предположить, что параметры равновесия реакций оксигенации для этих двух форм гемоглобина различны, то с позиции данной гипотезы можно объяснить S–образную форму кривой диссоциации НbO2.

 

Биологический смысл формы кривой диссоциации оксигемоглобина. Конфигурация кривой диссоциации оксигемоглобина имеет важное значение с точки зрения переноса кислорода кровью. В процессе поглощения кислорода в легких напряжение O2 в крови (PO2) приближается к таковому в альвеолах. У молодых людей РO2 артериальной крови составляет около 95 мм рт. ,ст. (12,6 кПа). Из рис. 22.6 видно, что при таком напряжении насыщение гемоглобина кислородом составляет примерно 97%. С возрастом (и в еще большей степени при заболеваниях легких) напряжение O2 в артериальной крови может значительно снижаться, однако, поскольку кривая диссоциации оксигемоглобина в правой ее части почти горизонтальна, насыщение крови кислородом уменьшается ненамного. Так, даже при падении РO2 в артериальной крови до 60 мм рт. ст. (8,0 кПа) насыщение гемоглобина кислородом равно 90%. Таким образом, благодаря тому что области высоких напряжений кислорода соответствует горизонтальный участок кривой диссоциации оксигемоглобина, предупреждается существенное снижение насыщения артериальной крови кислородом.


Крутой наклон среднего участка кривой диссоциации оксигемоглобина свидетельствует об очень благоприятных условиях дляотдачи кислорода тканям. При изменении локальной потребности в кислороде он должен высвобождаться в достаточном количестве в отсутствие значительных сдвигов PO2 в артериальной крови. В состоянии покоя PO2 в области венозного конца капилляра равно приблизительно 40 мм рт. ст. (5,3 кПа), что соответствует примерно 73% насыщения. Если в результате увеличения потребления кислорода его напряжение в венозной крови падает лишь на 5 мм рт. ст. (0,7 кПа), то насыщение гемоглобина кислородом снижается не менее чем на 7%; высвобождающийся при этом O2 может быть сразу же использован для процессов метаболизма.

Содержание O2 в артериальной и венозной крови.

Количество химически связанного кислорода в крови зависит от насыщения им гемоглобина (SO2 ). Зная величину SO2 , можно, исходя из числа Хюфнера, вычислить объемное содержаниеO2 в крови (в лO2 на 1л крови):

[O2]= 1,34·[Hb]·SO2·10–5 (7)

где SO2 выражено в процентах, a [Hb] – в граммах на литр.
дставляя в это уравнение количественные значения кислородного насыщения, можно вычислить, что в артериальной крови (SO2 = 97%) содержание кислорода составляет около 0,20, а в венозной (SO2 = 73%) оно равно 0,15. Таким образом,артериовенозная разница по концентрации кислорода (авРO2 ) составляет 0,05 (табл. 22.2). Это означает, что в норме при прохождении крови через тканевые капилляры используется лишь 25% общей кислородной емкости. Разумеется, разные органы существенно различаются по степени извлечения кислорода (см. рис. 23.2), так что величины для венозной крови, приведенные в табл., представляют собой средние значения показателей, варьирующих в широких пределах. При интенсивной физической нагрузке артериовенозная разница по кислороду может превышать 0,1.

Источник: helpiks.org

Ее характеристика. Кислородная емкость артериальной и венозной крови.

Понятие об аэрогематическом барьере

Газообмен в легких осуществляется через легочную мембрану. Она состоит из эндотелия, двух базальных мембран, плоского альвеолярного эпителия и слоя сурфактанта. Главные условия газообмена в легких:

1. большая диффузионная поверхность;

2. маленькое диффузионное расстояние.


Проницаемость легочной мембраны для газа называют диффузионной способностью легких.

 

Механизм газообмена в легких

Газообмен в легких происходит в результате диффузии кислорода из альвеолярного газа в кровь, а углекислого газа — из плазмы в альвеолярный газ. Причиной диффузии газов является разность парциальных давлений газа в альвеолярном газе и плазме крови.

Парциальное давление газа — это частное давление газа в смеси газов.

Напряжение — это давление, которое создает газ, растворенный в плазме крови. Газообмен происходит без затрат энергии за счет разности парциального давления кислорода и углекислого газа в альвеолярном воздухе и напряжения этих газов в плазме крови. Диффузия продолжается до тех пор, пока напряжение газов в плазме не станет равно их давлению в альвеолах.

Механизм транспорта кислорода кровью

Кислород в крови находится в двух состояниях:

1. растворенном (0,3 мл на 100 г крови) — количество зависит от парциального давления кислорода в альвеолах;

2. связанном с гемоглобином (оксигемоглобин).

 

Количество связанного кислорода зависит от количества гемоглобина. Максимальное количество кислорода, которое может связать кровь при полном насыщении гемоглобина кислородом, называется кислородной емкостью крови. Венозная кровь содержит меньше кислорода, т.к. она отдает его тканям. Разница содержания кислорода в артериальной и венозной крови называется артериовенозной разностью по кислороду. Часть кислорода, поглощаемая тканями из артериальной крови, называется коэффициентом утилизации кислорода.


Кривая диссоциации оксигемоглобина

Зависимость образования оксигемоглобина от напряжения кислорода в крови называется кривой диссоциации оксигемоглобина. Она имеет S-образную форму и показывает, какая часть гемоглобина связана с кислородом при том или ином парциальном давлении кислорода. Полное насыщение гемоглобина кислородом происходит при парциальном давлении меньше, чем реально существует в капиллярах легочного круга. Небольшие сдвиги напряжения кислорода приводят к сильной диссоциации оксигемоглобина. Это облегчает снабжение тканей кислородом.

Способность гемоглобина присоединять кислород и переходить в форму оксигемоглобина называется сродством гемоглобина к кислороду.

Измерение содержания оксигемоглобина в артериальной крови человека

Кривая диссоциации оксигемоглобина:

1 — при низком содержании СО2;

2 — норма;

3 — при высоком содержании СО2,

 

 

Сродство гемоглобина к кислороду непостоянно и зависит от следующих факторов:

1. Напряжение углекислого газа. При повышении напряжения углекислого газа выше 40 мм понижается сродство гемоглобина к кислороду, что приводит к сдвигу кривой вправо. Кислород легче переходит в ткани.

2. Содержание водородных ионов. Снижение рН среды понижает сродство гемоглобина к кислороду и вызывает сдвиг кривой вправо.

3. Содержание 2,3-дифосфоглицерата. Это вещество находится в эритроцитах, снижает сродство гемоглобина к кислороду, количество его увеличивается при снижении напряжения кислорода в крови (жизнь в горах). Смещает кривую диссоциации вправо.

4. Температура. Повышение температуры в работающих органах вызывает сильную диссоциацию оксигемоглобина (сдвиг кривой вправо).

 

Наиболее простым показателем, характеризующим расположение этой кривой, служит так называемое напряжение полунасыщения Р50, т.е. такое напряжение кислорода, при котором насыщение гемоглобина кислородом составляет 50 %. В норме (при рН 7,4 и температуре 37 °С) Р50 артериальной крови составляет около 26 мм рт. ст.

В тканях, в которых процессы обмена веществ протекают интенсивно, повышается как концентрация углекислого газа и кислых продуктов обмена, так и температура. Это ведет к усилению диссоциации оксигемоглобина, и кислород быстрее переходит в ткани.

 

 

Источник: studopedia.net


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.