Кривая диссоциации оксигемоглобина физиология


Реакция взаимодействия кислорода с гемоглобином подчиняется закону действующих масс. Это означает, что соотношение между количествами гемоглобина и оксигемоглобина зависит от содержания физически растворенного О2 в крови; последнее же, согласно закону Генри-Дальтона, пропорционально напряжению О2. Процент оксигемоглобина от общего содержания гемоглобина называют кислородным насыщением (SО2) гемоглобина. Если гемоглобин полностью дезоксигенирован, то SО2 = 0%; если же весь гемоглобин превратился в оксигемоглобин, то SО2 = 100%. В соответствии с законом действующих масс насыщение гемоглобина кислородом зависит от напряжения О2. Графически эту зависимость отражает так называемая кривая диссоциации оксигемоглобина. Эта кривая имеет S-образную форму. Расположение кривой диссоциации оксигемоглобина зависит от ряда факторов (см. ниже). Наиболее простым показателем, характеризующим расположение этой кривой, служит так называемое напряжение полунасыщения (50%), т.е. такое напряжение О2, при котором насыщение гемоглобина кислородом составляет 50%. В норме (при рН=7,4 и t=37°C) полунасыщение артериальной крови составляет около 26 мм рт.ст. (3,46 кПа).


Причины S-образной формы кривой диссоциации оксигемоглобина до конца не ясны. Если бы каждая молекула гемоглобина присоединяла только одну молекулу О2, то кинетика этой реакции графически описывалась бы гиперболой. Именно такая гиперболическая кривая диссоциации характерна, например, для реакции соединения кислорода с красным мышечным пигментом миоглобином, аналогичной реакции оксигенации гемоглобина. Строение миоглобина сходно со структурой одной из четырех субъединиц гемоглобина, поэтому молекулярные массы этих двух веществ соотносятся как 1:4. Поскольку в состав миоглобина входит лишь одна пигментная группа, одна молекула миоглобина может присоединить только одну молекулу О2. Исходя из вполне правдоподобного предположения о том, что S-образная форма кривой диссоциации НbО2 обусловлена связыванием одной молекулой гемоглобина четырех молекул О2, Эдер выдвинул так называемую гипотезу промежуточных соединений. Согласно этой гипотезе, присоединение четырех молекул О2 к гемоглобину происходит в несколько стадий, причем каждая из этих стадий влияет на равновесие следующей реакции. Таким образом, реакция соединения кислорода с гемоглобином описывается четырьмя константами равновесия, что и объясняет сигмоидную форму кривой диссоциации оксигемоглобина.


В то же время возможно и другое объяснение, согласно которому существуют две формы гемоглобина-оксигенированная и дезоксигенированная, переходящие одна в другую в результате конформационных перестроек. Если предположить, что параметры равновесия реакций оксигенации для этих двух форм гемоглобина различны, то с позиции данной гипотезы можно объяснить S-образную форму кривой диссоциации НbО2

Биологический смысл формы кривой диссоциации оксигемоглобина. Конфигурация кривой диссоциации оксигемоглобина имеет важное значение с точки зрения переноса кислорода кровью. В процессе поглощения кислорода в легких напряжение О2 в крови приближается к таковому в альвеолах. У молодых людей РО2 артериальной крови составляет около 95 мм рт.ст. (12,6 кПа). При таком напряжении насыщение гемоглобина кислородом составляет примерно 97%. С возрастом (и в еще большей степени при заболеваниях легких) напряжение О2 в артериальной крови может значительно снижаться, однако, поскольку кривая диссоциации оксигемоглобина в правой ее части почти горизонтальна, насыщение крови кислородом уменьшается ненамного. Так, даже при падении РО2 в артериальной крови до 60 мм рт.ст. (8,0 кПа) насыщение гемоглобина кислородом равно 90%. Таким образом, благодаря тому, что области высоких напряжений кислорода соответствует горизонтальный участок кривой диссоциации оксигемоглобина, предупреждается cyщественное снижение насыщения артериальной крови кислородом.


Крутой наклон среднего участка кривой диссоциации оксигемоглобина свидетельствует об очень благоприятных условиях для отдачи кислорода тканям. При изменении локальной потребности в кислороде он должен высвобождаться в достаточном количестве в отсутствие значительных сдвигов РО2 в артериальной крови. В состоянии покоя РО2 в области венозного конца капилляра равно приблизительно 40 мм рт.ст. (5,3 кПа), что соответствует примерно 73% насыщения. Если в результате увеличения потребления кислорода его напряжение в венозной крови падает лишь на 5 мм рт.ст. (0,7 кПа), то насыщение гемоглобина кислородом снижается не менее чем на 7%; высвобождающийся при этом О2 может быть сразу же использован для процессов метаболизма.

Количество химически связанного кислорода в крови зависит от насыщения им гемоглобина.

При прохождении крови через тканевые капилляры используется лишь 25% общей кислородной емкости. Разумеется, разные органы существенно различаются по степени извлечения кислорода. При интенсивной физической нагрузке артериовенозная разница по кислороду может превышать 0,1.

Форма кривой диссоциации НbО2 обусловлена главным образом реакционной способностью гемоглобина, однако сродство крови к кислороду может измениться под действием других факторов, как правило, приводящим к увеличению или уменьшению наклона кривой диссоциации без изменения ее S-образной формы. Такое влияние оказывают температура, рН, напряжение СО2 и некоторые другие факторы, роль которых возрастает при патологических состояниях.


Влияние температуры. Равновесие реакции оксигенации гемоглобина (как и большинства химических реакций вообще) зависит от температуры. При понижении температуры наклон кривой диссоциации оксигемоглобина увеличивается, а при ее повышении ― снижается. У теплокровных животных этот эффект проявляется только при гипотермии или лихорадочном состоянии.

Форма кривой диссоциации оксигемоглобина в значительной степени зависит от содержания в крови ионов Н+. При снижении рН, т.е. подкислении крови, сродство гемоглобина к кислороду уменьшается и угол наклона кривой диссоциации оксигемоглобина уменьшается. Влияние рН на характер кривой диссоциации оксигемоглобина называют эффектом Бора. рН крови тесно связан с напряжением в ней СО2 (РСО2 ):чем выше РСО2, тем ниже рН. Увеличение напряжения СО2 в крови сопровождается снижением сродства гемоглобина к кислороду и уменьшением угла наклона кривой диссоциации НbО2. Эту зависимость называют также эффектом Бора, хотя при детальном количественном анализе было показано, что влияние СО2 на форму кривой диссоциации оксигемоглобина нельзя объяснить только изменением рН. Очевидно, сам диоксид углерода оказывает на диссоциацию оксигемоглобина специфическое действие.


Биологический смысл эффекта Бора. Эффект Бора имеет определенное значение как для поглощения кислорода в легких, так и для его высвобождения в тканях (хотя значение этого эффекта не следует преувеличивать). Рассмотрим сначала процессы, происходящие в легких. Поглощение О2 идет одновременно с выделением СО2, поэтому по мере насыщения гемоглобина кислородом кривая диссоциации оксигемоглобина сдвигается влево. По мере того как венозная кровь (РО2 = 40 мм рт.ст.; РСО2 = 46 мм рт.ст.), насыщаясь кислородом, превращается в артериальную (РО2 = 95 мм рт.ст., РСО2 = 40 мм рт.ст.), сродство гемоглобина к кислороду постоянно увеличивается. В результате, хотя перенос кислорода осуществляется путем диффузии, скорость этой диффузии несколько возрастает. Таким образом, эффект Бора способствует связыванию кислорода в легких.

Несколько большее значение эффект Бора имеет для переноса О2 из капилляров в ткани. Поскольку одновременно с выходом кислорода из крови в нее поступает СО2, кривая диссоциации оксигемоглобина смещается вправо. Все эти процессы соответствуют сдвигу на эффективной кривой диссоциации. Снижение сродства гемоглобина к кислороду приводит к еще большему падению содержания оксигемоглобина, и в результате кислород поступает в ткани при относительно высоком РО2 в капилляре. Таким образом, и в данном случае эффект Бора способствует обмену кислорода.


Влияние патологических факторов. При ряде патологических состояний наблюдаются изменения в процессах переноса кислорода кровью. Так, существуют заболевания (например, некоторые виды анемий), которые сопровождаются сдвигами кривой диссоциации оксигемоглобина вправо (реже влево). Причины таких сдвигов окончательно не ясны. Известно, что на форму и угол наклона кривой диссоциации оксигемоглобина оказывают выраженное влияние некоторые фосфорсодержащие органические соединения, концентрация которых в эритроцитах при патологии может изменяться. Наибольший эффект среди таких соединений оказывает 2,3-Дифосфоглицерат. Сродство гемоглобина к кислороду зависит также от содержания в эритроцитах катионов. Необходимо отметить и влияние патологических сдвигов рН: при повышении рН (алкалозе) захват кислорода в легких благодаря эффекту Бора облегчается, но его отдача в тканях затрудняется, а при снижении рН (ацидозе) наблюдается обратная картина. Наконец, значительный сдвиг кривой диссоциации оксигемоглобина влево имеет место при отравлении СО.

Особенности кривой диссоциации оксигемоглобина у плода. В плаценте, как и в любом другом органе, газообмен осуществляется путем диффузии. В то же время особое внимание следует обратить на различие в сродстве крови матери и плода к кислороду. При анализе в одинаковых условиях наклон кривой диссоциации оксигемоглобина в крови плода несколько больше, чем в крови матери, однако in vivo эта разница почти целиком сводится на нет благодаря эффекту Бора (рН крови плода несколько ниже, чем рН материнской крови).
связи с этим разница в сродстве крови матери и плода к кислороду практически не отражается на газообмене в плаценте. Такая ситуация наиболее благоприятна для обмена газов, что становится очевидным, если учесть различия в концентрации гемоглобина в крови матери и плода, поскольку содержание гемоглобина в крови матери и плода различно (120 и 180 г/л соответственно). Особую роль в плацентарном газообмене играет эффект Бора. В процессе диффузии газов сродство крови матери к кислороду в результате поступления СО2 снижается, а сродство крови плода повышается. Благодаря такому двойственному влиянию эффекта Бора скорость обмена кислорода увеличивается.

Источник: studopedia.net

Кривая диссоциации оксигемоглобина

Нормальная кривая диссоциации оксигемоглобина представлена на рис. 1.7. В исходной ее точке, когда РаО2 = 0, гемоглобин не содержит кислорода и SаO2 также равняется нулю. По мере повышения РаО2 гемоглобин начинает быстро насыщаться кислородом, превращаясь в оксигемоглобин: небольшого увеличения напряжения кислорода оказывается достаточно для существенного прироста содержания НbО2.
и 40 мм рт. ст. содержание НbО2 достигает уже 75 %. Затем наклон кривой становится все более и более пологим. На этом участке кривой гемоглобин уже менее охотно присоединяет к себе кислород, и для насыщения оставшихся 25 % Hb требуется поднять РaО2 с 40 до 150 мм рт ст. Впрочем, в естественных условиях гемоглобин артериальной крови никогда не насыщается кислородом полностью, потому что при дыхании атмосферным воздухом РаО,> не превышает 100 мм рт ст (см. ранее)

Нормальному уровню РаО2 (92-98 мм рт. ст.) соответствует SaO2 94-98 %. Добиться полного насыщения гемогло бина кислородом можно только посредством увеличения содержания кислорода во вдыхаемом газе.

Кривая диссоциации оксигемоглобина физиология

Рис. 1.7. Кривая диссоциации оксигемоглобина

Выбирая пульсоксиметр, обычно проверяют его на себе. Если монитор показывает SPO2 = 100 % (а такие модели-оптимисты встречаются достаточно часто), подумайте, стоит ли его покупать. Испытывать пульсоксиметр должен некурящий человек, так как после выкуренной сигареты до 8-10 % гемоглобина крови превращаются в карбокси-гемоглобин. При этом пульсоксиметр завышает SaO2, и модель может оказаться незаслуженно скомпрометированной.


Зависимость SаO2 от РаО2 для каждого больного можно описать эмпирическими формулами (уравнение Хилла, алгоритмы Келмана, Северингхауза и др.), в которых учитываются температура, рН и прочие факторы. Данные формулы в разных модификациях обычно вводят в современные автоматические приборы контроля КЩС и газового состава крови (Radiometer, AVL, Instrumentation Laboratories и пр.), которые вычисляют сатурацию гемоглобина по напряжению кислорода в крови. Собственно, сама кривая диссоциации оксигемоглобина и является графическим выражением этих уравнений. Более простой показатель положения кривой диссоциации — индекс Р50; он равен напряжению кислорода в крови, при котором сатурация гемоглобина составляет 50 % (рис. 1.7).

Нормальная величина Р50равна 27 мм рт. ст. Ее уменьшение соответствует сдвигу кривой влево, а увеличение — сдвигу вправо.

После полного насыщения гемоглобина кислородом дальнейшее повышение РаО2 сопровождается лишь незначительным приростом СаО2 за счет физически растворенного кислорода. Поэтому увеличение концентрации кислорода во вдыхаемом или вдуваемом газе (FiО2) сверх уровня, достаточного для полного насыщения гемоглобиновой емкости (SаO2= 99-100 %), редко бывает оправданным.


Проходя через капилляры, артериальная кровь отдает тканям часть содержащегося в ней кислорода и превращается в венозную (PVO2 = 40 мм рт. ст., SVО2 = 75 %). Таким образом, в газообмене участвует лишь около 25 % запаса кислорода артериальной крови, а сатурация и десатурация гемоглобина происходят на пологом участке кривой диссоциации.

Патология дыхательной системы приводит к нарушению оксигенации крови в легких с развитием артериальной гипоксемии, степень которой количественно оценивается пульсоксиметром. В этих условиях снабжение тканей кислородом осуществляется в "аварийном" режиме, на крутом участке кривой, где незначительного падения РаО2 оказывается достаточно для отделения от оксигемоглобина требуемого количества кислорода. Аварийность режима заключается в уменьшении напряжения и, следовательно, содержания кислорода в тканях, о чем свидетельствует низкое напряжение кислорода в венозной крови.

Гемоглобин как транспортный белок призван решать две задачи: присоединять кислород в легких и отдавать его тканям. Эти задачи противоположны по своей сути, но выполняются одним и тем же веществом, поэтому стремление гемоглобина связываться с кислородом (сродство гемоглобина к кислороду) должно быть достаточным — чтобы обеспечить оксигенацию крови в легких, но не избыточным — чтобы не нарушить процесс отдачи кислорода на периферии. Нормальное положение кривой диссоциации оксигемоглобина как раз и соответствует оптимальной готовности гемоглобина к реализации обеих задач. Но при определенных условиях баланс между стремлением гемоглобина присоединить кислород и готовностью его отдать нарушается. Графически это выражается сдвигом кривой диссоциации вправо или влево (рис. 1.8).

При ацидозе (респираторном или метаболическом), гипертермии и увеличении концентрации 2,3-дифосфоглицерата (2,3-ДФГ) в эритроцитах сродство гемоглобина к кислороду снижается и кривая диссоциации HbО2 сдвигается вправо. При этом насыщение гемоглобина кислородом в легких ухудшается (уменьшение SрО2 при прежнем РаO2), но отделение кислорода от оксигемоглобина в капиллярах облегчается.

Если газообмен в легких не нарушен, то даже существенный сдвиг кривой диссоциации вправо сопровождается весьма незначительным снижением SPO2, поскольку события в легких происходят на пологом участке кривой. В тканях же напряжение кислорода повышается. В отношении кислородного гомеостаза это в целом безопасная ситуация. Некоторые специалисты даже считают, что при нормальной работе легких ацидоз способствует снабжению тканей кислородом.

Кривая диссоциации оксигемоглобина физиология

Рис. 1.8. Сдвиг кривой диссоциации оксигемоглобина

Иная картина наблюдается при грубой патологии дыхания, когда от легких оттекает кровь с низким напряжением кислорода, соответствующим крутому участку кривой диссоциации HbO2. Если при этом кривая сдвинута вправо, SpO2 может оказаться намного ниже, чем при нормальном положении кривой. Данное обстоятельство — дополнительный удар по снабжению тканей кислородом и важный вклад в дело развития гипоксии. Таким образом, при исходной артериальной гипоксемии (низком уровне РаО2) метаболический ацидоз, гиперкапния и гипертермия способны заметно снизить сатурацию гемоглобина (SpO2) и, следовательно, содержание кислорода в артериальной крови.

Алкалоз (респираторный или метаболический), гипотермия и уменьшение концентрации 2,3-ДФГ повышают сродство гемоглобина к кислороду, и кривая диссоциации HbО2 сдвигается влево. В этих условиях гемоглобин жадно присоединяет к себе кислород в легких (SPO2 возрастает при прежнем РаО2) и неохотно отдает его тканям. Считается, что сдвиг кривой диссоциации влево всегда неблагоприятно сказывается на оксигенации тканей, ибо небольшой прирост содержания (но не напряжения) кислорода в артериальной крови не окупает последующего нежелания оксигемоглобина делиться кислородом с тканями на периферии. Пожалуй, от левого положения кривой диссоциации HbО2 не страдают только новорожденные. Но это отдельная тема.

Непостоянство отношений между РаО2 и SPO2 может затруднить осмысление данных пульсоксиметрии: далеко не всегда известно, по какой кривой диссоциации работает гемоглобин в данный момент.

О дисгемоглобинах, красителях и лаке для ногтей

Еще одно обстоятельство, которое влияет на показания пульсоксиметра,— это наличие в крови дополнительных фракций гемоглобина. К ним принадлежат дисгемоглобины (карбокси- и метгемоглобин), а также фетальный гемоглобин.

В норме содержание карбоксигемоглобина (СОHb) в крови невелико (1-3 %) и не сказывается на величине SpO2. Однако при отравлении угарным газом или у больных с недавно полученными ожогами пламенем карбоксигемоглобин может составлять десятки процентов от общего количества гемоглобина. СОНЬ поглощает свет почти так же, как НЬСЬ, поэтому вместо насыщения гемоглобина кислородом пульсоксиметр у таких пациентов показывает сумму процентных концентраций СОНЬ и НЬСЬ. Например, если S..O2 = 65 %, а СОНЬ = 25 %, пульсоксиметр высветит на дисплее величину SpO2, близкую к 90 %.

При карбоксигемоглобинемии пульсоксиметр завышает степень насыщения гемоглобина кислородом.

Метгемоглобинемия возникает в результате действия на гемоглобин метгемоглобинобразующих веществ. К ним относятся не только определенные яды, но и некоторые лекарственные препараты, в частности нитропруссид натрия или сульфален-меглюмин. MetHb поглощает красный и инфракрасный свет так же, как и гемоглобин, насыщенный кислородом на 85 %.

При умеренной метгемоглобинемии пульсоксиметр занижает SPO2, а при выраженной метгемоглобинемии показывает величину, близкую к 85 %, которая почти не зависит от колебаний SaO2.

Фетальный гемоглобин (HbF) содержится в эритроцитах плода и у детей первого года жизни. В невысокой концентрации (до 5 %) он также может быть обнаружен у женщин в первом триместре беременности. HbF отличается от гемоглобина взрослых (который обозначается "НЬА" [от англ, adult — взрослый]) значительно большим сродством к кислороду. И это неудивительно. Напряжение кислорода в оксигенированной крови, оттекающей по пупочной вене от плаценты к плоду, составляет всего 30 мм рт. ст., и лишь сдвинутое влево положение кривой диссоциации фетального оксигемоглобина обеспечивает при этом SaO2 = 75 %. Метаболизм плода настроен на низкое напряжение кислорода в тканях, а увеличение метаболизма после рождения компенсируется возрастанием PаO2 и SaO2 при переходе на дыхание атмосферным воздухом.

Фетальный гемоглобин отличается от гемоглобина взрослых только аминокислотным составом двух глобиновых цепей, что делает HbF менее чувствительным к изменению концентрации 2,3-ДФГ, чем и объясняется высокое сродство фетального гемоглобина к кислороду.

Как реагирует пульсоксиметр на присутствие в крови фетального гемоглобина? Практически никак. Величина SPO2 у новорожденных соответствует истинному значению SаO2, потому что гемовые группы HbF и НЬА, определяющие светопоглощающие свойства гемоглобина, идентичны, а молекулы глобина — бесцветны и не влияют на измерение. Особенности пульсоксиметрии в неонатологии относятся в основном к интерпретации данных мониторинга. В частности, необходимо учитывать высокое сродство фетального гемоглобина к кислороду и существенное различие нормальных значений параметров кислородного гомеостаза у новорожденного и взрослого.

За несколько недель до срока рождения в эритроцитах плода начинается синтез взрослого гемоглобина, и к моменту рождения ребенка содержание HbА достигает 15-25 %. Из-за резкого преобладания HbF кривая диссоциации оксигемоглобина у новорожденного сдвинута влево (P50 = 19-22 мм рт. ст.). Через неделю после появления ребенка на свет HbF постепенно начинает замещаться на НЬА.

Внутривенное введение красителей. Некоторые красители, применяемые с диагностической целью, способны изменять светопоглощающие свойства крови именно в том частотном диапазоне, который используется в пульсоксиметрии (сильное поглощение света с длиной волны 660 нм). К таким веществам относятся метиленовый синий (метиленблау) и, в меньшей степени, индоцианин. Их внутривенное введение сопровождается быстрым и выраженным снижением величины SpO2, которое длится 5-10 мин. На этом основан простой тест на правильность установки внутривенного катетера: если сразу после введения красителя наблюдается резкое снижение сатурации, катетер находится в вене.

Лак для ногтей обычно не искажает показания пульсоксиметра. В некоторых случаях он способен уменьшить сигналы обоих светодиодов, но это не сказывается на расчете SpO2. Правда, имеются сообщения о том, что синий лак может избирательно ослаблять излучение одного из светодиодов (660 нм), что приводит к артефактному занижению SpO2. Это следует иметь в виду, работая с пациентками, которые поступают в операционную в полной боевой раскраске.

Амплитуда ФПГ

Фотоплетизмограмма — не только исходный материал для расчета SpO2: она также обладает собственным диагностическим значением. Амплитуда ФПГ отражает объемную пульсацию артериол и, значит, характеризует периферический кровоток. Хорошие модели пульсоксиметров способны улавливать даже резко ослабленную пульсацию, когда величина периферического кровотока достигает лишь 4-5 % от нормальной. Разумеется, фо-топлетизмограмма непригодна для количественной оценки кровоснабжения периферии, но она позволяет составить довольно точное впечатление о локальном кровотоке. Пренебрегать такой возможностью ненужно, тем более что метод неинвазивен и длительность его применения не ограничена.

Отображение ФПГ на дисплее предусмотрено не во всех моделях пульсоксиметров. Не забывайте об этом, выбирая монитор.

В клинических условиях амплитуда ФПГ способна изменяться в десятки раз, поэтому на дисплее зубцы кривой в одних случаях не помещаются на экране, а в других — уменьшаются до такой степени, что становятся неразличимыми. Чтобы ФПГ всегда имела удобный для анализа вид и стандартную высоту, она подвергается автоматическому масштабированию (autoscaling); эта процедура производится при каждом стойком изменении амплитуды. В результате даже при плачевном состоянии периферического кровотока кривая на дисплее может иметь нормальный внешний вид и по ее форме трудно заподозрить неладное. В программном обеспечении некоторых мониторов содержится набор стандартных масштабов, и выбор новой шкалы осуществляется автоматически лишь в тех случаях, когда пики кривой выходят за пределы дисплея или сливаются с изолинией. Такой способ представления данных удобен тем, что позволяет в заданных диапазонах отслеживать изменения амплитуды ФПГ.

Для предотвращения потери информации о реальной амплитуде ФПГ на дисплее некоторых моделей предусмотрен специальный индикатор. Как правило, это столбик, высота которого отражает истинную величину пиков кривой. Максимальная высота столбика присуща нормальному периферическому кровотоку; при нарушении кровоснабжения столбик снижается. В дальнейшем, рассматривая амплитуду ФПГ, мы будем иметь в виду показания именно этого индикатора.

Отдельного упоминания заслуживает другой, более удобный, но редкий способ отображения ФПГ. После первоначального автоматического масштабирования врач вручную выбирает более удачный, с его точки зрения, постоянный масштаб и наблюдает за изменениями формы и высоты фотоплетизмограммы в динамике. Так работают, например, мониторы фирм DATEX и BRUEL & KJAER. Пульсоксиметры фирмы DATEX, кроме того, выдают численный параметр (он называется "амплитудный фактор"), отражающий реальный объем артериальных пульсаций. Мониторы с такой организацией дисплея позволяют отслеживать ситуации, когда амплитуда ФПГ превышает норму. Диагностическое значение этой функции приводится в разделе о клинических аспектах метода.

Фотоплетизмограмма по форме весьма похожа на кривую артериального давления, но, в отличие от последней, характеризует колебания объема микрососудов.

Амплитуда ФПГ зависит от тонуса микрососудов и ударного объема сердца.

Вот почему изменения фотоплетизмограммы далеко не всегда соответствуют изменениям артериального давления. При артериальной гипотензии, вызванной вазодилататорами, кривая на экране пульсоксиметра может иметь высокую амплитуду. И наоборот, снижение волн ФПГ при вазоконстрикции иногда наблюдается и на фоне артериальной гипертензии.

Микрососуды тканей пальца богато иннервированы волокнами симпатической системы и содержат большое количество рецепторов для "плавающих" катехоламинов. Поэтому активация симпатической системы, инфузия альфа1-адреномиметиков, бета2-адреноблокаторов, ангиотензина и других сосудосуживающих препаратов сопровождается снижением амплитуды ФПГ. Необходимо помнить, что данные, получаемые при пульсоксиметрии, из-за специфики регуляции пальцевого кровотока не всегда пригодны для суждения о кровоснабжении внутренних органов. Пример такого несоответствия — холодовая вазоконстрикция.

Второй фактор, от которого зависит форма фотоплетизмографической кривой,— ударный объем сердца, определяющий наполнение пульсовой волны. Его непосредственное влияние на амплитуду отдельных волн ФПГ прекрасно видно на экране пульсоксиметра при парадоксальном или альтернирующем пульсе. Кроме того, влияние сердечного выброса на форму ФПГ может быть и опосредованным, поскольку его снижение часто сопровождается периферической вазоконстрикцией.

Снижение амплитуды ФПГ служит признаком периферической вазоконстрикции и/или уменьшения ударного объема, а повышение амплитуды свидетельствует об обратном. Тонус сосудов — основной фактор, определяющий высоту волн фотоплетизмограммы.

К сожалению, пульсоксиметрия в своем современном варианте не позволяет дифференцировать вазоконстрикцию от уменьшения ударного объема. Принципиальная возможность такой дифференцировки, основанной на математическом анализе формы пульсовой волны, существует, но в серийных мониторах еще не реализована.

Форма ФПГ

Форма волны ФПГ индивидуальна, но полной клинической ее интерпретации пока нет. На нисходящем колене каждой волны заметна вырезка — дикротическая инцизура,— которая соответствует закрытию аортального клапана. За инцизурой следует дополнительный пик — дикротический зубец (рис. 1.9). Четкость изображения инцизуры и зубца на дисплеях разных моделей пульсоксиметров неодинакова, и нередко они представлены едва заметной волной.

При выраженной артериальной гипертензии или аортальной недостаточности дикротический зубец может быть очень высоким (рис. 1.10) и пульсоксиметр интерпретирует его как самостоятельную пульсовую волну. В результате частота пульса артефактно завышается.

В каждом случае, когда данные пульсоксиметрии свидетельствуют о выраженной тахикардии, непременно обратите внимание на форму ФПГ и посчитайте пульс вручную. При работе с пульсоксиметром, не выводящим ФПГ на дисплей, коррекции тахикардии обязательно должна предшествовать проверка частоты пульса. Наличие высокого дикротического зубца — типичная причина расхождения показаний пульсоксиметра и ЭКГ-монитора, поэтому такие артефакты нехарактерны для моделей, в которых использован принцип C-lock.

Кривая диссоциации оксигемоглобина физиология

Рис. 1.9. Волна ФПГ как отражение пульсации артериол

Иногда в промежутках между пиками ФПГ наблюдаются дополнительные колебания — венозные волны (об их происхождении и роли см. "Артефакты и их источники", с. 22).

Пульсоксиметрия позволяет непрерывно контролировать важнейшую функцию легких — насыщение гемоглобина крови кислородом. При всей несомненной полезности этой информации нельзя забывать, что SpO2 — лишь один из многих параметров, используемых для описания кислородного гомеостаза. Надеемся, что приведенных выше фрагментарных сведений из физиологии достаточно для того, чтобы понять, насколько непростой может стать трактовка этого показателя, когда он вырван из клинико-физиологического контекста. Тем не мене пульсоксиметрия — самый распространенный, а во многих случаях и вообще единственный доступный метод определения оксигенации.

Кривая диссоциации оксигемоглобина физиология

Рис. 1.10. Высокий дикротический зубец, имитирующий волну ФПГ

Мониторинг амплитуды фотоплетизмограммы — простой и неинвазивный метод ориентировочной оценки периферического артериального кровотока. Если причина изменения ФПГ лежит на поверхности, заключение, сделанное врачом, поможет своевременно принять правильные меры и контролировать их эффективность. Однако при наличии сложных расстройств кровообращения, когда амплитуда ФПГ формируется под влиянием сразу нескольких факторов, она теряет самостоятельное диагностическое значение и становится лишь дополнительным аргументом в дифференциальной диагностике.

В следующей главе мы расскажем, как выжимать из этих параметров максимум пользы.

Практическое применение пульсоксиметрш

Несколько практических советов

Перед началом работы постарайтесь расположить прибор так, чтобы его существованию ничто не угрожало. Шнур питания и кабель датчика не должны болтаться под ногами у персонала: скорее рано, чем поздно, монитор окажется на полу, а на такие случаи гарантия бесплатного ремонта не распространяется. Разумнее всего найти и приспособить для него удобное постоянное место.

Отучите медицинский персонал использовать верхнюю панель монитора в качестве места для хранения ампул, флаконов, ларингоскопа или контейнеров для трахеальных катетеров. Некоторые модели снабжены специальной подставкой, позволяющей наклонять прибор, чтобы улучшить обзор дисплея. Прибегните к ее помощи еще и потому, что на наклонную плоскость никто ничего положить не сможет.

Мониторы с жидкокристаллическим дисплеем нужно размещать так, чтобы обеспечить максимальный сектор обзора на высоте глаз стоящего человека Желательно покупать мониторы с регулируемой яркостью дисплея.

Если пульсоксиметр реагирует на наводку от электроаппаратуры (а это легко проверить самому), постарайтесь поместить кабель датчика как можно дальше от кабелей электрооборудования. Электрическая дефибрилляция безопасна для пульсоксиметра.

У больного с двигательным беспокойством или судорожным синдромом применяйте ушной или гибкий Y-образный датчик. В любом случае датчик должен быть на виду у персонала, поэтому лучше покупать пульсоксиметры, не реагирующие на окружающий свет. Обидно извлечь из-под одеяла обломки того, что когда-то называлось датчиком и стоило несколько сотен долларов.

Трудно удержаться, чтобы не привести совет, данный фирмой DATEX:

Относитесь к датчику так же бережно, как к собственным часам или очкам.

Если датчик сломался, а запасного такого же нет, не подключайте к монитору датчик другой фирмы, даже если у него такой же штекер. Это типичная ошибка, чреватая самыми разнообразными — и всегда плохими — последствиями, ожогами, поломкой оборудования, резким снижением точности измерения и пр. В мире существует большое, но все же ограниченное число типов разъемов, в связи с чем разные фирмы иногда просто вынуждены использовать одинаковые штекеры. Не полагаясь на здравомыслие врачей, фирмы приводят соответствующие предупреждения в руководствах к мониторам, наклеивают их на кабель датчика и даже публикуют в профессиональных журналах, но авантюризм порой оказывается сильнее. Некоторые крупные фирмы, например NELLCOR-PURITAN BENNET, продают свои датчики вместе с патентованной технологией их калибровки другим производителям пульсоксиметров, однако об этом всегда сообщается в документации.

У пациентов с выраженными расстройствами периферического кровообращения попробуйте переместить датчик на соседний палец или другую руку. Попытайтесь согреть руку грелкой или помассируйте ее. В некоторых случаях улучшить локальный кровоток удается с помощью нитроглицериновой мази, нанесенной тонким слоем на мочку уха или палец.

Более надежный сигнал в условиях нарушенного периферического кровотока можно получить с ушного датчика.

Нежелательно размещать датчик на той руке, которая используется для измерения артериального давления, так как это приводит к необоснованной активации аларма при каждом раздувании манжеты1. У больных с атеросклеротическим или иным поражением артерий верхних конечностей датчик следует устанавливать на той руке, где амплитуда ФПГ выше. После катетеризации лучевой артерии не исключено снижение амплитуды ФПГ на этой руке.

1У многофункциональных мониторов во время неинвазивного автоматического измерения артериальною давления аларм пульсоксиметра отключается.

Рекомендуется менять место установки датчика-клипсы (ушного или пальцевого) через каждые 4-5 ч, а при нарушениях периферического кровотока это необходимо делать чаще.

При охлаждении тела человека амплитуда ФПГ на периферии часто резко снижается. Такое состояние наблюдается у пациентов к концу длительных операций. Терморегуляция у них подавлена, теплопотеря повышена, а температура в операционной далека от комфортной, и пациент накрыт одной стерильной простыней. Это надо иметь в виду, выполняя пульсоксиметрию в раннем послеоперационном периоде

Пульсоксиметрию, как любой другой метод мониторинга, следует применять лишь тогда, когда в ней есть необходимость. Пульсоксиметр редко включают без надобности, но часто забывают отключить, когда таковая отпала. Нужно помнить, что срок службы прибора (в большей степени это относится к датчикам) зависит от суммарного наработанного времени.

Источник: textarchive.ru

Кривая диссоциации оксигемоглобина.

Реакция взаимодействия кислорода с гемоглобином подчиняется закону действующих масс. Это означает, что соотношение между количествами гемоглобина и оксигемоглобина зависит от содержания физически растворенного О2 в крови; последнее же, согласно закону Генри-Дальтона, пропорционально напряжению О2. Процент оксигемоглобина от общего содержания гемоглобина называют кислородным насыщением (SО2) гемоглобина. Если гемоглобин полностью дезоксигенирован, то SО2 = 0%; если же весь гемоглобин превратился в оксигемоглобин, то SО2 = 100%. В соответствии с законом действующих масс насыщение гемоглобина кислородом зависит от напряжения О2. Графически эту зависимость отражает так называемая кривая диссоциации оксигемоглобина. Эта кривая имеет S-образную форму. Расположение кривой диссоциации оксигемоглобина зависит от ряда факторов (см. ниже). Наиболее простым показателем, характеризующим расположение этой кривой, служит так называемое напряжение полунасыщения (50%), т.е. такое напряжение О2, при котором насыщение гемоглобина кислородом составляет 50%. В норме (при рН=7,4 и t=37°C) полунасыщение артериальной крови составляет около 26 мм рт.ст. (3,46 кПа).

Причины S-образной формы кривой диссоциации оксигемоглобина до конца не ясны. Если бы каждая молекула гемоглобина присоединяла только одну молекулу О2, то кинетика этой реакции графически описывалась бы гиперболой. Именно такая гиперболическая кривая диссоциации характерна, например, для реакции соединения кислорода с красным мышечным пигментом миоглобином, аналогичной реакции оксигенации гемоглобина. Строение миоглобина сходно со структурой одной из четырех субъединиц гемоглобина, поэтому молекулярные массы этих двух веществ соотносятся как 1:4. Поскольку в состав миоглобина входит лишь одна пигментная группа, одна молекула миоглобина может присоединить только одну молекулу О2. Исходя из вполне правдоподобного предположения о том, что S-образная форма кривой диссоциации НbО2 обусловлена связыванием одной молекулой гемоглобина четырех молекул О2, Эдер выдвинул так называемую гипотезу промежуточных соединений. Согласно этой гипотезе, присоединение четырех молекул О2 к гемоглобину происходит в несколько стадий, причем каждая из этих стадий влияет на равновесие следующей реакции. Таким образом, реакция соединения кислорода с гемоглобином описывается четырьмя константами равновесия, что и объясняет сигмоидную форму кривой диссоциации оксигемоглобина.

В то же время возможно и другое объяснение, согласно которому существуют две формы гемоглобина-оксигенированная и дезоксигенированная, переходящие одна в другую в результате конформационных перестроек. Если предположить, что параметры равновесия реакций оксигенации для этих двух форм гемоглобина различны, то с позиции данной гипотезы можно объяснить S-образную форму кривой диссоциации НbО2

Биологический смысл формы кривой диссоциации оксигемоглобина. Конфигурация кривой диссоциации оксигемоглобина имеет важное значение с точки зрения переноса кислорода кровью. В процессе поглощения кислорода в легких напряжение О2 в крови приближается к таковому в альвеолах. У молодых людей РО2 артериальной крови составляет около 95 мм рт.ст. (12,6 кПа). При таком напряжении насыщение гемоглобина кислородом составляет примерно 97%. С возрастом (и в еще большей степени при заболеваниях легких) напряжение О2 в артериальной крови может значительно снижаться, однако, поскольку кривая диссоциации оксигемоглобина в правой ее части почти горизонтальна, насыщение крови кислородом уменьшается ненамного. Так, даже при падении РО2 в артериальной крови до 60 мм рт.ст. (8,0 кПа) насыщение гемоглобина кислородом равно 90%. Таким образом, благодаря тому, что области высоких напряжений кислорода соответствует горизонтальный участок кривой диссоциации оксигемоглобина, предупреждается cyщественное снижение насыщения артериальной крови кислородом.

Крутой наклон среднего участка кривой диссоциации оксигемоглобина свидетельствует об очень благоприятных условиях для отдачи кислорода тканям. При изменении локальной потребности в кислороде он должен высвобождаться в достаточном количестве в отсутствие значительных сдвигов РО2 в артериальной крови. В состоянии покоя РО2 в области венозного конца капилляра равно приблизительно 40 мм рт.ст. (5,3 кПа), что соответствует примерно 73% насыщения. Если в результате увеличения потребления кислорода его напряжение в венозной крови падает лишь на 5 мм рт.ст. (0,7 кПа), то насыщение гемоглобина кислородом снижается не менее чем на 7%; высвобождающийся при этом О2 может быть сразу же использован для процессов метаболизма.

Количество химически связанного кислорода в крови зависит от насыщения им гемоглобина.

При прохождении крови через тканевые капилляры используется лишь 25% общей кислородной емкости. Разумеется, разные органы существенно различаются по степени извлечения кислорода. При интенсивной физической нагрузке артериовенозная разница по кислороду может превышать 0,1.

Источник: StudFiles.net


КРИВАЯ ДИССОЦИАЦИИ ОКСИГЕМОГЛОБИНА
oxygen-hemoglobin dissociation curve ]

     Кривая диссоциации оксигемоглобина — это график, отображающий зависимость от напряжения кислорода в крови скорости реакций связывания (ассоциации, стрелка вправо) кислорода гемоглобином в лёгких и высвобождения (диссоциации, стрелка влево) кислорода оксигемоглобином в тканях.
     Реакции связывания кислорода гемоглобином в лёгких и высвобождения кислорода оксигемоглобином в тканях :

       

осуществляются в прямом и обратном направлении в соответствии с законом действия масс: отношение между количеством гемоглобина и оксигемоглобина зависит от концентрации кислорода, растворенного в крови. В свою очередь, концентрация кислорода, растворённого в крови, согласно закону Генри — Дальтона, пропорциональна напряжению кислорода в крови. Показателем скорости реакции связывания (или высвобождения) кислорода гемоглобином может быть степень насыщения гемоглобина кислородом. Значение этого показателя вычисляется как отношение количества оксидированного гемоглобина (оксигемоглобин) к количеству всего гемоглобина, как оксидированного, так и восстановленного (дезоксигемоглобин):

где  HbO2 —  оксигемоглобин. Если гемоглобин полностью дезоксигенирован, то  SO2 = 0%; если же весь гемоглобин превратился в оксигемоглобин, то  SO2 = 100%.
     В соответствии с предшествующими рассуждениями, насыщение гемоглобина кислородом зависит от напряжения кислорода. График этой зависимости, кривая диссоциации оксигемоглобина представлен на схеме.

Эта кривая имеет S -образную форму. Простейшим её параметром может служить значение независимой переменной (проекция точки кривой на ось абсцисс), характеризующая её положение. Эта точку обозначили как напряжение полунасыщения гемоглобина кислородом,  PO2(50). Это такое напряжение кислорода в крови, при котором насыщение гемоглобина кислородом,  SO2  составляет 50%. В норме (при  pH =7,4 и  t = 37оC)  PO2(50)  артериальной крови составляет около 26 мм рт ст (3,46 кПа ).
     Угол наклона кривой графика по отношению к оси абсцисс (первая производная) характеризует скорость реакции.
     Из графика видно, что при высоких значениях напряжения кислорода в крови (правая треть графика) угол наклона минимален. На этом участке графика, соответствующем напряжению кислорода в артериальной крови, при значительных изменениях напряжения кислорода (~60 ÷ 100  мм рт ст) степень насыщения гемоглобина кислородом велика (>90%) и мало изменяется (~90 ÷ 97%).
     В левом участке графика, соответствующем напряжению кислорода в крови капилляров микрогемациркуляторного русла тканей, скорость реакции диссоциации максимальна (максимальное значение угла наклона). Это способствует отдаче кислорода тканям. Даже при небольших изменениях напряжения кислорода гемоглобин высвобождает значительные количества кислорода и степень насыщения гемоглобина

кислородом значительно уменьшается. При этом кислород немедленно используется в метаболизме тканей.
     Скорость реакций связывания и высвобождения (ассоциации и диссоциации) кислорода гемоглобином и форма соответствующего графика зависит от ряда факторов. Важнейшими среди этих зависимостей являются: зависимость реакций связывания и высвобождения кислорода гемоглобином от температуры, зависимость реакций связывания и высвобождения кислорода гемоглобином от напряжения двуокиси углерода, зависимость реакций связывания и высвобождения кислорода гемоглобином от pH, зависимость реакций связывания и высвобождения кислорода гемоглобином от 2,3-ДФГ.

См.: Система дыхания: Cловарь,
         Система дыхания: Литература. Иллюстрации,
         Управление в системе дыхания: Литература. Иллюстрации,
         Показатели деятельности системы дыхания.

     
«Я    У Ч Е Н Ы Й    И Л И . . .    Н Е Д О У Ч К А ?»
    Т Е С Т    В А Ш Е Г О    И Н Т Е Л Л Е К Т А

Предпосылка:
Эффективность развития любой отрасли знаний определяется степенью соответствия методологии познания — познаваемой сущности.
Реальность:
Живые структуры от биохимического и субклеточного уровня, до целого организма являются вероятностными структурами. Функции вероятностных структур являются вероятностными функциями.
Необходимое условие:
Эффективное исследование вероятностных структур и функций должно основываться на вероятностной методологии (Трифонов Е.В., 1978,…, …, 2015, …).
Критерий: Степень развития морфологии, физиологии, психологии человека и медицины, объём индивидуальных и социальных знаний в этих областях определяется степенью использования вероятностной методологии.
Актуальные знания: В соответствии с предпосылкой, реальностью, необходимым условием и критерием…
о ц е н и т е   с а м о с т о я т е л ь н о:
—  с т е п е н ь  р а з в и т и я   с о в р е м е н н о й   н а у к и,
—  о б ъ е м   В а ш и х   з н а н и й   и
—  В а ш   и н т е л л е к т !

Источник: hupsy.welldocs.com

Нормальному уровню Ра02 (92-98 мм рт. ст.) соответствует S,0; 94-98 %. Добиться полного насыщения гемоглобина кислородом можно только посредством увеличения содержания кислорода во вдыхаемом газе.»

Выбирая пульсоксиметр, обычно проверяют его на себе. Если монитор показывает SpО2= 100 % (а такие модели-оптимисты встречаются достаточно часто), подумайте, стоит ли его покупать. Испытывать пульсоксиметр должен некурящий человек, так как после выкуренной сигареты до 8-10 % гемоглобина крови превращаются в карбоксигемоглобин. При этом пульсоксиметр завышает Sa02, и модель может оказаться незаслуженно скомпрометиро­ванной.

Зависимость SaO2 от РaО2 для каждого больного можно описать эмпирическими формулами (уравнение Хилла, алгоритмы Кел-мана, Северингхауза и др.), в которых учитываются температу­ра, рН и прочие факторы. Данные формулы в разных модифика­циях обычно вводят в современные автоматические приборы контроля КЩС и газового состава крови (Radiometer, AVL, Instrumentation Laboratories и пр.), которые вычисляют сатура­цию гемоглобина по напряжению кислорода в крови. Собствен­но, сама кривая диссоциации оксигемоглобина и является гра­фическим выражением этих уравнений. Более простой показа­тель положения кривой диссоциации — индекс Рм; он равен напряжению кислорода в крови, при котором сатурация гемог­лобина составляет 50 % (рис. 1.7).

Нормальная величина P50 равна 27 мм рт. ст. Ее уменьше­ние соответствует сдвигу кривой влево, а увеличение — сдвигу вправо.

После полного насыщения гемоглобина кислородом дальнейшее повышение Ра02 сопровождается лишь незначительным прирос­том СаО2 за счет физически растворенного кислорода. Поэтому увеличение концентрации кислорода во вдыхаемом или вдувае­мом газе (F1O2) сверх уровня, достаточного для полного насыще­ния гемоглобиновой емкости (Sa02 = 99-100 %), редко бывает оправданным.

Проходя через капилляры, артериальная кровь отдает тканям часть содержащегося в ней кислорода и превращается в веноз­ную (PvO2 = 40 мм рт. ст., SvO2 = 75 %). Таким образом, в газооб­мене участвует лишь около 25 % запаса кислорода артериальной крови, а сатурация и десатурация гемоглобина происходят, на по­логом участке кривой диссоциации.

Патология дыхательной системы приводит к нарушению ок-сигенации крови в легких с развитием артериальной гипоксемии, степень которой количественно оценивается пульсоксиметром. В этих условиях снабжение тканей кислородом осуществляется в «аварийном» режиме, на крутом участке кривой, где незначи­тельного падения РаО2 оказывается достаточно для отделения от оксигемоглобина требуемого количества кислорода. Аварий­ность режима заключается в уменьшении напряжения и, следо­вательно, содержания кислорода в тканях, о чем свидетельствует низкое напряжение кислорода в венозной крови.

Гемоглобин как транспортный белок призван решать две за­дачи: присоединять кислород в легких и отдавать его тканям. Эти задачи противоположны по своей сути, но выполняются од­ним и тем же веществом, поэтому стремление гемоглобина свя­зываться с кислородом (сродство гемоглобина к кислороду) дол­жно быть достаточным — чтобы обеспечить оксигенацию крови в легких, но не избыточным — чтобы не нарушить процесс отдачи кислорода на периферии. Нормальное положение кривой диссоциации оксигемоглобина как раз и соответствует опти­мальной готовности гемоглобина к реализации обеих задач. Но при определенных условиях баланс между стремлением гемо­глобина присоединить кислород и готовностью его отдать нару­шается. Графически это выражается сдвигом кривой диссоциа­ции вправо или влево (рис. 1.8).

Источник: symona.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.