Эритроциты место отмирания


Этот белок получил свое название в результате способности вступать в реакцию преципитации с С-полисахаридом пневмококков. С-реактивный белок в сыворотке крови здорового организма отсутствует, но обнаруживается при многих патологических состояниях, сопровождающихся воспалением и некрозом тканей.

Появляется С-реактивный белок в острый период заболевания, поэтому его иногда называют белком «острой фазы». С переходом в хроническую фазу заболевания С-реактивный белок исчезает из крови и снова появляется при обострении процесса. При электрофорезе белок перемещается совместно с α2-глобулинами.

  • Криоглобулин [показать].
  • Интерферон [показать].
  • Иммуноглобулины [показать].

    Система комплемента

    Система комплемента сыворотки крови человека включает 11 белков с молекулярной массой от 79 000 до 400 000. Каскадный механизм их активации запускается в ходе реакции (взаимодействия) антигена с антителом:

    В итоге действия комплемента наблюдаются разрушение клеток путем их лизиса, а также активация лейкоцитов и поглощение ими чужеродных клеток в результате фагоцитоза.

    По последовательности функционирования белки системы комплемента сыворотки крови человека могут быть разделены на три группы:


    1. «узнающая группа», включающая три белка и связывающая антитело на поверхности клетки-мишени (этот процесс сопровождается выделением двух пептидов);
    2. оба пептида на другом участке поверхности клетки-мишени взаимодействуют с тремя белками «активирующей группы» системы комплемента, при этом также происходит образование двух пептидов;
    3. выделенные вновь пептиды способствуют образованию группы белков «мембранной атаки», состоящей из 5 белков системы комплемента, кооперативно взаимодействующих друг с другом на третьем участке поверхности клетки-мишени. Связывание белков группы «мембранной атаки» с поверхностью клетки разрушает ее путем образования сквозных каналов в мембране.

    Ферменты плазмы (сыворотки) крови

    Ферменты, которые обнаруживаются в норме в плазме или сыворотке крови, можно, правда, несколько условно, разделить на три группы:

    • Секреторные — синтезируясь в печени, в норме выделяются в плазму крови, где играют определенную физиологическую роль. Типичными представителями данной группы являются ферменты, участвующие в процессе свертывания крови (см. с. 639). К этой же группе относится сывороточная холинэстераза.
    • Индикаторные (клеточные) ферменты выполняют в тканях определенные внутриклеточные функции. Одни из них сосредоточены главным образом в цитоплазме клетки (лактатдегидрогеназа, альдолаза), другие — в митохондриях (глутаматдегидрогеназа), третьи — в лизосомах (β-глюкуронидаза, кислая фосфатаза) и т. д. Большая часть индикаторных ферментов в сыворотке крови определяется лишь в следовых количествах. При поражении тех или иных тканей активность многих индикаторных ферментов резко возрастает в сыворотке крови.
    • Экскреторные ферменты синтезируются главным образом в печени (лейцинаминопептидаза, щелочная фосфатаза и др.). Эти ферменты в физиологических условиях в основном выделяются с желчью. Еще не полностью выяснены механизмы, регулирующие поступление данных ферментов в желчные капилляры. При многих патологических процессах выделение указанных ферментов с желчью нарушается и активность экскреторных ферментов в плазме крови повышается.

    Особый интерес для клиники представляет исследование активности индикаторных ферментов в сыворотке крови, так как по появлению в плазме или сыворотке крови ряда тканевых ферментов в необычных количествах можно судить о функциональном состоянии и заболевании различных органов (например, печени, сердечной и скелетной мускулатуры).

    Так, с точки зрения диагностической ценности исследования активности ферментов в сыворотке крови при остром инфаркте миокарда можно сравнить с введенным несколько десятков лет назад электрокардиографическим методом диагностики.


    ределение активности ферментов при инфаркте миокарда целесообразно в тех случаях, когда течение заболевания и данные электрокардиографии нетипичны. При остром инфаркте миокарда особенно важно исследовать активность креатинкиназы, аспартатаминотрансферазы, лактатдегидрогеназы и гидроксибутиратдегидрогеназы.

    При заболеваниях печени, в частности при вирусном гепатите (болезнь Боткина), в сыворотке крови значительно изменяется активность аланин- и аспартатаминотрансфераз, сорбитдегидрогеназы, глутаматдегидрогеназы и некоторых других ферментов, а также появляется активность гистидазы, уроканиназы. Большинство ферментов, содержащихся в печени, присутствует и в других органах и тканях. Однако существуют ферменты, которые более или менее специфичны для печеночной ткани. Органоспецифическими ферментами для печени считаются: гистидаза, уроканиназа, кетозо-1-фосфатальдолаза, сорбитдегидрогеназа; орнитинкарбамоилтрансфераза и несколько в меньшей степени глутаматдегидрогеназа. Изменения, активности этих ферментов в сыворотке крови свидетельствуют о поражении именно печеночной ткани.

    В последнее десятилетие особо важным лабораторным тестом стало исследование активности изоферментов в сыворотке крови, в частности изоферментов лактатдегидрогеназы.

    Известно, что в сердечной мышце наибольшей активностью обладают изоферменты ЛДГ1 и ЛДГ2, а в ткани печени — ЛДГ4 и ЛДГ5.
    тановлено, что у больных острым инфарктом миокарда в сыворотке крови резко повышается активность изоферментов ЛДГ1 и отчасти ЛДГ2. Изоферментный спектр лактатдегидрогеназы в сыворотке крови при инфаркте миокарда напоминает изоферментный спектр сердечной мышцы. Напротив, при паренхиматозном гепатите в сыворотке крови значительно возрастает активность изоферментов ЛДГ5 и ЛДГ4 и уменьшается активность ЛДГ1 и ЛДГ2.

    Диагностическое значение имеет также исследование активности изоферментов креатинкиназы в сыворотке крови. Существует по крайней мере три изофермента креатинкиназы: ВВ, ММ и MB. В мозговой ткани в основном присутствует изофермент ВВ, в скелетной мускулатуре — ММ-форма. Сердце содержит преимущественно ММ-форму, а также МВ-форму.

    Изоферменты креатинкиназы особено важно исследовать при остром инфаркте миокарда, так как MB-форма в значительном количестве содержится практически только в сердечной мышце. Поэтому повышение активности MB-формы в сыворотке крови свидетельствует о поражении именно сердечной мышцы. По-видимому, возрастание активности ферментов в сыворотке крови при многих патологических процессах объясняется по крайней мере двумя причинами: 1) выходом в кровяное русло ферментов из поврежденных участков органов или тканей на фоне продолжающегося их биосинтеза в поврежденных тканях и 2) одновременным резким повышением каталитической активности тканевых ферментов, переходящих в кровь.


    Возможно, что резкое повышение активности ферментов при поломке механизмов внутриклеточной регуляции обмена веществ связан с прекращением действия соответствующих ингибиторов ферментов, изменением под влиянием различных факторов вторичной, третичной и четвертичной структур макромолекул ферментов, определяющей их каталитическую активность.

    Небелковые азотистые компоненты крови

    Содержание небелкового азота в цельной крови и плазме почти одинаково и составляет в крови 15-25 ммоль/л. Небелковый азот крови включает азот мочевины (50% от общего количества небелкового азота), аминокислот (25%), эрготионеина — соединение, входящее в состав эритроцитов (8%), мочевой кислоты (4%), креатина (5%), креатинина (2,5%), аммиака и индикана (0,5%) и других небелковых веществ, содержащих азот (полипептиды, нуклеотиды, нуклеозиды, глутатион, билирубин, холин, гистамин и др.). Таким образом, в состав небелкового азота крови входит главным образом азот конечных продуктов обмена простых и сложных белков.

    Небелковый азот крови называют также остаточным азотом, т. е. остающимся в фильтрате после осаждения белков. У здорового человека колебания в содержании небелкового, или остаточного, азота крови незначительны и в основном зависят от количества поступающих с пищей белков. При ряде патологических состояний уровень небелкового азота в крови повышается. Это состояние носит название азотемии. Азотемия в зависимости от причин, вызвавших ее, подразделяется на ретенционную и продукционную. Ретенционная азотемия наступает в результате недостаточного выделения с мочой азотсодержащих продуктов при нормальном поступлении их в кровяное русло. Она в свою очередь может быть почечной и внепочечной.


    При почечной ретенционной азотемии концентрация остаточного азота в крови увеличивается вследствие ослабления очистительной (экскреторной) функции почек. Резкое повышение содержания остаточного азота при ретенционной почечной азотемии происходит в основном за счет мочевины. В этих случаях на азот мочевины приходится 90% небелкового азота крови вместо 50% в норме. Внепочечная ретенционная азотемия может возникнуть в результате тяжелой недостаточности кровообращения, снижения артериального давления и уменьшения почечного кровотока. Нередко внепочечная ретенционная азотемия является результатом наличия препятствия оттоку мочи после ее образования в почке.

    Продукционная азотемия наблюдается при избыточном поступлении азотсодержащих продуктов в кровь, как следствие усиленного распада тканевых белков. Нередко наблюдаются азотемии смешанного типа.

    Как уже отмечалось, по количеству главным конечным продуктом обмена белков в организме является мочевина. Принято считать, что мочевина в 18 раз менее токсична, чем остальные азотистые вещества.
    и острой почечной недостаточности концентрация мочевины в крови достигает 50-83 ммоль/л (норма 3,3-6,6 ммоль/л). Нарастание содержания мочевины в крови до 16,6-20,0 ммоль/л (в расчете на азот мочевины [Значение содержания азота мочевины приблизительно в 2 раза, а точнее в 2,14 раза меньше числа, выражающего концентрацию мочевины.]) является признаком нарушения функции почек средней тяжести, до 33,3 ммоль/л — тяжелым и свыше 50 ммоль/л — очень тяжелым нарушением с неблагоприятным прогнозом. Иногда определяют специальный коэффициент или, точнее, отношение азота мочевины крови к остаточному азоту крови, выраженное в процентах: (Азот мочевины / Остаточный азот) X 100

    В норме коэффициент ниже 48%. При почечной недостаточности эта цифра повышается и может достигать 90%, а при нарушении мочевинообразовательной функции печени коэффициент снижается (ниже 45%).

    К важным безбелковым азотистым веществам крови относится также мочевая кислота. Напомним, что у человека мочевая кислота является конечным продуктом обмена пуриновых оснований. В норме концентрация мочевой кислоты в цельной крови составляет 0,18-0,24 ммоль/л (в сыворотке крови — около 0,29 ммоль/л). Повышение содержания мочевой кислоты в крови (гиперурикемия) — главный симптом подагры. При подагре уровень мочевой кислоты в сыворотке крови возрастает до 0,47-0,89 ммоль/л и даже до 1,1 ммоль/л; В состав остаточного азота входит также азот аминокислот и полипептидов.


    В крови постоянно содержится некоторое количество свободных аминокислот. Часть из них экзогенного происхождения, т. е. попадает в кровь из желудочно-кишечного тракта, другая часть аминокислот образуется в результате распада белков тканей. Почти пятую часть содержащихся в плазме аминокислот составляют глутаминовая кислота и глутамин (табл. 46). Естественно, в крови имеются и аспарагиновая кислота, и аспарагин, и цистеин, и многие другие аминокислоты, входящие в состав природных белков. Содержание свободных аминокислот в сыворотке и плазме крови практически одинаково, но отличается от уровня их в эритроцитах. В норме отношение концентрации азота аминокислот в эритроцитах к содержанию азота аминокислот в плазме колеблется от 1,52 до 1,82. Это отношение (коэффициент) отличается большим постоянством, и только при некоторых заболеваниях наблюдается его отклонение от нормы.

    Суммарное определение уровня полипептидов в крови производят сравнительно редко. Однако следует помнить, что многие из полипептидов крови являются биологически активными соединениями и их определение представляет большой клинический интерес. К таким соединениям, в частности, относятся кинины.

    Кинины и кининовая система крови

    Кинины иногда называют кинин-гормонами, или местными гормонами. Они вырабатываются не в специфических железах внутренней секреции, а освобождаются из неактивных предшественников, постоянно присутствующих в межтканевой жидкости ряда тканей и в плазме крови. Кинины характеризуются широким спектром биологического действия. Главным образом это действие направлено на гладкую мускулатуру сосудов и капиллярную мембрану; гипотензивное действие — одно из основных проявлений биологической активности кининов.


    Важнейшими кининами плазмы крови являются брадикинин, каллидин и метионил-лизил-брадикинин. Фактически они образуют кининовую систему, обеспечивающую регуляцию местного и общего кровотока и проницаемость сосудистой стенки.

    Полностью установлена структура этих кининов. Брадикинин — полипептид из 9 аминокислот, каллидин (лизил-брадикинин) — полипептид из 10 аминокислот.

    В плазме крови содержание кининов обычно очень мало (например, брадикинина 1-18 нмоль/л). Субстрат, из которого освобождаются кинины, получил название кининогена. В плазме крови существует несколько кининогенов (не менее трех). Кининогены — это белки, связанные в плазме крови с α2-глобулиновой фракцией. Местом синтеза кининогенов является печень.

    Образование (отщепление) кининов из кининогенов происходит при участии специфических ферментов — кининогеназ, которые получили название калликреинов (см. схему). Калликреины являются протеиназами типа трипсина, они разрывают пептидные связи, в образовании которых участвуют НООС-группы аргинина или лизина; протеолиз белков в широком понятии не свойствен этим ферментам.

    Существуют калликреины плазмы крови и калликреины тканей. Одним из ингибиторов калликреинов является выделенный из легких и слюнной железы быка поливалентный ингибитор, известный под названием «трасилол». Он является также ингибитором трипсина и находит лечебное применение при острых панкреатитах.


    Часть брадикинина может образоваться из каллидина в результате отщепления лизина при участии аминопептидаз.

    В плазме крови и тканях калликреины находятся преимущественно в виде своих предшественников — калликреиногенов. Доказано, что в плазме крови прямым активатором калликреиногена является фактор Хагемана (см. с. 641).

    Кинины отличаются кратковременным действием в организме, они быстро инактивируются. Это объясняется высокой активностью кининаз — ферментов, инактивирующих кинины. Кининазы найдены в плазме крови и почти во всех тканях. Именно высокая активность кининаз плазмы крови и тканей определяет местный характер действия кининов.

    Как уже отмечалось, физиологическая роль кининовой системы сводится главным образом к регуляции гемодинамики. Брадикинин является самым сильным сосудорасширяющим веществом. Кинины действуют непосредственно на гладкую мускулатуру сосудов, вызывая ее расслабление. Они активно влияют и на проницаемость капилляров. Брадикинин в этом отношении в 10-15 раз активнее гистамина.

    Имеются сведения, что брадикинин, усиливая сосудистую проницаемость, способствует развитию атеросклероза. Установлена тесная связь кининовой системы с патогенезом воспаления. Возможно, что кининовая система играет важную роль в патогенезе ревматизма, а лечебный эффект салицилатов объясняется торможением образования брадикинина. Сосудистые нарушения, характерные для шока, также, вероятно, связаны со сдвигами в кининовой системе. Известно участие кининов и в патогенезе острдго панкреатита.

    Интересной особенностью кининов является их бронхоконстрикторное действие. Показано, что в крови страдающих астмой резко снижена активность кининаз, что создает благоприятные условия для проявления действия брадикинина. Несомненно, что исследования по изучению роли кининовой системы при бронхиальной астме весьма перспективны.

    Безазотистые органические компоненты крови

    В группу безазотистых органических веществ крови входят углеводы, жиры, липоиды, органические кислоты и некоторые другие вещества. Все эти соединения являются либо продуктами промежуточного обмена углеводов и жиров, либо играют роль питательных веществ. Основные данные, характеризующие содержание в крови различных безазотистых органических веществ, представлены в табл. 43. В клинике большое значение придают количественному определению этих компонентов в крови.

    Электролитный состав плазмы крови

    Известно, что общее содержание воды в организме человека составляет 60-65% от массы тела, т. е. приблизительно 40-45 л (если масса тела 70 кг); 2/3 общего количества воды приходится на внутриклеточную жидкость, 1/3 — на внеклеточную жидкость. Часть внеклеточной воды находится в сосудистом русле (5% от массы тела), большая же часть — вне сосудистого русла — это межуточная (интерстициальная), или тканевая, жидкость (15% от массы тела). Кроме того, различают «свободную воду», составляющую основу внутри- и внеклеточной жидкостей, и воду, связанную с коллоидами («связанная вода»).

    Распределение электролитов в жидких средах организма очень специфично по своему количественному и качественному составу.

    Из катионов плазмы натрий занимает ведущее место и составляет 93% от всего их количества. Среди анионов следует выделить прежде всего хлор, далее бикарбонат. Сумма анионов и катионов практически одинакова, т. е. вся система электронейтральна.

    • Натрий [показать].
    • Калий [показать].
    • Кальций [показать].
    • Магний [показать].
    • Фосфор [показать].
    • Железо [показать].

    Кислотно-основное состояние

    Кислотно-основным состоянием называется соотношение концентрации водородных и гидроксильных ионов в биологических средах.

    Учитывая сложность использования при практических расчетах величин порядка 0,0000001, приблизительно отражающих концентрацию ионов водорода, Зёренсон (1909) предложил применять отрицательные десятичные логарифмы концентрации ионов водорода. Этот показатель назван pH по первым буквам латинских слов puissance (potenz, power) hygrogen — «сила водорода». Соотношения концентраций кислых и основных ионов, соответствующие различным значениям pH, приведены в табл. 47.

    Установлено, что состоянию нормы соответствует лишь определенный диапазон колебаний pH крови — с 7,37 до 7,44 со средней величиной 7,40. (В других биологических жидкостях и в клетках pH может отличаться от pH крови. Например, в эритроцитах pH составляет 7,19±0,02, отличаясь от pH крови на 0,2.)

    Как ни малы кажутся нам пределы физиологических колебаний pH, тем не менее, если их выразить в миллимолях на 1 л (ммоль/л), то окажется, что эти колебания относительно существенны — от 36 до 44 миллионных долей миллимоля на 1 л, т. е. составляют примерно 12% от средней концентрации. Более значительные изменения pH крови в сторону повышения или понижения концентрации водородных ионов связаны с патологическими состояниями.

    Регуляторными системами, непосредственно обеспечивающими постоянство pH крови, являются буферные системы крови и тканей, деятельность легких и выделительная функция почек.

    Буферные системы крови

    Буферными свойствами, т. е. способностью противодействовать изменению pH при внесении в систему кислот или оснований, обладают смеси, состоящие из слабой кислоты и ее соли с сильным основанием или слабого основания с солью сильной кислоты.

    Важнейшими буферными системами крови являются:

    • Бикарбонатная буферная система [показать].
    • Фосфатная буферная система [показать].
    • Белковая буферная система [показать].
    • Гемоглобиновая буферная система [показать].

    Итак, перечисленные буферные системы крови играют важную роль в регуляции кислотно-основного состояния. Как отмечалось, в этом процессе, помимо буферных систем крови, активное участие принимают также система дыхания и мочевыделительная система.

    Нарушения кислотно-основного состояния

    При состоянии, когда компенсаторные механизмы организма не способны предотвратить сдвиги концентрации водородных ионов, наступает расстройство кислотно-основного состояния. При этом наблюдается два противоположных состояния — ацидоз и алкалоз.

    Ацидоз характеризуется концентрацией водородных ионов выше нормальных пределов. При этом, естественно, pH уменьшается. Снижение величины pH ниже 6,8 вызывает смерть.

    В тех случаях когда концентрация водородных ионов уменьшается (соответственно pH растет), наступает состояние алкалоза. Предел совместимости с жизнью — pH 8,0. В клиник практически такие величины pH, как 6,8 и 8,0, не встречаются.

    В зависимости от механизма, развития расстройств кислотно-основного состояния выделяют респираторный (газовый) и нереспираторный (метаболический) ацидоз или алкалоз.

    • ацидоз [показать].
    • алкалоз [показать].

    На практике изолированные формы респираторных или нереспираторных расстройств встречаются крайне, редко. Уточнить характер расстройств и степень компенсации помогает определение комплекса показателей кислотно-основного состояния. В течение последних десятилетий для изучения показателей кислотно-основного состояния широкое распространение получили чувствительные электроды для прямого измерения pH и РCO2 крови. В клинических условиях удобно пользоваться приборами типа «Аструп» либо отечественными аппаратами — АЗИВ, АКОР. При помощи этих приборов и соответствующих номограмм можно определять следующие основные показатели кислотно-основного состояния:

    1. актуальный pH крови — отрицательный логарифм концентрации водородных ионов крови в физиологических условиях;
    2. актуальное РCO2 цельной крови — парциальное давление углекислоты (Н2СO3 + СO2) в крови в физиологических условиях;
    3. актуальный бикарбонат (АВ) — концентрация бикарбоната в плазме крови в физиологических условиях;
    4. стадартный бикарбонат плазмы крови (SB) — концентрация бикарбоната в плазме крови, уравновешенной альвеолярным воздухом и при полном насыщении кислородом;
    5. буферные основания цельной крови или плазмы (ВВ)-показатель мощности всей буферной системы крови или плазмы;
    6. нормальные буферные основания цельной крови (NBB)-буферные основания цельной крови при физиологических значениях pH и РCO2 альвеолярного воздуха;
    7. излишек оснований (BE)-показатель избытка или недостатка буферных мощностей (ВВ — NBB).

    Некоторые белки плазмы крови играют важную роль в системах свертывания и противосвертывания крови.

    Свертывание крови — защитная реакция организма, предохраняющая его от кровопотери. Люди, у которых кровь не способна свертываться, страдают тяжелым заболеванием — гемофилией.

    Механизм свертывания крови очень сложен. Суть его состоит в образовании сгустка крови — тромба, закупоривающего раневой участок и останавливающего кровотечение. Тромб образуется из растворимого белка фибриногена, который в процессе свертывания крови переходит в нерастворимый белок фибрин. Превращение растворимого фибриногена в нерастворимый фибрин происходит под влиянием тромбина — активного белка-фермента, а также ряда веществ, в том числе тех, который выделяются при разрушении тромбоцитов.

    Запуск механизма свертывания крови происходит при порезе, проколе, травме, приводящем к повреждению мембраны тромбоцита. Процесс протекает в несколько этапов.

    При разрушении тромбоцитов образуется белок-фермент тромбопластин, который соединяясь с ионами кальция, присутствующими в плазме крови, переводит неактивный белок-фермент плазмы протромбин в активный тромбин.

    Кроме кальция, в процессе свертывания крови принимают участие и другие факторы, например витамин К, без которого нарушается образование протромбина.

    Тромбин также является ферментом. Он и завершает образование фибрина. Растворимый белок фибриноген переходит в нерастворимый фибрин и выпадает в осадок в виде длинных нитей. Из сети этих нитей и кровяных телец, которые задержались в сети, образуется нерастворимый сгусток — тромб.

    Эти процессы происходят только при наличии солей кальция. Поэтому если из крови удалить кальций, связав его химически (например, лимоннокислым натрием), то такая кровь теряет способность свертываться. Этот метод используют для предотвращения свертывания крови при ее консервировании и переливании.

    Внутренняя среда организма

    Кровеносные капилляры не подходят к каждой клетке, поэтому обмен веществ между клетками и кровью, связь между органами пищеварения, дыхания, выделения и т.д. осуществляется через внутреннюю среду организма, которая состоит из крови, тканевой жидкости и лимфы.

    Внутренняя среда Состав Местонахождение Источник и место образования Функции
    Кровь Плазма (50-60% объема крови): вода 90-92%, белки 7%, жиры 0,8%, глюкоза 0,12%, мочевина 0,05%, минеральные соли 0,9% Кровеносные сосуды: артерии, вены, капилляры За счет поглощения белков, жиров и углеводов, а также минеральных солей пищи и воды Взаимосвязь всех органов организма в целом с внешней средой; питательная (доставка питательных веществ), выделительная (выведение продуктов диссимиляции, СО2 из организма); защитная (иммунитет, свертывание); регуляторная (гуморальная)
    Форменные элементы (40-50% от объема крови): эритроциты, лейкоциты, тромбоциты Плазма крови Красный костный мозг, селезенка, лимфатические узлы, лимфоидная ткань Транспортная (дыхательная) — эритроциты транспортируют О2 и частично CO2; защитная — лейкоциты (фагоциты) обезвреживают болезнетворные микроорганизмы; тромбоциты обеспечивают свертывание крови
    Тканевая жидкость Вода, растворенные в ней питательные органические и неорганические вещества, О2, СО2, продукты диссимиляции, выделившиеся из клеток Промежутки между клетками всех тканей. Объем 20 л (у взрослого человека) За счет плазмы крови и конечных продуктов диссимиляции Является промежуточной средой между кровью и клетками организма. Переносит из крови в клетки органов O2, питательные вещества, минеральные соли, гормоны.

    Возвращает в кровяное русло через лимфу воду, продукты диссимиляции. Переносит в кровяное русло СO2 выделившийся из клеток

    Лимфа Вода, растворенные в ней продукты распада органических веществ Лимфатическая система, состоящая из лимфатических капилляров, заканчивающихся мешочками, и сосудов, сливающихся в два протока, которые впадают в полые вены кровеносной системы в области шеи За счет тканевой жидкости, всосавшейся через мешочки на концах лимфатических капилляров Возвращение в кровяное русло тканевой жидкости. Фильтрация и обеззараживание тканевой жидкости, которые осуществляются в лимфатических узлах, где вырабатываются лимфоциты

    Жидкая часть крови — плазма — проходит сквозь стенки тончайших кровеносных сосудов — капилляров — и образует межклеточную, или тканевую, жидкость. Эта жидкость омывает все клетки тела, отдает им питательные вещества и забирает продукты обмена веществ. В организме человека тканевой жидкости до 20 л, она образует внутреннюю среду организма. Большая часть этой жидкости возвращается в кровеносные капилляры, а меньшая, проникая в закрытые с одного конца лимфатические капилляры, образует лимфу.

    Цвет лимфы желтовато-соломенный. Она на 95% состоит из воды, содержит белки, минеральные соли, жиры, глюкозу, а также лимфоциты (разновидность лейкоцитов). Состав лимфы напоминает состав плазмы, но белков здесь меньше, и в разных участках тела она имеет свои особенности. Например, в области кишечника в ней много жировых капель, что придает ей беловатый цвет. Лимфа по лимфатическим сосудам собирается к грудному протоку и через него попадает в кровь.

    Питательные вещества и кислород из капилляров по законам диффузии вначале поступают в тканевую жидкость, а из нее поглощаются клетками. Таким образом осуществляется связь между капиллярами и клетками. Диоксид углерода, вода и другие продукты обмена, образующиеся в клетках, также за счет разности концентраций выделяются из клеток сначала в тканевую жидкость, а потом поступают в капилляры. Кровь из артериальной становится венозной и доставляет продукты распада к почкам, легким, коже, через которые они удаляются из организма.

    Источник: bono-esse.ru

    Что представляют собой эритроциты?

    Данный термин произошел от 2-ух слов «erythos» и «kytos», что в переводе с греческого языка означает «красный» и «вместилище, клетка». Эритроциты представляют собой красные кровяные тельца крови человека, позвоночных, а также некоторых беспозвоночных животных, на которые возложены весьма разнообразные очень важные функции.

    Образование красных клеток

    Образование данных клеток осуществляется в красном костном мозге. Первоначально происходит процесс пролиферации (разрастания ткани путем размножения клетки). Затем из стволовых гемопоэтических клеток (клеток – родоначальниц кроветворения) формируется мегалобласт (крупное красное тельце, содержащее ядро и большое количество гемоглобина), из которого в свою очередь образуется эритробласт (ядросодержащая клетка), а потом и нормоцит (тельце, наделенное нормальными размерами). Как только нормоцит утрачивает свое ядро, он тут же превращается в ретикулоцит – непосредственного предшественника красных кровяных клеток. Ретикулоцит попадает в кровеносное русло и трансформируется в эритроцит. На его трансформацию уходит около 2 — 3 часов.

    Строение

    Данным кровяным тельцам присуща двояковогнутая форма и красный окрас, обусловленный наличием в клетке большого количества гемоглобина. Именно гемоглобин составляет основную часть данных клеток. Их диаметр варьирует в пределах от 7 до 8 мкм, а вот толщина достигает 2 — 2,5 мкм. Ядро в созревших клетках отсутствует, что значительно увеличивает их поверхность. Помимо этого отсутствие ядра обеспечивает быстрое и равномерное проникновение внутрь тельца кислорода. Продолжительность жизни данных клеток составляет около 120 дней. Общая поверхность красных кровяных клеток человека превышает 3000 квадратных метров. Данная поверхность в 1500 раз больше поверхности всего человеческого тела. Если разместить все красные клетки человека в один ряд, то Вы сможете получить цепочку, длина которой будет составлять около 150000 км. Разрушение данных телец происходит преимущественно в селезенке и частично в печени.

    Функции

    1. Питательная: осуществляют перенос аминокислот от органов пищеварительной системы к клеткам организма;
    2. Ферментативная: являются носителями различных ферментов (специфических белковых катализаторов);
    3. Дыхательная: данная функция осуществляется гемоглобином, который способен присоединять к себе и отдавать как кислород, так и углекислый газ;
    4. Защитная: связывают токсины за счет присутствия на их поверхности специальных веществ белкового происхождения.

    Термины, применяемые для описания данных клеток

    • Микроцитоз – средний размер красных кровяных клеток меньше нормального;
    • Макроцитоз – средний размер красных кровяных клеток больше нормального;
    • Нормоцитоз – средний размер красных кровяных клеток нормальный;
    • Анизоцитоз – размеры красных кровяных клеток значительно отличаются, одни чересчур маленькие, другие очень большие;
    • Пойкилоцитоз – форма клеток варьирует от правильной до овальной, серповидной;
    • Нормохромия – красные кровяные тельца окрашены нормально, что является признаком нормального уровня в них гемоглобина;
    • Гипохромия – красные кровяные клетки окрашены слабо, что указывает на то, что гемоглобина в них меньше нормы.

    Скорость оседания (СОЭ)

    Скорость оседания эритроцитов или СОЭ – это достаточно известный показатель лабораторной диагностики, под которым подразумевается скорость разделения несвернувшейся крови, которую помещают в специальный капилляр. Кровь разделяется на 2 слоя – нижний и верхний. Нижний слой состоит из осевших красных кровяных телец, а вот верхний слой представлен плазмой. Данный показатель принято измерять в миллиметрах в час. Величина СОЭ напрямую зависит от пола пациента. В нормальном состоянии у мужчин данный показатель составляет от 1 до 10 мм/час, а вот у женщин – от 2 до 15 мм/час.

    При повышении показателей речь идет о нарушениях работы организма. Существует мнение, что в большинстве случаев СОЭ повышается на фоне увеличения соотношения в плазме крови белковых частиц крупных и мелких размеров. Как только в организм попадают грибки, вирусы либо бактерии, уровень защитных антител тут же возрастает, что и приводит к изменениям соотношения белков крови. Из этого следует, что особенно часто СОЭ увеличивается на фоне воспалительных процессов таких как воспаление суставов, ангина, воспаление легких и т.д. Чем выше данный показатель, тем ярче выражен воспалительный процесс. При легком течении воспаления показатель возрастает до 15 — 20 мм/час. Если же воспалительный процесс является тяжелым, тогда он подскакивает до 60 — 80 мм/час. Если во время курса терапии показатель начинает снижаться, значит, лечение было подобрано правильно.

    Помимо воспалительных заболеваний увеличение показателя СОЭ возможно и при некоторых недугах невоспалительного характера, а именно:

    • Злокачественные образования;
    • Инсульт либо инфаркт миокарда;
    • Тяжелые недуги печени и почек;
    • Тяжелые патологии крови;
    • Частые переливания крови;
    • Вакцинотерапия.

    Нередко показатель повышается и во время менструаций, а также в период беременности. Использование некоторых медикаментов также может спровоцировать увеличение СОЭ.

    Гемолиз – что это такое?

    Гемолиз представляет собой процесс разрушения мембраны красных кровяных клеток, вследствие чего гемоглобин выходит в плазму и кровь становится прозрачной.

    Современные специалисты выделяют следующие виды гемолиза:
    1. По характеру течения:

    • Физиологический: происходит разрушение старых и патологических форм красных клеток. Процесс их разрушения отмечается в мелких сосудах, макрофагах (клетках мезенхимного происхождения) костного мозга и селезенки, а также в клетках печени;
    • Патологический: на фоне патологического состояния разрушению подвергаются здоровые молодые клетки.

    2. По месту возникновения:

    • Эндогенный: гемолиз происходит внутри организма человека;
    • Экзогенный: гемолиз осуществляется вне организма (к примеру, во флаконе с кровью).

    3. По механизму возникновения:

    • Механический: отмечается при механических разрывах мембраны (к примеру, флакон с кровью пришлось встряхнуть);
    • Химический: отмечается при воздействии на эритроциты веществ, которым свойственно растворять липиды (жироподобные вещества) мембраны. К числу таких веществ можно отнести эфир, щелочи, кислоты, спирты и хлороформ;
    • Биологический: отмечается при воздействии биологических факторов (ядов насекомых, змей, бактерий) либо при переливании несовместимой крови;
    • Температурный: при низких температурах в красных кровяных тельцах формируются кристаллики льда, которым свойственно разрывать оболочку клеток;
    • Осмотический: происходит тогда, когда красные кровяные тельца попадают в среду с более низким чем у крови осмотическим (термодинамическим) давлением. При таком давлении клетки набухают и лопаются.

    Эритроциты в крови

    Эритроциты место отмиранияОбщее число данных клеток в крови человека просто огромно. Так, к примеру, если Ваш вес составляет около 60 кг, тогда в Вашей крови как минимум 25 триллионов красных кровяных телец. Цифра очень большая, так что для практичности и удобства специалисты вычисляют не общий уровень данных клеток, а их число в небольшом количестве крови, а именно в ее 1 кубическом миллиметре. Важно отметить, что нормы содержания данных клеток определяются сразу же несколькими факторами – возрастом пациента, его полом и местом проживания.

    Норма содержания красных кровяных телец

    Определить уровень данных клеток помогает клинический (общий) анализ крови.

    • У женщин — от 3.7 до 4.7 триллионов в 1 л;
    • У мужчин — от 4 до 5.1 триллионов в 1 л;
    • У детей старше 13 лет — от 3.6 до 5.1 триллионов в 1 л;
    • У детей в возрасте от 1 года до 12 лет — от 3.5 до 4.7 триллионов в 1 л;
    • У детей в 1 год — от 3.6 до 4.9 триллионов в 1 л;
    • У детей в полгода — от 3.5 до 4.8 триллионов в 1 л;
    • У детей в 1 месяц — от 3.8 до 5.6 триллионов в 1 л;
    • У детей в первый день их жизни — от 4.3 до 7.6 триллионов в 1 л.

    Высокий уровень клеток в крови новорожденных обусловлен тем, что во время внутриутробного развития их организм нуждается в большем количестве красных кровяных телец. Только так плод может получать необходимое ему количество кислорода в условиях относительно низкой его концентрации в крови матери.

    Уровень эритроцитов в крови беременных

    Чаще всего количество данных телец во время беременности слегка понижается, что является совершенно нормальным явлением. Во-первых, во время вынашивания плода в организме женщины задерживается большое количество воды, которая попадает в кровь и разбавляет ее. Кроме этого организмы практически всех будущих мамочек не получают достаточное количество железа, вследствие чего формирование данных клеток опять таки уменьшается.

    Повышение уровня эритроцитов в крови

    Состояние, характеризующееся повышением уровня красных кровяных клеток в крови, именуют эритремией, эритроцитозом или полицитемией.

    Самыми частыми причинами развития данного состояния являются:

    • Поликистоз почек (заболевание, при котором в обеих почках появляются и постепенно увеличиваются кисты);
    • ХОБЛ (хронические обструктивные болезни легких – бронхиальная астма, эмфизема легких, хронические бронхиты);
    • Синдром Пиквика (ожирение, сопровождающееся легочной недостаточностью и артериальной гипертензией, т.е. стойким повышением артериального давления);
    • Гидронефроз (стойкое прогрессирующее расширение почечной лоханки и чашечек на фоне нарушения оттока мочи);
    • Курс терапии стероидами;
    • Врожденные либо приобретенные пороки сердца;
    • Пребывание в высокогорных районах;
    • Стеноз (сужение) почечных артерий;
    • Злокачественные новообразования;
    • Синдром Кушинга (совокупность симптомов, которые возникают при чрезмерном увеличении количества стероидных гормонов надпочечников, в частности кортизола);
    • Длительное голодание;
    • Чрезмерные физические нагрузки.

    Понижение уровня эритроцитов в крови

    Эритроциты место отмиранияСостояние, при котором уровень красных кровяных клеток в крови понижается, получило название эритроцитопения. В данном случае речь идет о развитии анемии различной этиологии. Малокровие может развиться вследствие нехватки как белка, так и витаминов, а также железа. Оно же может быть следствием злокачественных новообразований либо миеломы (опухоли из элементов костного мозга). Физиологическое понижение уровня данных клеток возможно в периоды между 17.00 и 7.00, после приема пищи и при взятии крови в положении лежа. О других причинах понижения уровня данных клеток Вы сможете узнать, получив консультацию специалиста.

    Источник: www.tiensmed.ru

    Общее определение эритроцитов

    Если рассматривать кровь под сканирующим электронным микроскопом, то можно увидеть, какую форму и размер имеют эритроциты.

    Кровь человека

    Кровь человека под микроскопом

    Здоровые (неповрежденные) клетки – это маленькие диски (7-8 мкм), вогнутые с двух сторон. Их еще называют красными кровяными тельцами.

    Количество эритроцитов в кровяной жидкости превышает уровень лейкоцитов и тромбоцитов. В одной капле крови человека имеется около 100 млн. этих клеток.

    Зрелый эритроцит покрыт оболочкой. Он не имеет ядра и органелл, кроме цитоскелета. Внутренность клетки заполнена концентрированной жидкостью (цитоплазмой). Она насыщена пигментом гемоглобином.

    В химический состав клетки, кроме гемоглобина, входят:

    • Вода,
    • Липиды,
    • Белки,
    • Углеводы,
    • Соли,
    • Ферменты.

    Гемоглобин – это белок, состоящий из гема и глобина. Гем содержит атомы железа. Железо в гемоглобине, связывая в легких кислород, окрашивает кровь в светло-красный цвет. Она становится темной, когда кислород высвобождается в тканях.

    Гемоглобин

    Кровяные тельца имеют большую поверхность за счет своей формы. Повышенная плоскость клеток улучшает обмен газов.

    Красная кровяная клетка эластична. Очень маленький размер эритроцита и гибкость позволяют ему легко проходить через мельчайшие сосуды – капилляры (2-3 мкм).

    Сколько живут эритроциты

    Продолжительность жизни эритроцитов – 120 дней. За это время они выполняют все свои функции. Затем разрушаются. Место отмирания – печень, селезенка.

    Красные кровяные тельца разлагаются быстрее, если меняется их форма. При появлении у них выпуклостей образуются эхиноциты, углублений – стоматоциты. Пойкилоцитоз (изменение формы) приводит клетки к гибели. Патология формы диска возникает от повреждения цитоскелета.

    Видео функции крови. Эритроциты

    Где и как образуются

    Жизненный путь эритроциты начинают в красном костном мозге всех костей человека (до пятилетнего возраста).

    У взрослого, после 20 лет, красные кровяные клетки вырабатываются в:

    • Позвоночнике,
    • Грудине,
    • Ребрах,
    • Подвздошной кости.

    Где образуются эритроциты

    Где образуются эритроциты

    Их образование проходит под влиянием эритропоэтина – почечного гормона.

    С возрастом эритропоэз, то есть процесс образования эритроцитов, снижается.

    Образование кровяной клетки начинается с проэритробласта. В результате многократного деления создаются зрелые клетки.

    От единицы, образующей колонию, эритроцит проходит следующие этапы:

    • Эритробласт.
    • Пронормоцит.
    • Нормобласты разных видов.
    • Ретикулоцит.
    • Нормоцит.

    Первородная клетка имеет ядро, которое сначала становится меньше, а затем вообще покидает клетку. Цитоплазма ее постепенно наполняется гемоглобином.

    Если в крови наряду со зрелыми эритроцитами находятся ретикулоциты, это нормальное явление. Более ранние виды эритроцитов в крови указывают на патологию.

    Функции эритроцитов

    Эритроциты реализуют в организме свое главное предназначение – являются переносчиками дыхательных газов – кислорода и углекислого газа.

    Этот процесс осуществляется в определенном порядке:

    • Безъядерные диски, в составе движущейся по сосудам крови, попадают в легкие.
    • Деятельность эритроцитовВ легких гемоглобин эритроцитов, в частности атомы его железа, поглощает кислород, превращаясь в оксигемоглобин.
    • Насыщенная кислородом кровь под действием сердца и артерий через капилляры проникает во все органы.
    • Кислород, перенесенный железом, отсоединяется от оксигемоглобина, поступает в клетки, испытывающие кислородное голодание.
    • Опустошенный гемоглобин (дезоксигемоглобин) заполняется углекислым газом, преобразуется в карбогемоглобин.
    • Соединенный с диоксидом углерода гемоглобин несет СО2 в легкие. В сосудах легких углекислый газ отщепляется, затем выводится наружу.

    Кроме газообмена, форменные элементы выполняют и другие функции:

    • Поглощают, переносят антитела, аминокислоты, ферменты,

    Деятельность эритроцитов

    • Эритроциты крови человека
    • Транспортируют вредоносные вещества (токсины), некоторые лекарственные средства,
    • Рядом эритроцитарных факторов принимают участие в стимуляции и препятствии свертыванию крови (гемокоагуляции),
    • Несут основную ответственность за вязкость крови – она увеличивается при повышении числа эритроцитов и уменьшается при его понижении,
    • Участвуют в поддержании кислотно-щелочного баланса через гемоглобиновую буферную систему.

    Эритроциты и группы крови

    В норме каждый эритроцит в кровотоке – свободная в движении клетка. При увеличении показателя кислотности крови рН и других негативных факторах возникает склеивание красных кровяных клеток. Их склеивание называется агглютинацией.

    Такая реакция возможна и очень опасна при переливании крови от одного человека к другому. Чтобы в этом случае предупредить слипание эритроцитов, нужно знать группу крови пациента и его донора.

    Эритроциты и группы крови

    Реакция агглютинации послужила основой для деления крови людей на четыре группы. Они отличаются друг от друга сочетанием агглютиногенов и агглютининов.

    С особенностями каждой группы крови познакомит следующая таблица:

    Группа крови Наличие
    агглютиногенов агглютининов в плазме
    I 0 αβ
    II A β
    III B α
    IV AB 0

    Переливание

    При определении группы крови ошибаться ни в коем случае нельзя. Знать групповую принадлежность крови особенно важно при ее переливании. Не каждая подходит определенному человеку.

    Чрезвычайно важно! Перед переливанием крови обязательно нужно определить ее совместимость. Вливать человеку несовместимую кровь нельзя. Это опасно для жизни.

    Переливание

    При введении несовместимой крови возникает агглютинация эритроцитов. Это происходит при таком сочетании агглютиногенов и агглютининов: Аα, Вβ. При этом у больного появляются признаки гемотрансфузионного шока.

    Они могут быть такими:

    • Головная боль,
    • Беспокойство,
    • Покрасневшее лицо,
    • Пониженное артериальное давление,
    • Учащенный пульс,
    • Стеснение в груди.

    Агглютинация завершается гемолизом, то есть в организме происходит разрушение эритроцитов.

    Небольшое количество крови или эритроцитарной массы можно переливать таким образом:

    • I группы – в кровь II, III, IV,
    • II группы – в IV,
    • III группы – в IV.

    Важно! Если возникает необходимость в переливании большого количества жидкости, вливают кровь только той же группы.

    Источник: KardioBit.ru


  • Leave a Comment

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.