12 факторов свертывания крови


Многие начинают бояться тромбов после того, как при сдачи крови из вены медсестра сообщает, что она слишком вязкая. Те же, кто обладает слишком жидкой кровью, успешно наполняющей пробирку, надеются, что застрахованны от тромбоза. Но вязкость и свёртываемость – два совершенно разных понятия, и не всегда одно обуславливает другое.

Какая ты вязкая

Повышенная вязкость крови, из-за которой она становится менее текучей, чаще всего возникает из-за преобладания её форменных элементов над жидкими. Происходит это из-за слишком строгого следования рекомендациям «не есть за 12 часов до сдачи анализа» и из-за решения добавить к этому ограничению ещё одно – не пить. Чтобы уж наверняка. В итоге получается хуже – и кровь плохо течет в пробирку, и некоторые показатели (например, гемоглобин, гематокрит, общее число эритроцитов, лейкоцитов и тромбоцитов) оказываются искусственно завышенными. Поэтому важно помнить: перед сдачей анализов крови нельзя ограничивать себя в жидкости.


Ещё одна частая причина повышенной вязкости – повышенный уровень эритроцитов и гемоглобина, характерный для курильщиков. Ведь чем больше дыма и меньше воздуха человек вдыхает, тем большая концентрация переносчиков кислорода необходима. Формируется их компенсаторное повышение.  Поэтому визуально кровь курящих нередко кажется более вязкой.

По свидетельству гематологов, на долю истинных заболеваний (тромбоцитозы, эритроцитозы и т.д.) связанных с повышенной вязкостью крови, приходится незначительное число всех случаев «вязкой крови». И это хорошо видно по обычному общему анализу крови – врач сразу же обратит внимание на слишком высокое число эритроцитов или тромбоцитов.

В норме содержание эритроцитов крови составляет 3,7-5,1, тромбоцитов – 180-320.

Вязкость и свёртываемость – в чём разница?

Наиболее важным показателем является свёртываемость крови. К сожалению, получить точную информацию о свёртываемости, даже, несмотря на уровень развития медицины, бывает непросто. С одной стороны  давно известны явные заболевания с нарушением свёртываемости, такие как гемофилия. С другой, немало скрытой патологии, которая может долгое время никак себя не выдавать, но проявившись однажды, быстро привести к тяжёлым последствиям.

Лишь в последние десятилетия исследователи научились выявлять эти проблемы с помощью высокотехнологичных генетических анализов. Учитывая, что по статистике врождённая патология свёртывающей системы крови есть у более 1-3% населения Земли, вполне вероятно, что в будущем эти анализы будут проводить в роддоме каждому новорожденному. И совершено точно тем, кому необходимо назначить те или иные лекарства, способные усилить риск появления тромбов.


Предохранение или опасность?

Например, это очень важно сделать перед назначение гормональных контрацептивов. Их способность усиливать свёртываемость крови и изредка приводить к тромбозам (как выясняется, почти  всегда это происходит у женщин, имеющих скрытое нарушение свёртываемости) известна несколько десятилетий.  В связи с широким распространением этого метода защиты от нежелательной беременности в наши дни частота тромбозов у молодых, внешне здоровых женщин возросла. При этом, назначая «КОКи» гинекологи нечасто акцентируют внимание пациенток на этой опасности. Их можно понять  — осложнение в общей массе нечастое, а лишний раз запугивать пациенток, словно подталкивая их к нежелательной беременности, не хочется. Тем временем наиболее передовые западные коллеги уже включили полное исследование свёртываемости  крови в обязательный алгоритм обследования перед назначением гормональных контрацентивов. 

Что покажет анализ?

Какие же анализы необходимо сдать, чтобы проверить свёртываемость крови? Самый распространённый и многим привычный анализ – коагулограмма может дать ответ далеко не на все вопросы, особенно в профилактике тромбозов.


Тем не менее, классическая коагулограмма – первый этап скринингового обследования системы свёртываемости. Если она выявит отклонения от нормы, следующим шагом станут более детальные исследования гемостаза – тромбоэластография или тромбоэластометрия. Отдельная история – определение D-димера, мутации Лейдена и других генетических нарушений свёртывания —  тесты, выявляющие склонность к образованию тромбов в будущем. Что и в каких случаях необходимо?

Самая распространённая сегодня стандартная коагулограмма включает в себя пять компонентов: ПТИ ( протромбиновый индекс);  МНО ( Международное нормализованное отношение. Отражает отношение времени свёртываемости крови пациента к времени свёртывания крови здорового пациента; АЧТВ (активированное частичное тромбопластиновое время. Оценивает время, за которое образуется сгусток крови после присоединения к плазме специальных реагентов), УРОВЕНЬ ФИБРОГЕНА и ТРОМБОЦИТОВ.

При этом АЧТВ информативен лишь у людей, проходящих лечение  гепарином,  а МНО важен только для людей, постоянно принимающих разжижающие кровь препараты из группы неодикумаринов (варфарин).

Получается, два показателя из пяти не так важны для скрининга. Общее количество тромбоцитов также не всегда показательно, ведь при большинстве коагулопатий изменяется не их число, а прежде всего функциональная активность.


Поэтому наиболее информативным, позволяющий оценить сразу несколько звеньев свёртывания крови – тромбоэластография.   Это своего рода детальное наблюдение за формированием кровяного сгустка, и его последующего растворения (лизиса) с построением графиков каждого из этапов. Тромбоэластометрия – другой вариант этого исследования, считающийся ещё более информативным. К сожалению, приборы для проведения этих исследований дороги и требуют специального обучения персонала, поэтому предложить услуги тромбоэластографии может далеко не каждая лаборатория.

Ещё один важный показатель – D-ДИМЕР (это продукт распада фибрина, небольшого фрагмента белка, присутствующего в крови после разрушения тромба).

Он активно используется для определения риска тромбообразования. Те, у кого D-димер даже незначительно  повышен, рискуют столкнуться с появлением тромбов значительно больше остальных. Контролировать D-димер необходимо при заболеваниях вен (тромбофлебиты), после проведенных оперативных вмешательств и при выписке из стационара, если вы были долго прикованы к постели. наблюдать за уровнем D-димера полезно во время беременности и при приеме гормональных контрацептивов (риск образования тромбов при наличии мутации Лейдена на фоне приема противозачаточных таблеток возрастает почти в 9 раз). А теперь и во время COVID-19 и несколько недель после выздоровления.


Сегодня в дополнение к определению D-димера появляются генетические тесты на врожденные нарушения свертываемости крови. Самая частая из них —  мутация Лейдена, которая встречается у 2–6% европейцев. Наличие дефектного гена в 6–8 раз повышает вероятность венозных тромбов, значительно возрастает риск инфаркта и инсульта. Но и другие мутации, которых сегодня насчитывается более десяти, не менее опасны. При этом вовремя начатая профилактика тромбозов (главным образом постоянный приём антикоагулянтов, исключение некоторых продуктов и лекарств, ношение компрессионного трикотажа при авиаперелётах и работе «на ногах» т.д.) снижает риск опасных осложнений в десятки раз.

Мерцающая проблема

Если со свёртывающей системой всё в порядке,  возможной причиной повышения свёртываемости может оказаться аритмия, а именно  — мерцание предсердий. По статистике, пароксизмальной (протекающей приступами) или постоянной формой
мерцательной аритмии страдают 2% населения планеты.
Обычно эта проблема появляется после тридцати. Субстрат нарушения — появление патологических завихрений электрического импульса в предсердиях, которые дают миокарду внеочередные электрические стимулы. На  медицинском языке это называется механизмом «re-entry» или повторного
входа возбуждения. В результате предсердия превращаются в маслобойку, которая взбивает кровь в тромбы, словно молоко в масло. Ещё больше ситуация ухудшается в случае, когда  у человека исходно были те самые нарушения свёртываемости. Тромбы могут образоваться уже через 48 часов после развития приступа и «улететь» в артерии головного мозга, вызвав ишемический инсульт, в  кишечник, приведя в мезентериальному тромбозу, в артерии конечностей, спровоцировав их острую ишемию. 


 Фактор Виллебранда и COVID-19.

Тяжёлое течение COVID-19 может быть связано с повышенным уровнем одного из факторов свёртывающей системы крови – фактором Виллебранда. Такую гипотезу выдвинула старший научный сотрудник лаборатории биологии амилоидов СПбГУ Анна Аксёнова. Ее научная статья опубликована в журнале «Экологическая генетика». Уже доказано, что вирус SARS-Cov-2 способен оказывать прямое повреждающее воздействие на внутреннюю стенку сосудов. В ответ на повреждение организм стремится как можно быстрее «залатать» пробоину, и ведущую роль в этом играет фактор Виллебранда, участвующий в активации тромбоцитов и, по сути, запускающий процесс местного тромбообразования. В ходе исследований выяснилось, что для некоторых людей характерна повышенная концентрация этого фактора в клетках, так, его, как правило, больше у людей со II группой крови. Также возможна индивидуальная особенность организма. В результате в ответ на массивное микроповреждение сосудов возникает массивный микротромбоз, который вызывает появление более крупных и опасных тромбов.


 Генетические мутации системы свёртывания, выявляемые в ходе анализов:

МУТАЦИЯ V КОАГУЛЯЦИОННОГО ФАКТОРА СВЁРТЫВАЕМОСТИ КРОВИ (ФАКТОР ЛЕЙДЕНА)

ИНГИБИТОР АКТИВАТОРА ПЛАЗМИНОГЕНА 1

МУТАЦИЯ II КОАГУЛЯЦИОННОГО ФАКТОРА (МУТАЦИЯ ПРОТРОМБИНА)

МУТАЦИЯ МЕТИЛЕНТЕТРАГИДРОФОЛАТРЕДУКТАЗЫ (MTHFR C677T)

МУТАЦИЯ VII КОАГУЛЯЦИОННОГО ФАКТОРА СВЁРТЫВАЕМОСТИ КРОВИ (F7 ARG353GLN)

ПОЛИМОРФИЗМ ГЕНА РЕДУКТАЗЫ МЕТИОНИНСИНТАЗЫ (MTRR A66G)

МУТАЦИЯ ФИБРИНОГЕНА, БЕТА (FGB G-455A)

МУТАЦИЯ ПРОМОТОРА ГЕНА КОАГУЛЯЦИОННОГО ФАКТОРА FVII (-312 INS 10BP)

ИНСЕРЦИЯ/ДЕЛЕЦИЯ ALU-ЭЛЕМЕНТА В ГЕНЕ АНГИОТЕНЗИН-ПРЕВРАЩАЮЩЕГО ФЕРМЕНА (ALU INS/DEL)

МУТАЦИЯ ТРОМБОЦИТАРНОГО ГЛИКОПРОТЕИНА 1B, АЛЬФА СУБЪЕДИНИЦЫ

МУТАЦИЯ АДФ-РЕЦЕПТОРА ТРОМБОЦИТОВ (P2RY12 H1/H2)

МУТАЦИЯ A1298С ГЕНА МЕТИЛЕНТЕТРАФОЛАТРЕДУКТАЗЫ

 

D-димер значительно повышается у большинства больных со среднетяжёлым и тяжёлым течением COVID-19. Поэтому все пациенты получают лечебные дозы антикоагулянтов.

Мутация Лейдена  — наиболее частое скрытое нарушение свёртываемости крови, встречается у 2-6% европейцев.

 

Источник: zdr.ru


Свёртывающая система крови (син.: коагуляционная система, система гемостаза, гемокоагуляция) — ферментативная система, обеспечивающая остановку кровотечения путем формирования фибринных тромбов, поддержание целости кровеносных сосудов и жидкого состояния крови. Свёртывающая система крови — функциональная часть физиологической системы регуляции агрегатного состояния крови (см. ).

Основы учения о свертывании крови (см.) были разработаны А. А. Шмидтом. Он сформулировал теорию двухфазного свертывания крови, согласно к-рой в первой фазе свертывания крови в результате ферментативных реакций образуется тромбин (см.), во второй фазе под влиянием тромбина фибриноген (см.) превращается в фибрин (см.). В 1904 г. Моравитц (Р. О. Morawitz), затем Салиби (В. S. Salibi, 1952) и Оврен (P. A. Owren, 1954) открыли образование тромбопластинов в плазме и показали роль ионов кальция в превращении протромбина (см.) в тромбин. Это позволило сформулировать трехфазную теорию свертывания крови, согласно к-рой процесс протекает последовательно: в первой фазе происходит формирование активной протромбиназы, во второй — образование тромбина, в третьей — появление фибрина.

Согласно схеме Макфарлена свертывание крови протекает по типу каскада, т. е. происходит последовательное превращение неактивного фактора (профермента) в активный фермент, к-рый активирует следующий фактор. Т. о., свертывание крови — сложный, многоступенчатый механизм, действующий по принципу обратной связи. При этом в процессе такого преобразования увеличивается скорость последующего превращения и количество активируемого вещества.


В свертывании крови, представляющем собой ферментативную цепную реакцию, участвуют компоненты плазмы, тромбоцитов и тканей, к-рые называются факторами свертывания крови (см. Гемостаз). Различают плазменные (прокоагулянты), тканевые (сосудистые) и клеточные (тромбоцитарные, эритроцитарные и др.) факторы свертывания крови.

Основными плазменными факторами являются фактор I (см. Фибриноген ), фактор II (см. Протромбин), фактор III, или тканевый тромбопластин, фактор IV, или ионизированный кальций, фактор VII, или фактор Коллера (см. Проконвертин), факторы V, X, XI, XII, XIII (см. Геморрагические диатезы), факторы VIII и IX (см. Гемофилия); фактор III (тромбопластический фактор) — фосфолипопротеид, содержится во всех тканях организма; образует при взаимодействии с фактором VII и кальцием комплекс, активирующий фактор X. Факторы II, V (Ас-глобулин), VII, IX, X, XI, XII и XIII являются ферментами; фактор VIII (антигемофильный глобулин — АГГ) — сильный акцелератор коагулирующих ферментов, вместе с фактором I он составляет неферментную группу.

В активации свертывания крови и фибринолиза участвуют тканевые факторы, компоненты калликреин-кининовой ферментной системы (см. Кинины): плазменный прекалликреин (фактор Флетчера, фактор XIV) и высокомолекулярный кининоген (фактор Фитцджеральда, фактор Вильямса, фактор Флоджека, фактор XV). К тканевым факторам относятся синтезируемый в эндотелии сосудов фактор Виллебранда, активаторы и ингибиторы фибринолиза (см.), простациклин — ингибитор агрегации тромбоцитов, а также субэндотелиальные структуры (напр., коллаген), активирующие фактор XII и адгезию тромбоцитов (см.).


К клеточным факторам крови относят группу коагуляционных тром-боцитарных факторов, из к-рых наиболее важны фосфолигшдный (мембранный) фактор 3 тромбоцитов (3 тф) и белковый антигепариновый фактор (фактор 4), а также тромбоксан Аг (простагландин G2), эритроцитарный аналог фактора 3 тромбоцитов (эритропластин, эритроцитин) и др.

Условно механизм свертывания крови можно разделить на внешний (запускается при поступлении из тканей в кровь тканевого тромбопластина) и внутренний (запуск осуществляется за счет ферментных факторов, содержащихся в крови или плазме), к-рые до фазы активации фактора X, или фактора Стюарта — Прауэра, и образования протромбиназного комплекса осуществляются в определенной степени раздельно с вовлечением разных факторов свертывания, а впоследствии реализуются по общему пути. Каскадно-комплексный механизм свертывания крови представлен на схеме.

Между обоими механизмами свертывания крови существуют сложные взаимоотношения. Так, под влиянием внешнего механизма образуются небольшие количества тромбина, достаточные лишь для стимуляции агрегации тромбоцитов, освобождения тромбоцитарных факторов, активации факторов VIII и V, что усиливает дальнейшую активацию фактора X. Внутренний механизм свертывания крови более сложен, но его активация обеспечивает массивную трансформацию фактора X в фактор Ха и соответственно протромбина в тромбин. Несмотря на, казалось бы, важную роль фактора XII в механизме свертывания крови, при его дефиците геморрагии отсутствуют, возникает лишь удлинение времени свертывания крови. Возможно, это объясняется способностью тромбоцитов в сочетании с коллагеном активировать одновременно факторы IX и XI без участия фактора XII.

В активации начальных этапов свертывания крови принимают участие компоненты калликреин-кининовой системы, стимулятором к-рой является фактор XII. Калликреин участвует во взаимодействии факторов XI 1а и XI и ускоряет активацию фактора VII, т. е. выполняет роль связующего звена между внутренним и внешним механизмами свертывания крови. В активации фактоpa XI принимает также участие фактор XV. На разных этапах свертывания крови образуются сложные белково-фосфолипидные комплексы.

В наст, время в каскадную схему вносятся изменения и дополнения.

Свертывание крови по внутреннему механизму начинается с активации фактора XII (фактора контакта, или фактора Хагемана) при соприкосновении с коллагеном и другими компонентами соединительной ткани (при повреждении сосудистой стенки), при появлении в кровяном русле избытка катехоламинов (напр., адреналина), протеаз, а также вследствие контакта крови и плазмы с чужеродной поверхностью (иглы, стекло) вне организма. При этом образуется его активная форма — фактор XIIа, к-рый вместе с фактором 3 тромбоцитов, являющимся фосфолипидом (3 тф), действуя как фермент на фактор XI, превращает его в активную форму— фактор XIа. В этом процессе ионы кальция не участвуют.

Активация фактора IX является результатом ферментного воздействия на него фактора XIа, причем для образования фактора IXа необходимы ионы кальция. Активация фактора VIII (фактор Villa) происходит под влиянием фактора IХа. Активацию фактора X вызывает комплекс факторов IXa, Villa и 3 тф в присутствии ионов кальция.

При внешнем механизме свертывания крови тканевый тромбопластин, поступивший из тканей и органов в кровь, активирует фактор VII и в комплексе с ним в присутствии ионов кальция формирует активатор фактора X.

Общий путь внутреннего и внешнего механизмов начинается с активации фактора X — относительно стабильного протеолитического фермента. Активация фактора X ускоряется в 1000 раз при его взаимодействии с фактором Va. Протромбиназный комплекс, образующийся при взаимодействии фактора Ха с фактором Va, ионами кальция и 3 тф, приводит к активации фактора II (протромбина), в результате чего образуется тромбин.

Последняя фаза свертывания крови заключается в превращении фибриногена в стабилизированный фибрин. Тромбин — протеолитический фермент — отщепляет от альфа- и бета-цепей фибриногена сначала два пептида А, затем два пептида В, в результате остается мономер фибрина с четырьмя свободными связями, к-рые потом соединяются в полимер — волокна нестабилизированного фибрина. Затем при участии фактора XIII (фибринстабилизирующего фактора), активированного тромбином, образуется стабилизированный, или нерастворимый, фибрин. В фибриновом сгустке содержится много эритроцитов, лейкоцитов и тромбоцитов, также обеспечивающих его консолидацию.

Так, установлено, что не все белковые факторы свертывания крови являются ферментами и поэтому не могут вызывать расщепление и активацию других белков. Установлено также, что на разных этапах свертывания крови образуются комплексы факторов, в к-рых активируются ферменты, а неферментные компоненты ускоряют и усиливают эту активацию и обеспечивают специфичность действия на субстрат. Из этого следует, что каскадную схему целесообразно рассматривать как каскадно-комплексную. В ней сохраняется последовательность взаимодействия различных плазменных факторов, но предусматривается формирование комплексов, активирующих факторы, участвующие в последующих этапах.

В системе свертывания крови различают также так наз. сосудисто-тромбоцитарный (первичный) и коагуляционный (вторичный) механизмы гемостаза (см.). При сосудисто-тромбоцитарном механизме наблюдается окклюзия поврежденного сосуда массой тромбоцитов, т. е. образование клеточной гемостатической пробки. Этот механизм обеспечивает достаточно надежный гемостаз в мелких сосудах с невысоким кровяным давлением. При повреждении стенки сосуда возникает его спазм. Обнажившийся коллаген и базальная мембрана вызывают адгезию тромбоцитов к раневой поверхности. В дальнейшем осуществляется аккумуляция и агрегация тромбоцитов в области поражения сосуда при участии фактора Виллебранда, происходит реакция освобождения тромбоцитарных факторов свертывания крови, вторая фаза агрегации тромбоцитов„ вторичный спазм сосуда, образование фибрина. Фибринстабилизирующий фактор участвует в формировании полноценного фибрина. Важная роль в образовании тромбоцитарного тромба принадлежит АДФ, под влиянием к-рой в присутствии ионов кальция тромбоциты (см.) приклеиваются друг к другу и образуют агрегат. Источником АДФ является АТФ стенки сосудов, эритроцитов и тромбоцитов.

При коагуляционном механизме основная роль принадлежит факторам С. с. к. Выделение сосудисто-тромбоцитарного и коагуляционного механизмов гемостаза относительно, т. к. оба обычно функционируют сопряженно. По времени возникновения кровотечения после воздействия травмирующего фактора можно предположительно установить его причину. При дефектах в плазменных факторах оно возникает позже, чем при тромбоцитопении (см.).

В организме наряду с механизмами свертывания крови существуют механизмы, поддерживающие жидкое состояние циркулирующей крови. По теории Б. А. Кудряшова, эту функцию осуществляет так наз. противосвертывающая система, основным звеном к-рой является ферментативный и неферментативный фибринолиз, обеспечивающий жидкое состояние крови в сосудистом русле. Другие исследователи (напр., А. А. Маркосян, 1972) считают противосвертывающие механизмы частью единой свертывающей системы. Установлена взаимосвязь С. с. к. не только с фибринолитической системой, но и с кининами (см.) и системой комплемента (см.). Активированный фактор XII является для них пусковым; кроме того, он ускоряет активацию фактора VII. По данным 3. С. Баркагана (1975) и других исследователей, в результате этого начинает функционировать фактор XII — калликреиновый «мост» между внутренним и внешним механизмами свертывания крови и одновременно активируется фибринолиз. Противосвертывающая система (антисвертывающая система) имеет рефлекторную природу. Она активируется при раздражении хеморецепторов кровеносного русла вследствие появления в кровотоке относительного избытка тромбина. Ее эффекторный акт характеризуется выбросом в кровоток гепарина (см.) и активаторов фибринолиза из тканевых источников. Гепарин образует комплексы с антитромбином III, тромбином, фибриногеном и рядом других тромбогенных белков, а также катехоламинами. Эти комплексы обладают антикоагулянтной активностью, лизируют нестабилизиро-ванный фибрин, блокируют неферментативным путем полимеризацию фибрин-мономера и являются антагонистами фактора XIII. Вследствие активации ферментативного фибринолиза осуществляется лизис стабилизированных сгустков.

Сложная система ингибиторов протеолитических ферментов тормозит активность плазмина, тромбина, калликреина и активированных факторов свертывания крови. Механизм их действия связан с образованием белок-белковых комплексов между ферментом и ингибитором. Обнаружено 7 ингибиторов: α-макроглобулин, интер-α-ингибитор трипсина, Cl-инактиватор, альфа-1-антихимотрипсин, антитромбин III, альфа-2-антиплазмин, α-антитрипсин. Немедленное антикоагулянтное действие оказывает гепарин. Основным ингибитором тромбина является антитромбин III, связывающий 75% тромбина, а также другие активированные факторы свертывания крови (IXа, Ха, XIIа) и калликреин. В присутствии гепарина активность антитромбина III резко возрастает. Важным для свертывания крови является α2-макроглобулин, обеспечивающий 25% антитромбинового потенциала крови и полностью подавляющий активность калликреина. Но основным ингибитором калликреина является Cl-ингибитор, к-рый тормозит фактор XII. Антитромбиновым действием обладают также фибрин, продукты протеолитической деградации фибрин/фибриногена, оказывающие антиполимеразное действие на фибрин и фибринопептиды, отщепляемые от фибриногена тромбином. Нарушение активности С. с. к. вызывает высокая активность фермента плазмина (см. Фибринолиз).

Факторов свертывания крови в организме содержится значительно больше, чем это необходимо для обеспечения гемостаза. Однако кровь не свертывается, т. к. имеются антикоагулянты, и в процессе гемостаза потребляется лишь небольшое количество коагулирующих факторов, напр, протромбина, за счет самоторможения гемокоагуляции, а также нейроэндокринных регуляторных механизмов.

Нарушения в Свёртывающей системе крови могут служить основой патологических процессов, клинически проявляющихся в виде тромбозов кровеносных сосудов (см. Тромбоз), геморрагических диатезов (см.), а также сопутствующих нарушений в системе регуляции агрегатного состояния крови, напр, тромбогеморрагического синдрома (см.), или синдрома Мачабели. Изменения гемостаза могут быть обусловлены различными аномалиями тромбоцитов, кровеносных сосудов, плазменных факторов коагуляции или их комбинацией. Нарушения могут быть количественными и (или) качественными, т. е. связанными с дефицитом или излишком какого-либо фактора, нарушениями его активности или структуры, а также с изменениями стенки сосудов, органов и тканей. Они бывают приобретенными (влияние токсических хим. соединений, инфекций, ионизирующего излучения, нарушение белкового, липидного обмена, онкологические заболевания, гемолиз), наследственными или врожденными (генетические дефекты). Среди приобретенных нарушений, приводящих к отклонениям в С. с. к., наиболее частыми являются тромбоцитопении (см.), связанные с угнетением функции костного мозга, напр, при гипопластической анемии (см.), или с избыточным разрушением тромбоцитов, напр, при болезни Верльгофа (см. Пурпура тромбоцитопеническая ). Часто также встречаются приобретенные и наследственные тромбоцитопатии (см.), к-рые являются результатом качественных дефектов в оболочке тромбоцитов (напр., дефицит мембранных гликопротеинов), их ферментов, реакции освобождения тромбоцитов, приводящих к нарушению способности их к агрегации или адгезии, к снижению содержания тромбоцитарных факторов свертывания крови и др.

Повышенная кровоточивость может развиться вследствие дефицита факторов свертывания крови или их ингибиции специфическими антителами. Т. к. многие факторы свертывания крови образуются в печени, то при ее поражении (гепатит, цирроз) довольно часто возникают геморрагии, обусловленные снижением концентрации в крови факторов II, V, VII, IX, X или печеночной дис(гипо)фибриногенемией. Дефицит К-витаминозависимых факторов (II, VII, IX, X), сопровождающийся в ряде случаев кровоточивостью, наблюдается при нарушении поступления желчи в кишечник (механическая желтуха), избыточном приеме антагонистов витамина К (кумаринов, варфарина), дисбактериозе кишечника, при геморрагической болезни новорожденных (см. Геморрагические диатезы).

В результате активации С. с. к., в частности тканевыми тромбопластинами (оперативное вмешательство, тяжелые травмы, ожоги, шок, сепсис и др.), часто развивается полное и неполное диссеминированное внутрисосудистое свертывание крови (см. Тромбогеморрагический синдром), плохо поддающееся коррекции, требующее динамического контроля за показателями С. с. к.

Развитию диссеминированного свертывания крови и тромбозов способствует также наследственный или приобретенный дефицит основных физиол. антикоагулянтов, особенно антитромбина III, и компонентов фибринолитической системы. Вторичное истощение этих веществ, требующее проведения трансфузионно-заместительной терапии, может быть следствием интенсивного их потребления как в процессе свертывания крови, так и при интенсивном применении гепарина, усиливающего метаболизацию антитромбина III, активаторов фибринолиза (напр., стрептокиназы), снижающих уровень плазминогена в крови.

Нарушения липидного обмена и воспалительные процессы в стенках сосудов ведут к структурным изменениям в стенке сосуда, органическому сужению его просвета, что может служить пусковым механизмом в образовании тромба (напр., при инфаркте миокарда). Избыточное разрушение эритроцитов, содержащих тромбопластические факторы, также нередко является предпосылкой для образования тромбов, напр, при пароксизмальной ночной гемоглобинурии и аутоиммунной гемолитической анемии (см. Гемолитическая анемия), серповидно-клеточной анемии (см.).

Наиболее часто дефицит факторов свертывания крови обусловлен генетически. Так, дефицит факторов VIII, IX, XI наблюдается у больных гемофилией (см.). К повышенной кровоточивости приводит дефицит факторов II, V, VII (см. Гипопроконвертинемия), а также факторов X, XIII и гипофибриногенемия или афибриногенемия (см.).

Наследственная функциональная неполноценность тромбоцитов лежит в основе большой группы заболеваний, напр, тромбастении Гланцманна, к-рая характеризуется нарушением агрегационной способности тромбоцитов и ретракции кровяного сгустка (см. Тромбоцитопатии). Описаны геморрагические диатезы, протекающие с нарушением реакции освобождения компонентов гранул тромбоцитов или с нарушением накопления в тромбоцитах АДФ и других стимуляторов агрегации (так наз. болезни пула накопления). Нередко тромбоцитопатии сочетаются с тромбоцитопенией (болезнь Бернара — Сулье и др.). Нарушение агрегации тромбоцитов, дефект гранул, снижение содержания АДФ отмечены при аномалии Чедиака — Хигаси (см. Тромбоцитопатии). Причиной дисфункции тромбоцитов может быть дефицит плазменных белков, участвующих в процессах адгезии и агрегации тромбоцитов. Так, при дефиците фактора Виллебранда нарушается адгезия тромбоцитов к субэндотелию и к чужеродной поверхности и одновременно снижается коагуляционная активность фактора VIII, одним из компонентов к-рого является фактор Виллебранда. При болезни Виллебранда — Юргенса (см. Ангиогемофилия) дополнительно с этими нарушениями снижается активность фос-фолипидного фактора 3 тромбоцитов.

Методы исследования С. с. к. используются для выяснения причин кровоточивости, тромбозов и тромбогеморрагий. Способность крови свертываться исследуют серией методов, в основе к-рых лежит определение скорости появления кровяного сгустка в разных условиях. Наиболее распространенными методами, имеющими ориентировочное значение, являются установление времени свертывания крови (см.), времени кровотечения (см.), времени рекальцификации плазмы и Оврена тромботест, к-рый применяется для контроля за антикоагулянтной терапией. При определении времени рекальцификации плазмы к исследуемой плазме добавляют дистиллированную воду и р-р хлористого кальция; фиксируют время образования сгустка крови (удлинение времени свидетельствует о склонности к кровоточивости, укорочение— о гиперкоагуляции). При Оврена тромботесте к исследуемой плазме добавляют реактив, в к-ром содержатся все факторы свертывания крови, кроме факторов II, VII, IX и X; задержка свертывания плазмы свидетельствует о дефиците этих факторов.

К более точным методам относят метод Зигга, с помощью к-рого определяют толерантность плазмы к гепарину, тромбоэластографию (см.), методы определения тромбинового времени (см. Тромбин) и протромбинового времени (см.), тест генерации тромбопластина, или метод тромбопластинообразования Биггс Дугласа, метод определения каолин-кефалинового времени. При методе тромбопластинообразования Биггс — Дугласа к исследуемой сыворотке добавляют обработанную гидратом окиси алюминия плазму и тромбоциты здорового человека; задержка свертывания плазмы при этом свидетельствует о дефиците факторов свертывания крови. Для определения каолин-кефалинового времени к исследуемой плазме, бедной тромбоцитами, добавляют суспензию каолина и р-р хлористого кальция; по времени свертывания плазмы можно установить дефицит VIII, IX, XI и XII факторов и избыток антикоагулянтов.

Фибринолитическую активность крови определяют эуглобиновым, гистохим. методом и др. (см. Фибринолиз). Существуют дополнительные методы, напр, тесты выявления Холодовой активации калликреинового моста между факторами XII и VII, методы определения продуктов паракоагуляции, физиологических антикоагулянтов, антитромбопластиновой активности, продуктов деградации фибриногена и др.

Библиография: Андреенко Г. В. Фибринолиз, М., 1979, библиогр.; Балуда В. П. и др. Лабораторные методы исследования системы гемостаза, Томск, 1980; Баркаган 3. С. Геморрагические заболевания и синдромы, М., 1980; Биохимия животных и человека, под ред. М. Д. Курского и др., в. 6, с. 3, 94, Киев, 1982; Гаврилов О. К. Биологические закономерности системы регуляции агрегатного состояния крови и задачи их изучения, Пробл. гематол. и перелив, крови, т. 24, № 7, с. 3, 1979; Геморрагический синдром острой лучевой болезни, под ред. Т. К. Джаракьяна, Л., 1976, библиогр.; Гемофилия и ее лечение, под ред. 3. Д. Федоровой, Л., 1977, библиогр.; Георгиева С. А. и Клячкин Л. М. Побочное действие лекарств на свертываемость крови и фибринолиз, Саратов, 1979, библиогр.; Грицюк А. И. Лекарственные средства и свертываемость крови, Киев, 1978; Кудряшов Б. А. Биологические проблемы регуляции жидкого состояния крови и ее свертывания, М., 1975, библиогр.; Кузник Б. И. и Скипетров В. П. Форменные элементы крови, сосудистая стенка, гемостаз и тромбоз, М., 1974; Маркосян А. А. Физиология свертывания крови, М., 1966, библиогр.; Мачабели М. С. Коагулопатические синдромы, М., 1970; Могош Г. Тромбозы и эмболии при сердечно-сосудистых заболеваниях, пер. с румын., Бухарест, 1979; Онтогенез системы свертывания крови, под ред. А. А. Маркосяна, Л., 1968, библиогр.; Проблемы и гипотезы в учении о свертывании крови, под ред. О. К. Гаврилова, М., 1981, библиогр.; Раби К. Локализованная и рассеянная внутрисосудистая коагуляция, пер. с франц., М., 1974; Рзаев Н. М. и 3акирджаев Д. Д. Антитромботическая терапия, Баку, 1979: Савельев В. С., Яблоков Е. Г. и Кириенко А. И. Тромбоэмболия легочных артерий, М., 1979; Скипетров В. П. и Кузник Б. Акушерский тромбогеморрагический синдром, Иркутск — Чита, 1973; Уиллоуби М. Детская гематология, пер. с англ., М.. 1981; Филатов А. Н. и Котовщинова М. А. Свертывающая система крови в клинической практике, Л., 1963, библиогр.; Хрущева Е. А. и Титова М. И. Система гемостаза при хирургических заболеваниях сердца, сосудов и легких, М., 1974; Чазов Е. И. и Лакин К. М. Антикоагулянты и фибринолитические средства, М., 1977; Blood coagulation and haemostasis, ed. by J. M. Thomson, Edinburgh — N. Y., 1980; Haemostasis, biochemistry, physiology and pathology, ed. by D. Ogston a. B. Bennett, L.— N. Y., 1977; Haemostasis and thrombosis, ed. by G. G. Neri Serneri a. C. R. Prentice, L. a. o., 1979: Human blood coagulation, haemostasis and thrombosis, ed. by R. Biggs, Oxford, 1976; Nilsson I. M. Haemorrhagic and thrombotic diseases, L. a. o., 1974; Progress in chemical fibrinolysis and thrombolysis, ed. by J. F. Davidson, N. Y., 1978; Quick A. J. The hemorrhagic diseases and pathology of hemostasis, Springfield, 1974; Recent advances in hemophilia, ed. by L. M. Aledort, N. Y., 1975; Venous and arterial thrombosis, pathogenesis, diagnosis, prevention, and therapy, ed. by J. H. Joist a. L. A. Sherman, N. Y., 1979.

Источник: xn--90aw5c.xn--c1avg

Свертывание крови – процесс многоступенчатый, сложный и, при этом, чувствительный к действию целого ряда факторов. При этом симптомы «неполадок», как правило, долго не дают о себе знать. И анализ на свертываемость часто выявляет нарушения «случайно». Так кому же следует держать гемостаз «под присмотром»? И как понять показатели тем, кто уже проходит лечение?

Кому показан анализ

Исследование свертываемости крови, в первую очередь, показано тем, кто:

  1. страдает от заболеваний печени или перенес гепатит в прошлом (поскольку большинство факторов свертывания синтезируются именно в печени);
  2. страдает или имеет наследственную предрасположенность к тромбофлебиту и варикозу;
  3. страдает от сердечно-сосудистых или аутоиммунных заболеваний (высокий риск воспаления сосудов и, как следствие, усиление тромбообразования);
  4. принимает оральные контрацептивы или имеет избыток эстрадиола (женщины);
  5. невынашивание беременности в личной истории пациентки

Не стоит исключать из внимания и значимые факторы риска, как курение, лишний вес, малоподвижный образ жизни, возраст старше 40 лет, частые перелеты и другие.

Ну и, конечно же, такой анализ обязателен перед любой операцией, а также для тех, кто уже принимает «противосвертывающие» препараты.

О чем говорят показатели

Набор «стандартной» коагулограммы (50.0.H94.203) включает определение:

  • АЧТВ,
  • Протромбина (время, МНО),
  • Тромбинового времени
  • Фибриногена.

Но что означают эти показатели?

1. АЧТВ, или активированное частичное тромбопластиновое время

Оценивает скорость образования сгустка крови после добавления к плазме специальных реагентов, и измеряется в секундах.

Иными словами, АЧТВ демонстрирует эффективность остановки кровотечения за счет плазменных факторов свертывания (как раз тех, что образуются в печени).

При этом, удлинение (повышение) показателя сигнализирует о риске кровотечений, а укорочение – тромбоза.

А особенно «актуален» анализ для людей, принимающих прямые антикоагулянты (гепарин и другие).

2. Протромбиновое время (ПВ)

Это временной отрезок, за который происходит образование нитей фибрина, то есть собственно предшественника тромба.

Показатель измеряется в % от нормы, которая составляет 70-120%.

Чем выше этот показатель – тем выше скорость образования тромба, а значит – и риск тромбоза.

А уменьшение ПВ – сигнал о склонности к кровотечениям.

3. МНО

По сути — расчетный показатель, призванный стандартизировать данные о протромбиновом времени, полученные на разной аппаратуре.

Такие «сложности» стали необходимостью в связи с тем, что МНО – базовый анализ для подбора и коррекции «противосвертывающих» препаратов (как например, варфарин). А данные, полученные на разной аппаратуре (в разных лабораториях) зачастую не давали возможности сравнения между собой.

Поэтому Международный комитет по стандартизации в гематологии и Международный комитет по тромбозу и гемостазу в 1983 году ввели в использование МНО.

И сегодня, его уровень для здорового человека находится на уровне 0,8-1.2. А для принимающих непрямые антикоагулянты – 2,0-4,0.

При этом, повышение МНО ассоциировано с риском кровотечений, а снижение менее 0,5 – может говорить о тромбозе.

4. Фибриноген

В отличие от предыдущих показателей, это непосредственно субстрат для образования тромба. То есть не показатель скорости, а вещество. Поэтому и нормы для фибриногена измеряются в граммах на литр.

Повышение фибриногена наблюдается не только при повышенном тромбообразовании, но и при многих воспалительных процессах (как способ организма ограничить распространение «причинного фактора» и разрушенных тканей). А также у тех, кто принимает оральные контрацептивы или имеет повышенный уровень эстрогенов, беременных, людей с повышенным холестерином и курящих.

А снижение показателя может говорить не только о риске кровотечений, но и о заболеваниях печени.

Разумеется, перечисленные показатели являются только «базой» для оценки «здоровья» свертывающей системы крови. И в случае обнаружения значимых отклонений могут понадобиться дополнительные маркеры.

Источник: kdl.ru

Как устроено свертывание крови

Остановка кровотечения основана на той же идее, что используют домохозяйки для приготовления холодца — превращении жидкости в гель (коллоидную систему, где формируется сеть молекул, способная удержать в своих ячейках тысячекратно превосходящую ее по весу жидкость за счет водородных связей с молекулами воды). Кстати, та же идея используется в одноразовых детских подгузниках, в которые помещается разбухающий при смачивании материал. С физической точки зрения, там нужно решать ту же самую задачу, что и в свертывании — борьбу с протечками при минимальном приложении усилий.

Свертывание крови является центральным звеном гемостаза (остановки кровотечения). Вторым звеном гемостаза являются особые клетки — тромбоциты, — способные прикрепляться друг к другу и к месту повреждения, чтобы создать останавливающую кровь пробку.

Общее представление о биохимии свертывания можно получить из рисунка 1, внизу которого показана реакция превращения растворимого белка фибриногена в фибрин, который затем полимеризуется в сетку. Эта реакция представляет собой единственную часть каскада, имеющую непосредственный физический смысл и решающую четкую физическую задачу. Роль остальных реакций — исключительно регуляторная: обеспечить превращение фибриногена в фибрин только в нужном месте и в нужное время.

Фибриноген напоминает стержень длиной 50 нм и толщиной 5 нм (рис. 2а). Активация позволяет его молекулам склеиваться в фибриновую нить (рис 2б), а затем в волокно, способное ветвиться и образовывать трехмерную сеть (рис. 2в).

Активатор фибриногена тромбин (рис. 3) принадлежит к семейству сериновых протеиназ — ферментов, способных осуществлять расщепление пептидных связей в белках. Он является родственником пищеварительных ферментов трипсина и химотрипсина. Протеиназы синтезируются в неактивной форме, называемой зимогеном. Чтобы их активировать, необходимо расщепить пептидную связь, удерживающую часть белка, которая закрывает активный сайт. Так, тромбин синтезируется в виде протромбина, который может быть активирован. Как видно из рис. 1 (где протромбин обозначен как фактор II), это катализируется фактором Xa.

Вообще, белки свертывания называют факторами и нумеруют римскими цифрами в порядке официального открытия. Индекс «а» означает активную форму, а его отсутствие — неактивный предшественник. Для давно открытых белков, таких как фибрин и тромбин, используют и собственные имена. Некоторые номера (III, IV, VI) по историческим причинам не используются.

Активатором свертывания служит белок, называемый тканевым фактором, присутствующий в мембранах клеток всех тканей, за исключением эндотелия и крови. Таким образом, кровь остается жидкой только благодаря тому, что в норме она защищена тонкой защитной оболочкой эндотелия. При любом нарушении целостности сосуда тканевой фактор связывает из плазмы фактор VIIa, а их комплекс — называемый внешней теназой (tenase, или Xase, от слова ten — десять, т.е. номер активируемого фактора) — активирует фактор X.

Тромбин также активирует факторы V, VIII, XI, что ведет к ускорению его собственного производства: фактор XIa активирует фактор IX, а факторы VIIIa и Va связывают факторы IXa и Xa, соответственно, увеличивая их активность на порядки (комплекс факторов IXa и VIIIa называется внутренней теназой). Дефицит этих белков ведет к тяжелым нарушениям: так, отсутствие факторов VIII, IX или XI вызывает тяжелейшую болезнь гемофилию (знаменитую «царскую болезнь», которой болел царевич Алексей Романов); а дефицит факторов X, VII, V или протромбина несовместим с жизнью.

Такое устройство системы называется положительной обратной связью: тромбин активирует белки, которые ускоряют его собственное производство. И здесь возникает интересный вопрос, а зачем они нужны? Почему нельзя сразу сделать реакцию быстрой, почему природа делает ее исходно медленной, а потом придумывает способ ее дополнительного ускорения? Зачем в системе свертывания дублирование? Например, фактор X может активироваться как комплексом VIIa—TF (внешняя теназа), так и комплексом IXa—VIIIa (внутренняя теназа); это выглядит совершенно бессмысленным.

В крови также присутствуют ингибиторы протеиназ свертывания. Основными являются антитромбин III и ингибитор пути тканевого фактора. Кроме этого, тромбин способен активировать сериновую протеиназу протеин С, которая расщепляет факторы свертывания Va и VIIIa, заставляя их полностью терять свою активность.

Протеин С — предшественник сериновой протеиназы, очень похожей на факторы IX, X, VII и протромбин. Он активируется тромбином, как и фактор XI. Однако при активации получившаяся сериновая протеиназа использует свою ферментативную активность не для того, чтобы активировать другие белки, а для того, чтобы их инактивировать. Активированный протеин С производит несколько протеолитических расщеплений в факторах свертывания Va и VIIIa, заставляя их полностью терять свою кофакторную активность. Таким образом, тромбин — продукт каскада свертывания — ингибирует свое собственное производство: это называется отрицательной обратной связью. И опять у нас регуляторный вопрос: зачем тромбин одновременно ускоряет и замедляет собственную активацию?

Подводя итог, система свертывания изучена очень хорошо. В ней уже пятнадцать лет не открывали новых белков или реакций, что для современной биохимии составляет вечность. Конечно, нельзя совсем исключить вероятность такого открытия, но пока что не существует ни одного явления, которое мы не могли бы объяснить при помощи имеющихся сведений. Скорее наоборот, система выглядит гораздо сложнее, чем нужно: мы напомним, что из всего этого (довольно громоздкого!) каскада собственно желированием занимается только одна реакция, а все остальные нужны для какой-то непонятной регуляции.

Именно поэтому сейчас исследователи-коагулологи, работающие в самых разных областях — от клинической гемостазиологии до математической биофизики, — активно переходят от вопроса «Как устроено свертывание?» к вопросам «Почему свертывание устроено именно так?», «Как оно работает?» и, наконец, «Как нам нужно воздействовать на свертывание, чтобы добиться желаемого эффекта?». Первое, что необходимо сделать для ответа — научиться исследовать свертывание целиком, а не только отдельные реакции.

Как исследовать свертывание?

Для изучения свертывания создаются различные модели — экспериментальные и математические. Что именно они позволяют получить?

С одной стороны, кажется, что самым лучшим приближением для изучения объекта является сам объект. В данном случае — человек или животное. Это позволяет учитывать все факторы, включая ток крови по сосудам, взаимодействия со стенками сосудов и многое другое. Однако в этом случае сложность задачи превосходит разумные границы. Модели свертывания позволяют упростить объект исследования, не упуская его существенных особенностей.

Попытаемся составить представление о том, каким требованиям должны отвечать эти модели, чтобы корректно отражать процесс свертывания in vivo.

В экспериментальной модели должны присутствовать те же биохимические реакции, что и в организме. Должны присутствовать не только белки системы свертывания, но и прочие участники процесса свертывания — клетки крови, эндотелия и субэндотелия. Система должна учитывать пространственную неоднородность свертывания in vivo: активацию от поврежденного участка эндотелия, распространение активных факторов, присутствие тока крови.

Рассмотрение моделей свертывания естественно начать с методов исследования свертывания in vivo. Основа практически всех используемых подходов такого рода заключается в нанесении подопытному животному контролируемого повреждения с тем, чтобы вызвать гемостатическую или тромботическую реакцию. Данная реакция исследуется различными методами:

  • наблюдение за временем кровотечения;
  • анализ плазмы, взятой у животного;
  • вскрытие умерщвленного животного и гистологическое исследование;
  • наблюдение за тромбом в реальном времени с использованием микроскопии или ядерного магнитного резонанса (рис. 4).

Классическая постановка эксперимента по свертыванию in vitro заключается в том, что плазма крови (или цельная кровь) смешивается в некоторой емкости с активатором, после чего производится наблюдение за процессом свертывания. По методу наблюдения экспериментальные методики можно разделить на следующие типы:

  • наблюдение за самим процессом свертывания;
  • наблюдение за изменением концентраций факторов свертывания от времени.

Второй подход дает несравненно больше информации. Теоретически, зная концентрации всех факторов в произвольный момент времени, можно получить полную информацию о системе. На практике исследование даже двух белков одновременно дорого и связано с большими техническими трудностями.

Наконец, свертывание в организме протекает неоднородно. Формирование сгустка запускается на поврежденной стенке, распространяется с участием активированных тромбоцитов в объеме плазмы, останавливается с помощью эндотелия сосудов. Адекватно изучить эти процессы с помощью классических методов невозможно. Вторым важным фактором является наличие потока крови в сосудах.

Осознание этих проблем привело к появлению, начиная с 1970-х годов, разнообразных проточных экспериментальных систем in vitro. Несколько больше времени потребовалось на осознание пространственных аспектов проблемы. Только в 1990-е годы стали появляться методы, учитывающие пространственную неоднородность и диффузию факторов свертывания, и только в последнее десятилетие они стали активно использоваться в научных лабораториях (рис. 5).

Наряду с экспериментальными подходами для исследований гемостаза и тромбоза также используются математические модели (этот метод исследований часто называется in silico [8]). Математическое моделирование в биологии позволяет устанавливать глубокие и сложные взаимосвязи между биологической теорией и опытом. Проведение эксперимента имеет определенные границы и сопряжено с рядом трудностей. Кроме того, некоторые теоретически возможные эксперименты неосуществимы или запредельно дороги вследствие ограничений экспериментальной техники. Моделирование упрощает проведение экспериментов, так как можно заранее подобрать необходимые условия для экспериментов in vitro и in vivo, при которых интересующий эффект будет наблюдаем.

Регуляция системы свертывания

Сделаем следующий логический шаг и попробуем ответить на вопрос — а как описанная выше система работает?

Каскадное устройство системы свертывания

Начнем с каскада — цепочки активирующих друг друга ферментов. Один фермент, работающий с постоянной скоростью, дает линейную зависимость концентрации продукта от времени. У каскада из N ферментов эта зависимость будет иметь вид tN, где t — время. Для эффективной работы системы важно, чтобы ответ носил именно такой, «взрывной» характер, поскольку это сводит к минимуму тот период, когда сгусток фибрина еще непрочен.

Запуск свертывания и роль положительных обратных связей

Как упоминалось в первой части статьи, многие реакции свертывания медленны. Так, факторы IXa и Xa сами по себе являются очень плохими ферментами и для эффективного функционирования нуждаются в кофакторах (факторах VIIIa и Va, соответственно). Эти кофакторы активируются тромбином: такое устройство, когда фермент активирует собственное производство, называется петлей положительной обратной связи.

Как было показано нами экспериментально и теоретически, положительная обратная связь активации фактора V тромбином формирует порог по активации — свойство системы не реагировать на малую активацию, но быстро срабатывать при появлении большой. Подобное умение переключаться представляется весьма ценным для свертывания: это позволяет предотвратить «ложное срабатывание» системы.

Роль внутреннего пути в пространственной динамике свертывания

Одной из интригующих загадок, преследовавших биохимиков на протяжении многих лет после открытия основных белков свертывания, была роль фактора XII в гемостазе. Его дефицит обнаруживался в простейших тестах свертывания, увеличивая время, необходимое для образования сгустка, однако, в отличие от дефицита фактора XI, не сопровождался нарушениями свертывания.

Один из наиболее правдоподобных вариантов разгадки роли внутреннего пути был предложен нами с помощью пространственно неоднородных экспериментальных систем. Было обнаружено, что положительные обратные связи имеют большое значение именно для распространения свертывания. Эффективная активация фактора X внешней теназой на активаторе не поможет сформировать сгусток вдали от активатора, так как фактор Xa быстро ингибируется в плазме и не может далеко отойти от активатора. Зато фактор IXa, который ингибируется на порядок медленнее, вполне на это способен (и ему помогает фактор VIIIa, который активируется тромбином). А там, куда сложно дойти и ему, начинает работать фактор XI, также активируемый тромбином. Таким образом, наличие петель положительных обратных связей помогает создать трехмерную структуру сгустка.

Путь протеина С как возможный механизм локализации тромбообразования

Активация протеина С тромбином сама по себе медленна, но резко ускоряется при связывании тромбина с трансмембранным белком тромбомодулином, синтезируемым клетками эндотелия. Активированный протеин С способен разрушать факторы Va и VIIIa, на порядки замедляя работу системы свертывания. Ключом к пониманию роли данной реакции стали пространственно-неоднородные экспериментальные подходы. Наши эксперименты позволили предположить, что она останавливает пространственный рост тромба, ограничивая его размер.

Подведение итогов

В последние годы сложность системы свертывания постепенно становится менее загадочной. Открытие всех существенных компонентов системы, разработка математических моделей и использование новых экспериментальных подходов позволили приоткрыть завесу тайны. Структура каскада свертывания расшифровывается, и сейчас, как мы видели выше, практически для каждой существенной части системы выявлена или предложена роль, которую она играет в регуляции всего процесса.

На рисунке 7 представлена наиболее современная попытка пересмотреть структуру системы свертывания. Это та же схема, что и на рис. 1, где разноцветным затенением выделены части системы, отвечающие за разные задачи, как обсуждалось выше. Не все в этой схеме является надежно установленным. Например, наше теоретическое предсказание, что активация фактора VII фактором Xa позволяет свертыванию пороговым образом отвечать на скорость потока, остается пока еще непроверенным в эксперименте.

Вполне возможно, что эта картина еще не вполне полна. Тем не менее, прогресс в этой области в последние годы вселяет надежду, что в обозримом будущем оставшиеся неразгаданные участки на схеме свертывания обретут осмысленную физиологическую функцию. И тогда можно будет говорить о рождении новой концепции свертывания крови, пришедшей на смену старинной каскадной модели, которая верно служила медицине на протяжении многих десятилетий.

Статья написана при участии А.Н. Баландиной и Ф.И. Атауллаханова и была в первоначальном варианте опубликована в «Природе» [10].

Источник: biomolecula.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.